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1 Getting Started

What Is Statistics Toolbox?
Statistics Toolbox extends MATLAB® to support a wide range of common
statistical tasks. The toolbox contains two categories of tools:

• Building-block statistical functions for use in MATLAB programming

• Graphical user interfaces (GUIs) for interactive use of the functions

Code for the building-block functions is open and extensible. You can use the
MATLAB Editor to review, copy, and edit the M-file code for any function. You
can extend the toolbox by copying code to new M-files or by writing M-files
that call toolbox functions.

Toolbox GUIs allow you to perform statistical visualization and analysis
without writing code. You interact with the GUIs through controls such
as sliders, push buttons, and input fields, and the GUIs interact with the
building-block functions in the background.
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Primary Topic Areas

Primary Topic Areas
• “Descriptive Statistics” on page 1-3

• “Statistical Visualization” on page 1-3

• “Probability Distributions” on page 1-3

• “Hypothesis Tests” on page 1-4

• “Linear Models” on page 1-4

• “Nonlinear Models” on page 1-4

• “Multivariate Statistics” on page 1-4

• “Statistical Process Control” on page 1-4

• “Design of Experiments” on page 1-5

• “Hidden Markov Models” on page 1-5

Descriptive Statistics
Statistics Toolbox includes functions for computing common measures of
location, scale, and shape of a numerical data sample. The functions allow for
convenient handling of multidimensional data and missing data values.

Statistical Visualization
Statistics Toolbox adds many specialized statistical plots to the plot types
already found in MATLAB. Relevant functions accept grouping variables for
the simultaneous visualization of different data groups. Interactive features
allow you to explore data sets and experiment with different data models.

Probability Distributions
Statistics Toolbox supports computations involving over 30 different common
probability distributions, plus custom distributions which you can define. For
each distribution, a selection of relevant functions is available, including
density functions, cumulative distribution functions, parameter estimation
functions, and random number generators. The toolbox also supports
nonparametric methods for density estimation.
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Hypothesis Tests
Statistics Toolbox provides functions that implement many common
hypothesis tests, including distribution tests, analysis of variance tests, and
tests of randomness.

Linear Models
In the area of linear regression, Statistics Toolbox has functions to compute
parameter estimates, predicted values, and confidence intervals for simple
and multiple regression, stepwise regression, ridge regression, and regression
using response surface models. In the area of analysis of variance (ANOVA),
Statistics Toolbox has functions to perform one-way, two-way, and higher-way
ANOVA, analysis of covariance (ANOCOVA), multivariate analysis of
variance (MANOVA), and multiple comparisons of the estimates produced by
ANOVA and ANOCOVA functions.

Nonlinear Models
For nonlinear regression models, Statistics Toolbox provides additional
parameter estimation functions and tools for interactive prediction and
visualization of multidimensional nonlinear fits. The toolbox also includes
functions that create classification and regression trees to approximate
regression relationships.

Multivariate Statistics
Statistics Toolbox supports methods for the visualization and analysis of
multidimensional data, including principal components analysis, factor
analysis, one-way multivariate analysis of variance, cluster analysis, and
classical multidimensional scaling.

Statistical Process Control
In the area of process control and quality management, Statistics Toolbox
provides functions for creating a variety of control charts, performing process
capability studies, and evaluating Design for Six Sigma (DFSS) methodologies.
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Design of Experiments
Statistics Toolbox provides tools for generating and augmenting full and
fractional factorial designs, response surface designs, and D-optimal designs.
The toolbox also provides functions for the optimal assignment of units with
fixed covariates.

Hidden Markov Models
Statistics Toolbox provides functions for the analysis of hidden Markov
models, including the generation of random data, maximum likelihood
estimation of model parameters, calculation of most probable state sequences,
and calculation of posterior state probabilities.
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Data Sets
The following data sets are provided with Statistics Toolbox.

acetylene.mat Chemical reaction data with correlated predictors

carbig.mat Measurements of large model cars, 1970–1982

carsmall.mat Measurements of small model cars, 1970–1982

census.mat U.S. census data from 1790 to 1980

cereal.mat Breakfast cereal ingredients

cities.mat Quality of life ratings for U.S. metropolitan areas

discrim.mat A version of cities.mat used for discriminant
analysis

examgrades.mat Exam grades on a scale of 0–100

fisheriris.mat Fisher’s iris data (1936)

gas.mat Gasoline prices around the state of Massachusetts
in 1993

hald.mat Heat of cement vs. mix of ingredients

hogg.mat Bacteria counts in different shipments of milk

kmeansdata.mat Four-dimensional clustered data

lawdata.mat Grade point average and LSAT test scores from 15
law schools

mileage.mat Mileage data for three car models from two factories

moore.mat Biochemical oxygen demand on five predictors

morse.mat Recognition of Morse code distinctions by non-coders

parts.mat Dimensional run out on 36 circular parts

polydata.mat Data for polytool demo

popcorn.mat Popcorn yield by popper type and brand

reaction.mat Reaction kinetics data for Hougen-Watson model
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sat.dat Scholastic Aptitude Test averages by gender and
test (table)

sat2.dat Scholastic Aptitude Test averages by gender and
test (csv)

stockreturns.mat Simulated stock return data for factor analysis
example
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2 Organizing Data

Introduction
In MATLAB, data is placed into “data containers” in the form of workspace
variables. All workspace variables organize data into some form of array. For
statistical purposes, arrays are viewed as tables of values.

MATLAB variables use different structures to organize data:

• 2-D numerical arrays (matrices) organize observations and measured
variables by rows and columns, respectively. (See “Data Structures” in the
MATLAB documentation.)

• Multidimensional arrays organize multidimensional observations or
experimental designs. (See “Multidimensional Arrays” in the MATLAB
documentation.)

• Cell and structure arrays organize heterogeneous data of different types,
sizes, units, etc. (See “Cell Arrays” and “Structures” in the MATLAB
documentation.)

Data types determine the kind of data variables contain. (See “Data Types” in
the MATLAB documentation.)

These basic MATLAB container variables are reviewed, in a statistical
context, in the section on “MATLAB Arrays” on page 2-4.

These variables are not specifically designed for statistical data, however.
Statistical data generally involves observations of multiple variables, with
measurements of heterogeneous type and size. Data may be numerical,
categorical, or in the form of descriptive metadata. Fitting statistical data
into basic MATLAB variables, and accessing it efficiently, can be cumbersome.

Statistics Toolbox offers two additional types of container variables specifically
designed for statistical data:

• “Categorical Arrays” on page 2-13 accommodate data in the form of discrete
levels, together with its descriptive metadata.

• “Dataset Arrays” on page 2-28 encapsulate heterogeneous data and
metadata, including categorical data, which is accessed and manipulated
using familiar methods analogous to those for numerical matrices.
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These statistical container variables are discussed in the section on
“Statistical Arrays” on page 2-11.
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2 Organizing Data

MATLAB Arrays
This section describes the array-based organization of data in MATLAB and
the statistical functions that operate on data arrays.

Numerical Data (p. 2-4) Using matrices and
multidimensional arrays

Heterogeneous Data (p. 2-7) Using cell and structure arrays

Statistical Functions (p. 2-9) Computing statistics with
array-based data

Numerical Data
In MATLAB, two-dimensional numerical arrays (matrices) containing
statistical data use rows to represent observations and columns to represent
measured variables. For example,

load fisheriris % Fisher's iris data (1936)

loads the variables meas and species into the MATLAB workspace. The meas
variable is a 150-by-4 numerical matrix, representing 150 observations of 4
different measured variables (by column: sepal length, sepal width, petal
length, and petal width, respectively).
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The observations in meas are of three different species of iris (setosa,
versicolor, and virginica), which can be separated from one another using the
150-by-1 cell array of strings species:

setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

The resulting setosa variable is 50-by-4, representing 50 observations of the
4 measured variables for iris setosa.

To access and display the first five observations in the setosa data, use row,
column parenthesis indexing:

SetosaObs = setosa(1:5,:)
SetosaObs =

5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

The data are organized into a table with implicit column headers “Sepal
Length,” “Sepal Width,” “Petal Length,” and “Petal Width.” Implicit row
headers are “Observation 1,” “Observation 2,” “Observation 3,” etc.

Similarly, 50 observations for iris versicolor and iris virginica can be extracted
from the meas container variable:

versicolor_indices = strcmp('versicolor',species);
versicolor = meas(versicolor_indices,:);

virginica_indices = strcmp('virginica',species);
virginica = meas(virginica_indices,:);

Because the data sets for the three species happen to be of the same size, they
can be reorganized into a single 50-by-4-by-3 multidimensional array:

iris = cat(3,setosa,versicolor,virginica);

The iris array is a three-layer table with the same implicit row and column
headers as the setosa, versicolor, and virginica arrays. The implicit layer
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names, along the third dimension, are “Setosa,” “Versicolor,” and “Virginica.”
The utility of such a multidimensional organization depends on assigning
meaningful properties of the data to each dimension.

To access and display data in a multidimensional array, use parenthesis
indexing, as for 2-D arrays. The following gives the first five observations
of sepal lengths in the setosa data:

SetosaSL = iris(1:5,1,1)
SetosaSL =

5.1000
4.9000
4.7000
4.6000
5.0000

Multidimensional arrays provide a natural way to organize numerical data
for which the observations, or experimental designs, have many dimensions.
If, for example, data with the structure of iris are collected by multiple
observers, in multiple locations, over multiple dates, the entirety of the data
can be organized into a single higher dimensional array with dimensions
for “Observer,” “Location,” and “Date.” Likewise, an experimental design
calling for m observations of n p-dimensional variables could be stored in
an m-by-n-by-p array.

Numerical arrays have limitations when organizing more general statistical
data. One limitation is the implicit nature of the metadata. Another is the
requirement that multidimensional data be of commensurate size across all
dimensions. If variables have different lengths, or the number of variables
differs by layer, then multidimensional arrays must be artificially padded
with NaNs to indicate “missing values.” These limitations are addressed by
dataset arrays (see “Dataset Arrays” on page 2-28), which are specifically
designed for statistical data.
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Heterogeneous Data
Two data types in MATLAB—cell arrays and structure arrays—provide
container variables that allow you to combine metadata with variables of
different types and sizes.

The data in the variables setosa, versicolor, and virginica created in
“Numerical Data” on page 2-4 can be organized in a cell array, as follows:

iris1 = cell(51,5,3); % Container variable

obsnames = strcat({'Obs'},num2str((1:50)','%d'));
iris1(2:end,1,:) = repmat(obsnames,[1 1 3]);

varnames = {'SepalLength','SepalWidth',...
'PetalLength','PetalWidth'};

iris1(1,2:end,:) = repmat(varnames,[1 1 3]);

iris1(2:end,2:end,1) = num2cell(setosa);
iris1(2:end,2:end,2) = num2cell(versicolor);
iris1(2:end,2:end,3) = num2cell(virginica);

iris1{1,1,1} = 'Setosa';
iris1{1,1,2} = 'Versicolor';
iris1{1,1,3} = 'Virginica';

To access and display the cells, use parenthesis indexing. The following
displays the first five observations in the setosa sepal data:

SetosaSLSW = iris1(1:6,1:3,1)
SetosaSLSW =

'Setosa' 'SepalLength' 'SepalWidth'
'Obs1' [ 5.1000] [ 3.5000]
'Obs2' [ 4.9000] [ 3]
'Obs3' [ 4.7000] [ 3.2000]
'Obs4' [ 4.6000] [ 3.1000]
'Obs5' [ 5] [ 3.6000]

Here, the row and column headers have been explicitly labeled with metadata.

To extract the data subset, use row, column curly brace indexing:
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subset = reshape([iris1{2:6,2:3,1}],5,2)
subset =

5.1000 3.5000
4.9000 3.0000
4.7000 3.2000
4.6000 3.1000
5.0000 3.6000

While cell arrays are useful for organizing heterogeneous data, they may
be cumbersome when it comes to manipulating and analyzing the data.
Statistical functions in MATLAB and Statistics Toolbox do not accept data
in the form of cell arrays. For processing, data must be extracted from the
cell array to a numerical container variable, as in the preceding example.
The indexing can become complicated for large, heterogeneous data sets.
This shortcoming of cell arrays is addressed directly by dataset arrays (see
“Dataset Arrays” on page 2-28), which are designed to store general statistical
data and provide easy access.

The data in the preceding example can also be organized in a structure array,
as follows:

iris2.data = cat(3,setosa,versicolor,virginica);
iris2.varnames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
iris2.obsnames = strcat({'Obs'},num2str((1:50)','%d'));
iris2.species = {'setosa','versicolor','virginica'};

The data subset is then returned using a combination of dot and parenthesis
indexing:

subset = iris2.data(1:5,1:2,1)
subset =

5.1000 3.5000
4.9000 3.0000
4.7000 3.2000
4.6000 3.1000
5.0000 3.6000

For statistical data, structure arrays have many of the same shortcomings of
cell arrays. Once again, dataset arrays (see “Dataset Arrays” on page 2-28),
designed specifically for general statistical data, address these shortcomings.
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Statistical Functions
One of the advantages of working in MATLAB is that functions operate on
entire arrays of data, not just on single scalar values. The functions are said
to be vectorized. Vectorization allows for both efficient problem formulation,
using array-based data, and efficient computation, using vectorized statistical
functions.

When statistical functions in MATLAB and Statistics Toolbox operate on a
vector of numerical data (either a row vector or a column vector), they return
a single computed statistic:

% Fisher's setosa data:
load fisheriris
setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

% Single variable from the data:
setosa_sepal_length = setosa(:,1);

% Standard deviation of the variable:
std(setosa_sepal_length)
ans =

0.3525

When statistical functions operate on a matrix of numerical data, they treat
the columns independently, as separate measured variables, and return a
vector of statistics—one for each variable:

std(setosa)
ans =

0.3525 0.3791 0.1737 0.1054

The four standard deviations are for measurements of sepal length, sepal
width, petal length, and petal width, respectively.

Compare this to

std(setosa(:))
ans =

1.8483
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which gives the standard deviation across the entire array (all measurements).

Compare the preceding statistical calculations to the more generic
mathematical operation

sin(setosa)

This operation returns a 50-by-4 array the same size as setosa. The sin
function is vectorized in a different way than the std function, computing one
scalar value for each element in the array.

Statistical functions in MATLAB and Statistics Toolbox, like std, must
be distinguished from general mathematical functions like sin. Both are
vectorized, and both are useful for working with array-based data, but
only statistical functions summarize data across observations (rows) while
preserving variables (columns). This property of statistical functions may be
explicit, as with std, or implicit, as with regress. To see how a particular
function handles array-based data, consult its reference page.

Statistical functions in MATLAB expect data input arguments to be in the
form of numerical arrays. If data is stored in a cell or structure array, it must
be extracted to a numerical array, via indexing, for processing. Functions
in Statistics Toolbox are more flexible. Many Statistics Toolbox functions
accept data input arguments in the form of both numerical arrays and dataset
arrays (see “Dataset Arrays” on page 2-28), which are specifically designed
for storing general statistical data.
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Statistical Arrays

Introduction (p. 2-11) Introduction to statistical arrays

Categorical Arrays (p. 2-13) Working with categorical data

Dataset Arrays (p. 2-28) Working with heterogeneous data

Introduction
As discussed in “MATLAB Arrays” on page 2-4, MATLAB offers array types
for numerical, logical, and character data, as well as cell and structure arrays
for heterogeneous collections of data.

Statistics Toolbox offers two additional types of arrays specifically designed
for statistical data:

• “Categorical Arrays” on page 2-13

• “Dataset Arrays” on page 2-28

Categorical arrays store data with values in a discrete set of levels. Each level
is meant to capture a single, defining characteristic of an observation. If no
ordering is encoded in the levels, the data and the array are nominal. If an
ordering is encoded, the data and the array are ordinal.

Categorical arrays also store labels for the levels. Nominal labels typically
suggest the type of an observation, while ordinal labels suggest the position
or rank.

Dataset arrays collect heterogeneous statistical data and metadata, including
categorical data, into a single container variable. Like the numerical matrices
discussed in “Numerical Data” on page 2-4, dataset arrays can be viewed as
tables of values, with rows representing different observations and columns
representing different measured variables. Like the cell and structure
arrays discussed in “Heterogeneous Data” on page 2-7, dataset arrays can
accommodate variables of different types, sizes, units, etc.

Dataset arrays combine the organizational advantages of these basic
MATLAB data types while addressing their shortcomings with respect to
storing complex statistical data.
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Both categorical and dataset arrays have associated families of functions for
assembling, accessing, manipulating, and processing the collected data. Basic
array operations parallel those for numerical, cell, and structure arrays.
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Categorical Arrays

Categorical Data (p. 2-13) What is categorical data?

Categorical Arrays (p. 2-14) Arrays for categorical data

Categorical Array Operations
(p. 2-16)

Accessing and manipulating
categorical arrays

Using Categorical Arrays (p. 2-21) An example

Categorical Data
Categorical data take on values from only a finite, discrete set of categories
or levels. Levels may be determined before the data are collected, based on
the application, or they may be determined by the distinct values in the data
when converting them to categorical form. Predetermined levels, such as a
set of states or numerical intervals, are independent of the data they contain.
Any number of values in the data may attain a given level, or no data at all.
Categorical data show which measured values share common levels, and
which do not.

Levels may have associated labels. Labels typically express a defining
characteristic of an observation, captured by its level.

If no ordering is encoded in the levels, the data are nominal. Nominal
labels typically indicate the type of an observation. Examples of nominal
labels are {false, true}, {male, female}, and {Afghanistan, ... , Zimbabwe}.
For nominal data, the numeric or lexicographic order of the labels is
irrelevant—Afghanistan is not considered to be less than, equal to, or greater
than Zimbabwe.

If an ordering is encoded in the levels—for example, if levels labeled “red”,
“green”, and “blue” represent wavelengths—the data are ordinal. Labels
for ordinal levels typically indicate the position or rank of an observation.
Examples of ordinal labels are {0, 1}, {mm, cm, m, km}, and {poor, satisfactory,
outstanding}. The ordering of the levels may or may not correspond to the
numeric or lexicographic order of the labels.
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Categorical Arrays
Categorical data can be represented in MATLAB using integer arrays, but
this method has a number of drawbacks. First, it removes all of the useful
metadata that might be captured in labels for the levels. Labels must be
stored separately, in character arrays or cell arrays of strings. Secondly, this
method suggests that values stored in the integer array have their usual
numeric meaning, which, for categorical data, they may not. Finally, integer
types have a fixed set of levels (for example, -128:127 for all int8 arrays),
which cannot be changed.

Categorical arrays, available in Statistics Toolbox, are specifically designed
for storing, manipulating, and processing categorical data and metadata.
Unlike integer arrays, each categorical array has its own set of levels, which
can be changed. Categorical arrays also accommodate labels for levels in
a natural way. Like numerical arrays, categorical arrays take on different
shapes and sizes, from scalars to N-D arrays.

Organizing data in a categorical array can be an end in itself. Often, however,
categorical arrays are used for further statistical processing. They can be used
to index into other variables, creating subsets of data based on the category
of observation, or they can be used with statistical functions that accept
categorical inputs. For examples, see “Grouped Data” on page 2-41.

Categorical arrays come in two types, depending on whether the collected
data is understood to be nominal or ordinal. Nominal arrays are constructed
with the nominal function; ordinal arrays are constructed with the ordinal
function. For example,

load fisheriris
ndata = nominal(species,{'A','B','C'});

creates a nominal array with levels A, B, and C from the species data in
fisheriris.mat, while

odata = ordinal(ndata,{},{'C','A','B'});

encodes an ordering of the levels with C < A < B. See “Using Categorical
Arrays” on page 2-21, and the reference pages for nominal and ordinal, for
further examples.
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Functions associated with categorical arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary (categorical), double, horzcat, and getlabels, respectively.
Many of these functions are invoked using operations analogous to those for
numerical arrays, and do not need to be called directly. (For example, horzcat
is invoked by [].) Other functions are used to manipulate levels and labels
and must be called directly (for example, addlevels and setlabels). There
are functions that apply to both nominal and ordinal arrays (for example,
getlabels), functions that apply only to one type (for example, sortrows
(ordinal)), and functions that are applied differently to the two types (for
example, horzcat). For a complete list of functions with descriptions of their
use, see “Categorical Array Operations” on page 2-16.

Categorical arrays are implemented as objects in MATLAB, and the associated
functions are their methods. It is not necessary to understand MATLAB
objects and methods to make use of categorical arrays—in fact, categorical
arrays are designed to behave as much as possible like other, familiar
MATLAB arrays.

However, understanding the class structure of categorical arrays can be
helpful when selecting an appropriate method. The data type categorical
is an abstract class that defines properties and methods common to both the
nominal and ordinal classes. Never call the constructor for the categorical
class directly. Instead, use either the nominal or ordinal constructor. The
nominal and ordinal classes are subclasses derived directly from the parent
class categorical.
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Categorical Array Operations
The tables in this section list available methods for categorical (ordinal and
nominal) arrays. Many of the methods are invoked by familiar MATLAB
operators and do not need to be called directly. For full descriptions of
individual methods, type one of the following, depending on the class:

help ordinal/methodname
help nominal/methodname

Methods with supporting reference pages, including examples, are linked from
the tables. “Using Categorical Arrays” on page 2-21 contains an extended
example that makes use of many categorical methods.

The following table lists methods available for all categorical arrays (nominal
and ordinal).

Categorical
Method

Description

addlevels Add levels to categorical array.

cellstr Convert categorical array to cell array of strings.

char Convert categorical array to character array.

circshift Shift categorical array circularly.

ctranspose Transpose categorical matrix. This method is invoked by
the ' operator.

disp Display categorical array, without printing array name.

display Display categorical array, printing array name. This
method is invoked when the name of a categorical array is
entered at the command prompt.

double Convert categorical array to double array.

droplevels Remove levels from categorical array.

end Last index in indexing expression for categorical array.

flipdim Flip categorical array along specified dimension.

fliplr Flip categorical matrix in left/right direction.

flipud Flip categorical matrix in up/down direction.
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Categorical
Method

Description

getlabels Get level labels of categorical array.

int8 Convert categorical array to int8 array.

int16 Convert categorical array to int16 array.

int32 Convert categorical array to int32 array.

int64 Convert categorical array to int64 array.

ipermute Inverse permute dimensions of categorical array.

isempty True for empty categorical array.

isequal True if categorical arrays are equal.

islevel Test for categorical array levels.

isscalar True if categorical array is scalar.

isundefined True for elements of categorical array that are undefined.

isvector True if categorical array is vector.

length Length of categorical array.

levelcounts Element counts by level for categorical array.

ndims Number of dimensions of categorical array.

numel Number of elements in categorical array.

permute Permute dimensions of categorical array.

reorderlevels Reorder levels in categorical array.

repmat Replicate and tile a categorical array.

reshape Change size of categorical array.

rot90 Rotate categorical matrix 90 degrees.

setlabels Relabel levels for categorical array.

shiftdim Shift dimensions of categorical array.

single Convert categorical array to single array.

size Size of categorical array.
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Categorical
Method

Description

squeeze Squeeze singleton dimensions from categorical array.

subsasgn Subscripted assignment for categorical array. This
method is invoked by parenthesis indexing, as described
in “Accessing Categorical Arrays” on page 2-23.

subsref Subscripted reference for categorical array. This method
is invoked by parenthesis indexing, as described in
“Accessing Categorical Arrays” on page 2-23.

summary
(categorical)

Summary of categorical array.

times Product of categorical arrays. This method is invoked by
the .* operator.

transpose Transpose categorical matrix. This method is invoked by
the .' operator.

uint8 Convert categorical array to uint8 array.

uint16 Convert categorical array to uint16 array.

uint32 Convert categorical array to uint32 array.

uint64 Convert categorical array to uint64 array.

unique Unique values in categorical array.

The following table lists additional methods for nominal arrays.

Nominal
Method

Description

cat Concatenate nominal arrays. The horzcat and vertcat
methods implement special cases.

eq Equality for nominal array.

horzcat Horizontal concatenation for nominal arrays. This method
is invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.
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Nominal
Method

Description

intersect Set intersection for nominal arrays.

ismember True for set member.

mergelevels Merge levels of nominal array.

ne Not equal for nominal arrays. This method is invoked by
the ~= operator.

nominal Create nominal array.

setdiff Set difference for nominal arrays.

setxor Set exclusive or for nominal arrays.

union Set union for nominal arrays.

vertcat Vertical concatenation for nominal arrays. This method is
invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.

The following table lists additional methods for ordinal arrays.

Ordinal
Method

Description

cat Concatenate ordinal arrays. The horzcat and vertcat
methods implement special cases.

eq Equality for ordinal arrays. This method is invoked by the
== operator.

ge Greater than or equal to for ordinal arrays. This method is
invoked by the >= operator.

gt Greater than for ordinal arrays. This method is invoked
by the > operator.

horzcat Horizontal concatenation for ordinal arrays. This method
is invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.

intersect Set intersection for ordinal arrays.
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Ordinal
Method

Description

ismember True for set member.

issorted True for sorted ordinal array.

le Less than or equal to for ordinal arrays. This method is
invoked by the <= operator.

lt Less than for ordinal arrays. This method is invoked by
the < operator.

max Largest element in ordinal array.

mergelevels Merge levels of ordinal array.

min Smallest element in ordinal array.

ne Not equal for ordinal arrays. This method is invoked by
the ~= operator.

ordinal Create ordinal array.

setdiff Set difference for ordinal arrays.

setxor Set exclusive or for ordinal arrays.

sort Sort ordinal array in ascending or descending order.

sortrows
(ordinal)

Sort rows of ordinal matrix in ascending order.

union Set union for ordinal arrays.

vertcat Vertical concatenation for ordinal arrays. This method is
invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.
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Using Categorical Arrays
This section provides an extended tutorial example demonstrating the use of
categorical arrays and associated functions. The example introduces many
available functions, but is not meant to be comprehensive. “Categorical Array
Operations” on page 2-16 contains a complete list of available functions, with
descriptions. For examples detailing the use of particular functions, alone or
in combination with other functions, see the corresponding reference pages.

Constructing Categorical Arrays
(p. 2-21)

The nominal and ordinal
constructors

Accessing Categorical Arrays
(p. 2-23)

Indexing methods

Combining Categorical Arrays
(p. 2-24)

Concatenation methods

Computing with Categorical Arrays
(p. 2-26)

Subsetting and grouping

Constructing Categorical Arrays. Load the 150-by-4 numerical array meas
and the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Use nominal to create a nominal array from species:

n1 = nominal(species);

Open species and n1 side by side in the Array Editor (see “Viewing and
Editing Workspace Variables with the Array Editor”). Note that the string
information in species has been converted to categorical form, leaving only
information on which data share the same values, indicated by the labels
for the levels.
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By default, levels are labeled with the distinct values in the data (in this case,
the strings in species). Alternate labels are given with additional input
arguments to the nominal constructor:

n2 = nominal(species,{'species1','species2','species3'});

Open n2 in the Array Editor, and compare it with species and n1. The levels
have been relabeled.

Suppose that the data are considered to be ordinal. A characteristic of the
data that is not reflected in the labels is the diploid chromosome count, which
orders the levels corresponding to the three species as follows:

species1 < species3 < species2

The ordinal constructor is used to cast n2 as an ordinal array:

o1 = ordinal(n2,{},{'species1','species3','species2'});

The second input argument to ordinal is the same as for nominal—a list of
labels for the levels in the data. If it is unspecified, as above, the labels are
inherited from the data, in this case n2. The third input argument of ordinal
indicates the ordering of the levels, in ascending order.

When displayed side by side in the Array Editor, o1 does not appear any
different than n2. This is because the data in o1 have not been sorted. It is
important to recognize the difference between the ordering of the levels in an
ordinal array and sorting the actual data according to that ordering. The sort
function sorts ordinal data in ascending order:

o2 = sort(o1);

When displayed in the Array Editor, o2 shows the data sorted by diploid
chromosome count.

To find which elements moved up in the sort, use the < operator for ordinal
arrays:

moved_up = (o1 < o2);

The operation returns a logical array moved_up, indicating which elements
have moved up (the data for species3).
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Use the getlabels function to display the labels for the levels in ascending
order:

labels2 = getlabels(o2)
labels2 =

'species1' 'species3' 'species2'

The sort function reorders the display of the data, but not the order of the
levels. To reorder the levels, use reorderlevels:

o3 = reorderlevels(o2,labels2([1 3 2]));
labels3 = getlabels(o3)
labels3 =

'species1' 'species2' 'species3'
o4 = sort(o3);

These operations return the levels in the data to their original ordering, by
species number, and then sort the data for display purposes.

Accessing Categorical Arrays. Categorical arrays are accessed using
parenthesis indexing, with syntax that parallels similar operations for
numerical arrays (see “Numerical Data” on page 2-4).

Parenthesis indexing on the right-hand side of an assignment is used to
extract the lowest 50 elements from the ordinal array o4:

low50 = o4(1:50);

Suppose you want to categorize the data in o4 with only two levels: low (the
data in low50) and high (the rest of the data). One way to do this is to use an
assignment with parenthesis indexing on the left-hand side:

o5 = o4; % Copy o4
o5(1:50) = 'low';
Warning: Categorical level 'low' being added.
o5(51:end) = 'high';
Warning: Categorical level 'high' being added.

Note the warnings: the assignments move data to new levels. The old levels,
though empty, remain:

getlabels(o5)
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ans =
'species1' 'species2' 'species3' 'low' 'high'

The old levels are removed using droplevels:

o5 = droplevels(o5,{'species1','species2','species3'});

Another approach to creating two categories in o5 from the three categories in
o4 is to merge levels, using mergelevels:

o5 = mergelevels(o4,{'species1'},'low');
o5 = mergelevels(o5,{'species2','species3'},'high');

getlabels(o5)
ans =

'low' 'high'

The merged levels are removed and replaced with the new levels.

Combining Categorical Arrays. Categorical arrays are concatenated using
square brackets. Again, the syntax parallels similar operations for numerical
arrays (see “Numerical Data” on page 2-4). There are, however, restrictions:

• Only categorical arrays of the same type can be combined. You cannot
concatenate a nominal array with an ordinal array.

• Only ordinal arrays with the same levels, in the same order, can be
combined.

• Nominal arrays with different levels can be combined to produce a nominal
array whose levels are the union of the levels in the component arrays.

First use the ordinal constructor to create ordinal arrays from the variables
for sepal length and sepal width in meas. Categorize the data as short
or long depending on whether they are below or above the median of the
variable, respectively:

sl = meas(:,1); % Sepal length data
sw = meas(:,2); % Sepal width data
SL1 = ordinal(sl,{'short','long'},[],...

[min(sl),median(sl),max(sl)]);
SW1 = ordinal(sw,{'short','long'},[],...
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[min(sw),median(sw),max(sw)]);

Because SL1 and SW1 are ordinal arrays with the same levels, in the same
order, they can be concatenated:

S1 = [SL1,SW1];
S1(1:10,:)
ans =

short long
short long
short long
short long
short long
short long
short long
short long
short short
short long

The result is an ordinal array S1 with two columns.

If, on the other hand, the measurements are cast as nominal, different levels
can be used for the different variables, and the two nominal arrays can still
be combined:

SL2 = nominal(sl,{'short','long'},[],...
[min(sl),median(sl),max(sl)]);

SW2 = nominal(sw,{'skinny','wide'},[],...
[min(sw),median(sw),max(sw)]);

S2 = [SL2,SW2];
getlabels(S2)
ans =

'short' 'long' 'skinny' 'wide'
S2(1:10,:)
ans =

short wide
short wide
short wide
short wide
short wide
short wide
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short wide
short wide
short skinny
short wide

Computing with Categorical Arrays. Categorical arrays are used to
index into other variables, creating subsets of data based on the category
of observation, and they are used with statistical functions that accept
categorical inputs, such as those described in “Grouped Data” on page 2-41.

The ismember function is used to create logical variables based on the
category of observation. For example, the following creates a logical index the
same size as species that is true for observations of iris setosa and false
elsewhere. Recall that n1 = nominal(species):

SetosaObs = ismember(n1,'setosa');

Since the code above compares elements of n1 to a single value, the same
operation is carried out by the equality operator:

SetosaObs = (n1 == 'setosa');

The SetosaObs variable is used to index into meas to extract only the setosa
data:

SetosaData = meas(SetosaObs,:);

Categorical arrays are also used as grouping variables. The following plot
summarizes the sepal length data in meas by category:

boxplot(sl,n1)
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Dataset Arrays

Statistical Data (p. 2-28) What is statistical data?

Dataset Arrays (p. 2-29) Arrays for statistical data

Dataset Array Operations (p. 2-31) Accessing and manipulating dataset
arrays

Using Dataset Arrays (p. 2-33) An example

Statistical Data
MATLAB has “data containers” suitable for completely homogeneous data
(numeric, character, and logical arrays) and for completely heterogeneous
data (cell and structure arrays). Statistical data, however, are often a mixture
of homogeneous variables of heterogeneous types and sizes. Dataset arrays
are suitable containers for this kind of data.

Dataset arrays can be viewed as tables of values, with rows representing
different observations or cases and columns representing different measured
variables. In this sense, dataset arrays are analogous to the numerical
arrays for statistical data discussed in “Numerical Data” on page 2-4. Basic
methods for creating and manipulating dataset arrays parallel the syntax of
corresponding methods for numerical arrays.

While each column of a dataset array must be a variable of a single type,
each row may contain an observation consisting of measurements of different
types. In this sense, dataset arrays lie somewhere between variables that
enforce complete homogeneity on the data and those that enforce nothing.
Because of the potentially heterogeneous nature of the data, dataset arrays
have indexing methods with syntax that parallels corresponding methods for
cell and structure arrays (see “Heterogeneous Data” on page 2-7).

2-28



Statistical Arrays

Dataset Arrays
Dataset arrays are MATLAB variables created with the dataset function,
and then manipulated with associated dataset functions.

For example, the following creates a dataset array from observations that are
a combination of categorical and numerical measurements:

load fisheriris
NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

When creating a dataset array, variable names and observation names can be
assigned together with the data. Other metadata associated with the array
can be assigned with the set function and accessed with the get function.
For example:

iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)

Description: 'Fisher's Iris Data'
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

See “Using Dataset Arrays” on page 2-33 and the reference page for dataset
for further examples.

The following table lists the accessible properties of dataset arrays.
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Dataset
Property

Value

Description A string describing the data set. The default is an empty
string.

Units A cell array of strings giving the units of the variables
in the data set. The number of strings must equal the
number of variables. Strings may be empty. The default
is an empty cell array.

DimNames A cell array of two strings giving the names of the rows
and columns, respectively, of the data set. The default is
{'Observations' 'Variables'}.

UserData Any MATLAB variable containing additional information
to be associated with the data set. The default is an empty
array.

ObsNames A cell array of nonempty, distinct strings giving the names
of the observations in the data set. The number of strings
must equal the number of observations. The default is an
empty cell array.

VarNames A cell array of nonempty, distinct strings giving the names
of the variables in the data set. The number of strings
must equal the number of variables. The default is the
cell array of string names for the variables used to create
the data set.

Functions associated with dataset arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary (dataset), double, horzcat, and get, respectively. Many of these
functions are invoked using operations analogous to those for numerical
arrays, and do not need to be called directly. (For example, horzcat is invoked
by [].) Other functions access the collected data and must be called directly
(for example, grpstats and replacedata). For a complete list of functions
with descriptions of their use, see “Dataset Array Operations” on page 2-31.

Dataset arrays are implemented as objects in MATLAB, and the associated
functions are their methods. It isn’t necessary to understand MATLAB objects
and methods to make use of dataset arrays—in fact, dataset arrays are
designed to behave as much as possible like other, familiar MATLAB arrays.
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Dataset Array Operations
The table in this section lists available methods for dataset arrays. Many of
the methods are invoked by familiar MATLAB operators and do not need to
be called directly. For full descriptions of individual methods, type

help dataset/methodname

Methods with supporting reference pages, including examples, are linked
from the table. “Using Dataset Arrays” on page 2-33 contains an extended
example that makes use of many dataset methods.

Dataset
Method

Description

cat Concatenate dataset arrays. The horzcat and vertcat
methods implement special cases.

dataset Create dataset array.

datasetfun Apply function to each variable of dataset array.

disp Display dataset array, without printing data set name.

display Display dataset array, printing data set name. This method
is invoked when the name of a dataset array is entered at
the command prompt.

double Convert dataset variables to double array.

end Last index in indexing expression for dataset array.

get Get dataset array property.

grpstats
(dataset)

A version of the grpstats function that accepts dataset
arrays and categorical grouping variables as inputs.

horzcat Horizontal concatenation for dataset arrays (add
variables). This method is invoked by square brackets, as
described in “Combining Dataset Arrays” on page 2-37.

isempty True for empty dataset array.

join Merge observations from two dataset arrays.

length Length of dataset array.

ndims Number of dimensions of dataset array.
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Dataset
Method

Description

numel Number of elements in dataset array.

replacedata Convert array to dataset variables.

set Set dataset array property value.

single Convert dataset variables to single array.

size Size of dataset array.

sortrows
(dataset)

Sort rows of dataset array.

subsasgn Subscripted assignment for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing
described in “Accessing Dataset Arrays” on page 2-35.

subsref Subscripted reference for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing
described in “Accessing Dataset Arrays” on page 2-35.

summary
(dataset)

Print summary statistics for dataset array.

unique Unique observations in dataset.

vertcat Vertical concatenation for dataset arrays (add
observations). This method is invoked by square brackets,
as described in “Combining Dataset Arrays” on page 2-37.
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Using Dataset Arrays
This section provides an extended tutorial example demonstrating the use
of dataset arrays and associated functions. The example introduces many
available functions, but is not meant to be comprehensive. “Dataset Array
Operations” on page 2-31 contains a complete list of available functions, with
descriptions. For examples detailing the use of particular functions, alone or
in combination with other functions, see the corresponding reference pages.

Constructing Dataset Arrays
(p. 2-33)

The dataset constructor

Accessing Dataset Arrays (p. 2-35) Indexing methods

Combining Dataset Arrays (p. 2-37) Concatenation methods

Computing with Dataset Arrays
(p. 2-39)

Data statistics

Constructing Dataset Arrays. Load the 150-by-4 numerical array meas and
the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Create a dataset array iris from the data, assigning variable names species,
SL, SW, PL, and PW and observation names Obs1, Obs2, Obs3, etc.:

NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);
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iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

The cell array of strings species is first converted to a categorical array of
type nominal before inclusion in the dataset array. For further information on
categorical arrays, see “Categorical Arrays” on page 2-13.

Use the set function to set properties of the array:

desc = 'Fisher''s iris data (1936)';
units = [{''} repmat({'cm'},1,4)];
info = 'http://en.wikipedia.org/wiki/R.A._Fisher';

iris = set(iris,'Description',desc,...
'Units',units,...
'UserData',info);

Use the get function to view properties of the array:

get(iris)
Description: 'Fisher's iris data (1936)'

Units: {'' 'cm' 'cm' 'cm' 'cm'}
DimNames: {'Observations' 'Variables'}
UserData: 'http://en.wikipedia.org/wiki/R.A._Fisher'
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

get(iris(1:5,:),'ObsNames')
ans =

'Obs1'
'Obs2'
'Obs3'
'Obs4'
'Obs5'
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For a table of accessible properties of dataset arrays, with descriptions, see
“Dataset Arrays” on page 2-29.

Accessing Dataset Arrays. Dataset arrays support multiple types of
indexing. Like the numerical matrices described in “Numerical Data” on page
2-4, parenthesis () indexing is used to access data subsets. Like the cell
and structure arrays described in “Heterogeneous Data” on page 2-7, dot .
indexing is used to access data variables and curly brace {} indexing is used
to access data elements.

Use parenthesis indexing to assign a subset of the data in iris to a new
dataset array iris1:

iris1 = iris(1:5,2:3)
iris1 =

SL SW
Obs1 5.1 3.5
Obs2 4.9 3
Obs3 4.7 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Similarly, use parenthesis indexing to assign new data to the first variable
in iris1:

iris1(:,1) = dataset([5.2;4.9;4.6;4.6;5])
iris1 =

SL SW
Obs1 5.2 3.5
Obs2 4.9 3
Obs3 4.6 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Variable and observation names can also be used to access data:
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SepalObs = iris1({'Obs1','Obs3','Obs5'},'SL')
SepalObs =

SL
Obs1 5.1
Obs3 4.7
Obs5 5

Dot indexing is used to access variables in a dataset array, and can be
combined with other indexing methods. For example, the zscore function is
applied to the data in SepalObs as follows:

ScaledSepalObs = zscore(iris1.SL([1 3 5]))
ScaledSepalObs =

0.8006
-1.1209
0.3203

The following code extracts the sepal lengths in iris1 corresponding to sepal
widths greater than 3:

BigSWLengths = iris1.SL(iris1.SW > 3)
BigSWLengths =

5.2000
4.6000
4.6000
5.0000

Dot indexing also allows entire variables to be deleted from a dataset array:

iris1.SL = []
iris1 =

SW
Obs1 3.5
Obs2 3
Obs3 3.2
Obs4 3.1
Obs5 3.6

Dynamic variable naming works for dataset arrays just as it does for structure
arrays. For example, the units of the SW variable are changed in iris1 as
follows:
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varname = 'SW';
iris1.(varname) = iris1.(varname)*10
iris1 =

SW
Obs1 35
Obs2 30
Obs3 32
Obs4 31
Obs5 36

iris1 = set(iris1,'Units',{'mm'});

Curly brace indexing is used to access individual data elements. The following
are equivalent:

iris1{1,1}
ans =

35

iris1{'Obs1','SW'}
ans =

35

Combining Dataset Arrays. Combine two dataset arrays into a single
dataset array using square brackets:

SepalData = iris(:,{'SL','SW'});
PetalData = iris(:,{'PL','PW'});
newiris = [SepalData,PetalData];
size(newiris)
ans =

150 4

For horizontal concatenation, as in the preceding example, the number of
observations in the two dataset arrays must agree. Observations are matched
up by name (if given), regardless of their order in the two data sets.

The following concatenates variables within a dataset array and then deletes
the component variables:

newiris.SepalData = [newiris.SL,newiris.SW];
newiris.PetalData = [newiris.PL,newiris.PW];
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newiris(:,{'SL','SW','PL','PW'}) = [];
size(newiris)
ans =

150 2
size(newiris.SepalData)
ans =

150 2

newiris is now a 150-by-2 dataset array containing two 150-by-2 numerical
arrays as variables.

Vertical concatenation is also handled in a manner analogous to numerical
arrays:

newobs = dataset({[5.3 4.2; 5.0 4.1],'PetalData'},...
{[5.5 2; 4.8 2.1],'SepalData'});

newiris = [newiris;newobs];
size(newiris)
ans =

152 2

For vertical concatenation, as in the preceding example, the names of the
variables in the two dataset arrays must agree. Variables are matched up by
name, regardless of their order in the two data sets.

Expansion of variables is also accomplished using direct assignment to new
rows:

newiris(153,:) = dataset({[5.1 4.0],'PetalData'},...
{[5.1 4.2],'SepalData'});

A different type of concatenation is performed by the join function, which
takes the data in one dataset array and assigns it to the rows of another
dataset array, based on matching values in a common key variable. For
example, the following creates a dataset array with diploid chromosome
counts for each species of iris:
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snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =

species cc
setosa 38
versicolor 108
virginica 70

This data is broadcast to the rows of iris using join:

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)
ans =

species SL SW PL PW cc
Obs1 setosa 5.1 3.5 1.4 0.2 38
Obs2 setosa 4.9 3 1.4 0.2 38
Obs51 versicolor 7 3.2 4.7 1.4 108
Obs52 versicolor 6.4 3.2 4.5 1.5 108
Obs101 virginica 6.3 3.3 6 2.5 70
Obs102 virginica 5.8 2.7 5.1 1.9 70

Computing with Dataset Arrays. The summary (dataset) function
provides summary statistics for the component variables of a dataset array:

summary(newiris)
Fisher's iris data (1936)
SepalData: [153x2 double]

min 4.3000 2
1st Q 5.1000 2.8000
median 5.8000 3
3rd Q 6.4000 3.3250
max 7.9000 4.4000

PetalData: [153x2 double]
min 1 0.1000
1st Q 1.6000 0.3000
median 4.4000 1.3000
3rd Q 5.1000 1.8000
max 6.9000 4.2000

To apply other statistical functions, use dot indexing to access relevant
variables:
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SepalMeans = mean(newiris.SepalData)
SepalMeans =

5.8294 3.0503

The same result is obtained with the datasetfun function, which applies
functions to dataset array variables:

means = datasetfun(@mean,newiris,'UniformOutput',false)
means =

[1x2 double] [1x2 double]
SepalMeans = means{1}
SepalMeans =

5.8294 3.0503

An alternative approach is to cast data in a dataset array as double and
apply statistical functions directly. Compare the following two methods
for computing the covariance of the length and width of the SepalData in
newiris:

covs = datasetfun(@cov,newiris,'UniformOutput',false)
covs =

[2x2 double] [2x2 double]
SepalCovs = covs{1}
SepalCovs =

0.6835 -0.0373
-0.0373 0.2054

SepalCovs = cov(double(newiris(:,1)))
SepalCovs =

0.6835 -0.0373
-0.0373 0.2054
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Grouped Data

Grouping Variables (p. 2-41) Methods for grouping data

Functions for Grouped Data (p. 2-42) Statistics by group

Using Grouping Variables (p. 2-43) An example

Grouping Variables
Grouping variables are utility variables used to indicate which elements in a
data set are to be considered together when computing statistics and creating
visualizations. They may be numeric vectors, string arrays, cell arrays of
strings, or categorical arrays.

Grouping variables have the same length as the variables (columns) in a data
set. Observations (rows) i and j are considered to be in the same group if the
values of the corresponding grouping variable are identical at those indices.

For example, the following loads the 150-by-4 numerical array meas and the
150-by-1 cell array of strings species into the workspace:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively)
over three species of iris (setosa, versicolor, and virginica). To group the
observations by species, the following are all acceptable (and equivalent)
grouping variables:

group1 = species; % Cell array of strings
group2 = grp2idx(species) % Numeric vector
group3 = char(species); % Character array
group4 = nominal(species); % Categorical array

These grouping variables can be supplied as input arguments to any of the
functions described in “Functions for Grouped Data” on page 2-42. Examples
are given in “Using Grouping Variables” on page 2-43.
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Functions for Grouped Data
The following table lists functions in Statistics Toolbox that accept a grouping
variable group as an input argument. The grouping variable may be in the
form of a vector, string array, cell array of strings, or categorical array, as
described in “Grouping Variables” on page 2-41.

For a full description of the syntax of any particular function, and examples
of its use, consult its reference page, linked from the table. “Using Grouping
Variables” on page 2-43 also includes examples.

Function Basic Syntax for Grouped Data

andrewsplot andrewsplot(X, ... ,'Group',group)

anova1 p = anova1(X,group)

anovan p = anovan(x,group)

aoctool aoctool(x,y,group)

boxplot boxplot(x,group)

classify class = classify(sample,training,group)

controlchart controlchart(x,group)

crosstab crosstab(group1,group2)

dummyvar D = dummyvar(group)

gagerr gagerr(x,group)

gplotmatrix gplotmatrix(x,y,group)

grp2idx [G,GN] = grp2idx(group)

grpstats means = grpstats(X,group)

gscatter gscatter(x,y,group)

interactionplot interactionplot(X,group)

kruskalwallis p = kruskalwallis(X,group)

maineffectsplot maineffectsplot(X,group)

manova1 d = manova1(X,group)

multivarichart multivarichart(x,group)

parallelcoords parallelcoords(X, ... ,'Group',group)

2-42



Grouped Data

Function Basic Syntax for Grouped Data

silhouette silhouette(X,group)

tabulate tabulate(group)

treefit T = treefit(X,y,'cost',S) or T =
treefit(X,y,'priorprob',S), where S.group
= group

vartestn vartestn(X,group)

Using Grouping Variables
This section provides an example demonstrating the use of grouping variables
and associated functions. Grouping variables are introduced in “Grouping
Variables” on page 2-41. A list of functions accepting grouping variables as
input arguments is given in “Functions for Grouped Data” on page 2-42.

Load the 150-by-4 numerical array meas and the 150-by-1 cell array of strings
species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Create a categorical array (see “Categorical Arrays” on page 2-13) from
species to use as a grouping variable:

group = nominal(species);

While species, as a cell array of strings, is itself a grouping variable, the
categorical array has the advantage that it can be easily manipulated with
categorical methods. (See “Categorical Array Operations” on page 2-16.)

Compute some basic statistics for the data (median and interquartile range),
by group, using the grpstats function:

[order,number,group_median,group_iqr] = ...
grpstats(meas,group,{'gname','numel',@median,@iqr})
order =
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'setosa'
'versicolor'
'virginica'

number =
50 50 50 50
50 50 50 50
50 50 50 50

group_median =
5.0000 3.4000 1.5000 0.2000
5.9000 2.8000 4.3500 1.3000
6.5000 3.0000 5.5500 2.0000

group_iqr =
0.4000 0.5000 0.2000 0.1000
0.7000 0.5000 0.6000 0.3000
0.7000 0.4000 0.8000 0.5000

The statistics appear in 3-by-4 arrays, corresponding to the 3 groups
(categories) and 4 variables in the data. The order of the groups (not encoded
in the nominal array group) is indicated by the group names in order.

To improve the labeling of the data, create a dataset array (see “Dataset
Arrays” on page 2-28) from meas:

NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({group,'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

When you call grpstats with a dataset array as an argument, you invoke
the grpstats method of the dataset class, grpstats (dataset), rather
than the regular grpstats function. The method has a slightly different
syntax than the regular grpstats function, but it returns the same results,
with better labeling:

stats = grpstats(iris,'species',{@median,@iqr})
stats =

species GroupCount
setosa setosa 50
versicolor versicolor 50
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virginica virginica 50

median_SL iqr_SL
setosa 5 0.4
versicolor 5.9 0.7
virginica 6.5 0.7

median_SW iqr_SW
setosa 3.4 0.5
versicolor 2.8 0.5
virginica 3 0.4

median_PL iqr_PL
setosa 1.5 0.2
versicolor 4.35 0.6
virginica 5.55 0.8

median_PW iqr_PW
setosa 0.2 0.1
versicolor 1.3 0.3
virginica 2 0.5

Grouping variables are also used to create visualizations based on categories of
observations. The following scatter plot, created with the gscatter function,
shows the correlation between sepal length and sepal width in two species of
iris. The ismember function is used to subset the two species from group:

subset = ismember(group,{'setosa','versicolor'});
scattergroup = group(subset);
gscatter(iris.SL(subset),...

iris.SW(subset),...
scattergroup)

xlabel('Sepal Length')
ylabel('Sepal Width')

2-45



2 Organizing Data

2-46



3

Descriptive Statistics

Introduction (p. 3-2) Summarizing data

Measures of Central Tendency
(p. 3-3)

Computing data location

Measures of Dispersion (p. 3-5) Computing data scale

Data with Missing Values (p. 3-7) Working with missing data

Graphical Descriptions (p. 3-9) Graphical descriptions of data

The Bootstrap (p. 3-18) Uncertainty of statistical estimators



3 Descriptive Statistics

Introduction
A first step in data analysis is often to produce useful summaries of data
characteristics. This section introduces basic methods for producing summary
statistics and plots.

Statistics Toolbox functions are introduced in the following sections:

• “Measures of Central Tendency” on page 3-3

• “Measures of Dispersion” on page 3-5

• “Data with Missing Values” on page 3-7

• “Graphical Descriptions” on page 3-9

• “The Bootstrap” on page 3-18

Note For information on creating summaries of data by group, see “Grouped
Data” on page 2-41.
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Measures of Central Tendency
The purpose of measures of central tendency is to locate the data values on
the number line. Another term for these statistics is measures of location.

The following table lists the functions that calculate the measures of central
tendency.

Function Name Description

geomean Geometric mean

harmmean Harmonic mean

mean Arithmetic average (in MATLAB)

median 50th percentile (in MATLAB)

mode Most frequent value (in MATLAB)

trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample mean is also optimal
(MVUE of µ).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real
data. The sample mean is sensitive to these problems. One bad data value
can move the average away from the center of the rest of the data by an
arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust)
to outliers. The median is the 50th percentile of the sample, which will only
change slightly if you add a large perturbation to any value. The idea behind
the trimmed mean is to ignore a small percentage of the highest and lowest
values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to
outliers. They are useful when the sample is distributed lognormal or heavily
skewed.
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The following example shows the behavior of the measures of location for a
sample with one outlier.

x = [ones(1,6) 100]

x =
1 1 1 1 1 1 100

locate = [geomean(x) harmmean(x) mean(x) median(x)...
trimmean(x,25)]

locate =
1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence
of the outlier. The median and trimmed mean ignore the outlying value and
describe the location of the rest of the data values.
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Measures of Dispersion
The purpose of measures of dispersion is to find out how spread out the data
values are on the number line. Another term for these statistics is measures
of spread.

The table gives the function names and descriptions.

Function
Name Description

iqr Interquartile range

mad Mean absolute deviation

range Range

std Standard deviation (in MATLAB)

var Variance (in MATLAB)

The range (the difference between the maximum and minimum values) is the
simplest measure of spread. But if there is an outlier in the data, it will be the
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that
are optimal for normally distributed samples. The sample variance is the
MVUE of the normal parameter σ2. The standard deviation is the square root
of the variance and has the desirable property of being in the same units as
the data. That is, if the data is in meters, the standard deviation is in meters
as well. The variance is in meters2, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data
value that is separate from the body of the data can increase the value of the
statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the
MAD does not move quite as much as the standard deviation or variance in
response to bad data.
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The interquartile range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

The following example shows the behavior of the measures of dispersion for a
sample with one outlier.

x = [ones(1,6) 100]

x =
1 1 1 1 1 1 100

stats = [iqr(x) mad(x) range(x) std(x)]

stats =
0 24.2449 99.0000 37.4185
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Data with Missing Values
Most real-world data sets have one or more missing elements. It is convenient
to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

m = magic(3);
m([1 5]) = [NaN NaN]

m =
NaN 1 6

3 NaN 7
4 9 2

Any arithmetic operation that involves the missing values in this matrix
yields NaN, as below.

sum(m)

ans =
NaN NaN 15

Removing cells with NaN would destroy the matrix structure. Removing whole
rows that contain NaN would discard real data. Instead, Statistics Toolbox
has a variety of functions listed in the following table that are similar to
other MATLAB functions, but that treat NaN values as missing and therefore
ignore them in the calculations.

nansum(m)

ans =
7 10 15
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Function Description

nanmax Maximum ignoring NaNs

nanmean Mean ignoring NaNs

nanmedian Median ignoring NaNs

nanmin Minimum ignoring NaNs

nanstd Standard deviation ignoring NaNs

nansum Sum ignoring NaNs

In addition, other Statistics Toolbox functions operate only on the numeric
values, ignoring NaNs. These include iqr, kurtosis, mad, prctile, range,
skewness, and trimmean.
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Graphical Descriptions
Trying to describe a data sample with two numbers, a measure of location and
a measure of spread, is frugal but may be misleading. Here are some other
approaches:

• “Quantiles and Percentiles” on page 3-9

• “Probability Density Estimation” on page 3-10

• “Empirical Cumulative Distribution Function” on page 3-15

Quantiles and Percentiles
Quantiles and percentiles provide information about the shape of data as
well as its location and spread.

The quantile of order p (0 ≤ p ≤ 1) is the smallest x value where the cumulative
distribution function equals or exceeds p. The function quantile computes
quantiles as follows:

1 n sorted data points are the 0.5/n, 1.5/n, ..., (n–0.5)/n quantiles.

2 Linear interpolation is used to compute intermediate quantiles.

3 The data min or max are assigned to quantiles outside the range.

4 Missing values are treated as NaN, and removed from the data.

Percentiles, computed by the prctile function, are quantiles for a certain
percentage of the data, specified for 0 ≤ p ≤ 100.

The following example shows the result of looking at every quartile (quantiles
with orders that are multiples of 0.25) of a sample containing a mixture of
two distributions.

x = [normrnd(4,1,1,100) normrnd(6,0.5,1,200)];
p = 100*(0:0.25:1);
y = prctile(x,p);
z = [p;y]
z =

0 25.0000 50.0000 75.0000 100.0000
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1.5172 4.6842 5.6706 6.1804 7.6035

A box plot helps to visualize the statistics:

boxplot(x)
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The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots, see “Box Plots” on page 4-6.

Probability Density Estimation
The distribution of data can be described graphically with a histogram:

cars = load('carsmall','MPG','Origin');
MPG = cars.MPG;
hist(MPG)
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You can also describe a data distribution by estimating its density.
The ksdensity function does this using a kernel smoothing method. A
nonparametric density estimate of the data above, using the default kernel
and bandwidth, is given by:

[f,x] = ksdensity(MPG);
plot(x,f);
title('Density estimate for MPG')
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Kernel Bandwidth
The choice of kernel bandwidth controls the smoothness of the probability
density curve. The following graph shows the density estimate for the
same mileage data using different bandwidths. The default bandwidth is in
blue and looks like the preceding graph. Estimates for smaller and larger
bandwidths are in red and green.

The first call to ksdensity returns the default bandwidth, u, of the kernel
smoothing function. Subsequent calls modify this bandwidth.

[f,x,u] = ksdensity(MPG);
plot(x,f)
title('Density estimate for MPG')
hold on
[f,x] = ksdensity(MPG,'width',u/3);
plot(x,f,'r');
[f,x] = ksdensity(MPG,'width',u*3);
plot(x,f,'g');
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legend('default width','1/3 default','3*default')
hold off
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Density estimate for MPG

default width
1/3 default
3*default

The default bandwidth seems to be doing a good job—reasonably smooth,
but not so smooth as to obscure features of the data. This bandwidth is
the one that is theoretically optimal for estimating densities for the normal
distribution.

The green curve shows a density with the kernel bandwidth set too high.
This curve smooths out the data so much that the end result looks just like
the kernel function. The red curve has a smaller bandwidth and is rougher
looking than the blue curve. It may be too rough, but it does provide an
indication that there might be two major peaks rather than the single peak
of the blue curve. A reasonable choice of width might lead to a curve that is
intermediate between the red and blue curves.
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Kernel Smoothing Function
You can also specify a kernel function by supplying either the function
name or a function handle. The four preselected functions, 'normal',
'epanechnikov', 'box', and 'triangle', are all scaled to have standard
deviation equal to 1, so they perform a comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using
each of the available kernel functions.

hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r' 'b' 'g' 'm'};
for j=1:4

[f,x] = ksdensity(MPG,'kernel',hname{j});
plot(x,f,colors{j});

end
legend(hname{:});
hold off
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The density estimates are roughly comparable, but the box kernel produces a
density that is rougher than the others.

Usefulness of Smooth Density Estimates
In addition to the aesthetic appeal of the smooth density estimate, there
are other appeals as well. While it is difficult to overlay two histograms to
compare them, you can easily overlay smooth density estimates. For example,
the following graph shows the MPG distributions for cars from different
countries of origin.

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12
Density estimates for MPG by Origin

USA
Japan
Europe

For piecewise probability density estimation, using kernel smoothing in the
center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-106 and paretotails.

Empirical Cumulative Distribution Function
The ksdensity function described in the last section produces an empirical
version of a probability density function (pdf). That is, instead of selecting
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a density with a particular parametric form and estimating the parameters,
it produces a nonparametric density estimate that tries to adapt itself to
the data.

Similarly, it is possible to produce an empirical version of the cumulative
distribution function (cdf). The ecdf function computes this empirical cdf. It
returns the values of a function such that represents the proportion of
observations in a sample less than or equal to .

The idea behind the empirical cdf is simple. It is a function that assigns
probability to each of observations in a sample. Its graph has a
stair-step appearance. If a sample comes from a distribution in a parametric
family (such as a normal distribution), its empirical cdf is likely to resemble
the parametric distribution. If not, its empirical distribution still gives an
estimate of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution
with mean 10 and standard deviation 2. You can use ecdf to calculate the
empirical cdf and stairs to plot it. Then you overlay the normal distribution
curve on the empirical function.

x = normrnd(10,2,20,1);[f,xf] = ecdf(x);
stairs(xf,f)
xx=linspace(5,15,100);
yy = normcdf(xx,10,2);
hold on; plot(xx,yy,'r:'); hold off
legend('Empirical cdf','Normal cdf',2)
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The empirical cdf is especially useful in survival analysis applications. In
such applications the data may be censored, that is, not observed exactly.
Some individuals may fail during a study, and you can observe their failure
time exactly. Other individuals may drop out of the study, or may not fail until
after the study is complete. The ecdf function has arguments for dealing
with censored data. In addition, you can use the coxphfit function with
individuals that have predictors that are not the same.

For piecewise probability density estimation, using the empirical cdf in the
center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-106 and paretotails.
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The Bootstrap
The bootstrap is a procedure that involves choosing random samples with
replacement from a data set and analyzing each sample the same way.
Sampling with replacement means that every sample is returned to the data
set after sampling. So a particular data point from the original data set could
appear multiple times in a given bootstrap sample. The number of elements
in each bootstrap sample equals the number of elements in the original data
set. The range of sample estimates you obtain enables you to establish the
uncertainty of the quantity you are estimating.

Here is an example taken from Efron and Tibshirani [18] comparing Law
School Admission Test (LSAT) scores and subsequent law school grade point
average (GPA) for a sample of 15 law schools.

load lawdata
plot(lsat,gpa,'+')
lsline
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The least squares fit line indicates that higher LSAT scores go with higher
law school GPAs. But how certain is this conclusion? The plot provides some
intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corr
function.

rhohat = corr(lsat,gpa)

rhohat =

0.7764

Now you have a number, 0.7764, describing the positive connection between
LSAT and GPA, but though 0.7764 may seem large, you still do not know if
it is statistically significant.

Using the bootstrp function you can resample the lsat and gpa vectors as
many times as you like and consider the variation in the resulting correlation
coefficients.

Here is an example.

rhos1000 = bootstrp(1000,'corr',lsat,gpa);

This command resamples the lsat and gpa vectors 1000 times and computes
the corr function on each sample. Here is a histogram of the result.

hist(rhos1000(:,2),30)
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Nearly all the estimates lie on the interval [0.4 1.0].

Bootstrap Confidence Intervals
It is often desirable to construct a confidence interval for a parameter
estimate in statistical inferences. Using the bootci function, you can use
bootstrapping to obtain a confidence interval. The confidence interval for the
lsat and gpa data is computed as:

ci = bootci(5000,@corr,lsat,gpa)

ci =

0.3265
0.9389

Therefore, a 95% confidence interval for the correlation coefficient between
LSAT and GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT
and subsequent GPA are positively correlated. Moreover, this evidence does
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not require any strong assumptions about the probability distribution of the
correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated
(BCa) interval as the default type, it is also able to compute various other
types of bootstrap confidence intervals, such as the studentized bootstrap
confidence interval.
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4 Statistical Visualization

Introduction
Statistics Toolbox adds many data visualization functions to the extensive
graphics capabilities already in MATLAB. Of general use are:

• Scatter plots are a basic visualization tool for multivariate data. They
are used to identify relationships among variables. Grouped versions of
these plots use different plotting symbols to indicate group membership.
The gname function can label points on these plots with a text label or an
observation number.

• Box plots display a five number summary of a set of data: the median,
the two ends of the interquartile range (the box), and two extreme values
(the whiskers) above and below the box. Because they show less detail
than histograms, box plots are most useful for side-by-side comparisons
of two distributions.

• Distribution plots help you identify an appropriate distribution family
for your data. They include normal and Weibull probability plots,
quantile-quantile plots, and empirical cumulative distribution plots.

These plots are described further in the sections:

• “Scatter Plots” on page 4-3

• “Box Plots” on page 4-6

• “Distribution Plots” on page 4-8

Advanced visualization functions for specialized statistical analyses are listed
under Statistical Visualization.

Note For information on creating visualizations of data by group, see
“Grouped Data” on page 2-41.
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Scatter Plots
A scatter plot is a simple plot of one variable against another. The MATLAB
plot and scatter functions can produce scatter plots. The MATLAB
plotmatrix function can produce a matrix of such plots showing the
relationship between several pairs of variables.

Statistics Toolbox adds the functions gscatter and gplotmatrix to produce
grouped versions of these plots. These are useful for determining whether the
values of two variables or the relationship between those variables is the
same in each group.

Suppose you want to examine the weight and mileage of cars from three
different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'','xos')
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This shows that not only is there a strong relationship between the weight of
a car and its mileage, but also that newer cars tend to be lighter and have
better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different
groups shown with the same symbol but different colors. The last two
arguments above request that all groups be shown in default colors and with
different symbols.

The carsmall data set contains other variables that describe different aspects
of cars. You can examine several of them in a single display by creating a
grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'','xos')
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The upper right subplot displays MPG against Horsepower, and shows that
over the years the horsepower of the cars has decreased but the gas mileage
has improved.

The gplotmatrix function can also graph all pairs from a single list of
variables, along with histograms for each variable. See “Multivariate Analysis
of Variance” on page 9-23.
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Box Plots
The graph below, created with the boxplot command, compares petal lengths
in samples from two species of iris.

load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
boxplot([s1 s2],'notch','on',...

'labels',{'versicolor','virginica'})

This plot has the following features:

• The tops and bottoms of each “box” are the 25th and 75th percentiles of the
samples, respectively. The distances between the tops and bottoms are the
interquartile ranges.

• The line in the middle of each box is the sample median. If the median is
not centered in the box, it shows sample skewness.

• The ”whiskers” are lines extending above and below each box. Whiskers are
drawn from the ends of the interquartile ranges to the furthest observations
within the whisker length (the adjacent values).
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• Observations beyond the whisker length are marked as outliers. By
default, an outlier is a value that is more than 1.5 times the interquartile
range away from the top or bottom of the box, but this value can be adjusted
with additional input arguments. Outliers are displayed with a red + sign.

• Notches display the variability of the median between samples. The width
of a notch is computed so that box plots whose notches do not overlap (as
above) have different medians at the 5% significance level. The significance
level is based on a normal distribution assumption, but comparisons of
medians are reasonably robust for other distributions. Comparing box-plot
medians is like a visual hypothesis test, analogous to the t test used for
means.
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Distribution Plots
There are several types of plots for assessing the distribution of statistics and
data samples, as described in the following sections:

• “Normal Probability Plots” on page 4-8

• “Quantile-Quantile Plots” on page 4-10

• “Empirical Cumulative Distribution Function Plots” on page 4-12

• “Other Probability Plots” on page 4-13

Normal Probability Plots
Normal probability plots are used to assess whether data comes from a
normal distribution. Many statistical procedures make the assumption that
an underlying distribution is normal, so normal probability plots can provide
some assurance that the assumption is justified, or else provide a warning of
problems with the assumption. An analysis of normality typically combines
normal probability plots with hypothesis tests for normality, as described in
Chapter 6, “Hypothesis Tests”.

The following example shows a normal probability plot created with the
normplot function.

x = normrnd(10,1,25,1);
normplot(x)
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Distribution Plots

The plus signs plot the empirical probability versus the data value for each
point in the data. A solid line connects the 25th and 75th percentiles in the
data, and a dashed line extends it to the ends of the data. The y-axis values
are probabilities from zero to one, but the scale is not linear. The distance
between tick marks on the y-axis matches the distance between the quantiles
of a normal distribution. The quantiles are close together near the median
(probability = 0.5) and stretch out symmetrically as you move away from
the median.

In a normal probability plot, if all the data points fall near the line, an
assumption of normality is reasonable. Otherwise, the points will curve away
from the line, and an assumption of normality is not justified.

For example:

x = exprnd(10,100,1);
normplot(x)
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4 Statistical Visualization

The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots
Quantile-quantile plots are used to determine whether two samples come from
the same distribution family. They are scatter plots of quantiles computed
from each sample, with a line drawn between the first and third quartiles. If
the data falls near the line, it is reasonable to assume that the two samples
come from the same distribution. The method is robust with respect to
changes in the location and scale of either distribution.

To create a quantile-quantile plot, use the qqplot function.

The following example shows a quantile-quantile plot of two samples from
Poisson distributions.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);
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Distribution Plots

Even though the parameters and sample sizes are different, the approximate
linear relationship suggests that the two samples may come from the same
distribution family. As with normal probability plots, hypothesis tests,
as described in Chapter 6, “Hypothesis Tests”, can provide additional
justification for such an assumption. For statistical procedures that depend
on the two samples coming from the same distribution, however, a linear
quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions
are not the same.

x = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);
qqplot(x,y);
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4 Statistical Visualization

These samples clearly are not from the same distribution family.

Empirical Cumulative Distribution Function Plots
An empirical cumulative distribution function (cdf) plot shows the proportion
of data less than each x value, as a function of x. The scale on the y-axis is
linear; in particular, it is not scaled to any particular distribution. Empirical
cdf plots are used to compare data cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).

The following example compares the empirical cdf for a sample from an
extreme value distribution with a plot of the cdf for the sampling distribution.
In practice, the sampling distribution would be unknown, and would be
chosen to match the empirical cdf.

y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')
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Other Probability Plots
A probability plot, like the normal probability plot, is just an empirical cdf plot
scaled to a particular distribution. The y-axis values are probabilities from
zero to one, but the scale is not linear. The distance between tick marks is the
distance between quantiles of the distribution. In the plot, a line is drawn
between the first and third quartiles in the data. If the data falls near the
line, it is reasonable to choose the distribution as a model for the data.

To create probability plots for different distributions, use the probplot
function.

For example, the following plot assesses two samples, one from a Weibull
distribution and one from a Rayleigh distribution, to see if they may have
come from a Weibull population.

x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')
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4 Statistical Visualization

The plot gives justification for modeling the first sample with a Weibull
distribution; much less so for the second sample.

A distribution analysis typically combines probability plots with hypothesis
tests for a particular distribution, as described in Chapter 6, “Hypothesis
Tests”.
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5 Probability Distributions

Introduction
A typical data sample is distributed over a range of values, with some values
occurring more frequently than others. Some of the variability may be the
result of measurement error or sampling effects. For large random samples,
however, the distribution of the data typically reflects the variability of the
source population and can be used to model the data-producing process.

Statistics computed from data samples also vary from sample to sample.
Modeling distributions of statistics is important for drawing inferences from
statistical summaries of data.

Probability distributions are theoretical distributions, based on assumptions
about a source population. They assign probability to the event that a random
variable, such as a data value or a statistic, takes on a specific, discrete value,
or falls within a specified range of continuous values.

Choosing a model often means choosing a parametric family of probability
distributions and then adjusting the parameters to fit the data. The choice of
an appropriate distribution family may be based on a priori knowledge, such
as matching the mechanism of a data-producing process to the theoretical
assumptions underlying a particular family, or a posteriori knowledge, such as
information provided by probability plots and distribution tests. Parameters
can then be found that achieve the maximum likelihood of producing the data.

When the source population is unavailable for analysis or repeated sampling
(as, for example, with historical data), nonparametric models, such as
those produced by ksdensity, may be appropriate. These models make no
assumptions about the mechanism producing the data or the form of the
underlying distribution, so no parameter estimates are made. Nonparametric
models are appropriate when data or statistics do not follow any standard
probability distribution (as, for example, with multimodal data).

Once a model is chosen, random number generators produce random values
with the specified probability distribution. Random number generators are
used in Monte Carlo simulations of the original data-producing process.
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Supported Distributions
Probability distributions supported by Statistics Toolbox are cross-referenced
with their supporting functions and GUIs in the following tables:

• “Continuous Distributions (Data)” on page 5-4

• “Continuous Distributions (Statistics)” on page 5-6

• “Discrete Distributions” on page 5-7

• “Multivariate Distributions” on page 5-8

The tables use the following abbreviations for distribution functions:

• pdf — Probability density functions

• cdf — Cumulative distribution functions

• inv — Inverse cumulative distribution functions

• stat — Distribution statistics functions

• fit — Distribution fitting functions

• like — Negative log-likelihood functions

• rnd — Random number generators

Note Supported distributions are described more fully in the “Distribution
Reference” on page 5-9.
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Continuous Distributions (Data)

Name pdf cdf inv stat fit like rnd

Beta betapdf,
pdf

betacdf,
cdf

betainv,
icdf

betastat betafit,
mle

betalike betarnd,
random,
randtool

Birnbaum-
Saunders

dfittool

Exponential exppdf,
pdf

expcdf,
cdf

expinv,
icdf

expstat expfit,
mle,
dfittool

explike exprnd,
random,
randtool

Extreme
value

evpdf,
pdf

evcdf,
cdf

evinv,
icdf

evstat evfit,
mle,
dfittool

evlike evrnd,
random,
randtool

Gamma gampdf,
pdf

gamcdf,
cdf

gaminv,
icdf

gamstat gamfit,
mle,
dfittool

gamlike gamrnd,
randg,
random,
randtool

Generalized
extreme
value

gevpdf,
pdf

gevcdf,
cdf

gevinv,
icdf

gevstat gevfit,
dfittool

gevlike gevrnd,
random,
randtool

Generalized
Pareto

gppdf,
pdf

gpcdf,
cdf

gpinv,
icdf

gpstat gpfit,
dfittool

gplike gprnd,
random,
randtool

Inverse
Gaussian

dfittool

Johnson
system

johnsrnd

Logistic dfittool

Loglogistic dfittool

Lognormal lognpdf,
pdf

logncdf,
cdf

logninv,
icdf

lognstat lognfit,
mle,
dfittool

lognlike lognrnd,
random,
randtool
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Name pdf cdf inv stat fit like rnd

Nakagami dfittool

Non-
parametric

ksdensity ksdensity ksdensity ksdensity,
dfittool

Normal
(Gaussian)

normpdf,
pdf

normcdf,
cdf

norminv,
icdf

normstat normfit,
mle,
dfittool

normlike normrnd,
randn,
random,
randtool

Pearson
system

pearsrnd

Rayleigh raylpdf,
pdf

raylcdf,
cdf

raylinv,
icdf

raylstat raylfit,
mle,
dfittool

raylrnd,
random,
randtool

Rician dfittool

t location-
scale

dfittool

Uniform
(continuous)

unifpdf,
pdf

unifcdf,
cdf

unifinv,
icdf

unifstat unifit,
mle

unifrnd,
rand,
random

Weibull wblpdf,
pdf

wblcdf,
cdf

wblinv,
icdf

wblstat wblfit,
mle,
dfittool

wbllike wblrnd,
random
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Continuous Distributions (Statistics)

Name pdf cdf inv stat fit like rnd

Chi-square chi2pdf,
pdf

chi2cdf,
cdf

chi2inv,
icdf

chi2stat chi2rnd,
random,
randtool

F fpdf, pdf fcdf, cdf finv,
icdf

fstat frnd,
random,
randtool

Noncentral
chi-square

ncx2pdf,
pdf

ncx2cdf,
cdf

ncx2inv,
icdf

ncx2stat ncx2rnd,
random,
randtool

Noncentral
F

ncfpdf,
pdf

ncfcdf,
cdf

ncfinv,
icdf

ncfstat ncfrnd,
random,
randtool

Noncentral
t

nctpdf,
pdf

nctcdf,
cdf

nctinv,
icdf

nctstat nctrnd,
random,
randtool

Student’s t tpdf, pdf tcdf, cdf tinv,
icdf

tstat trnd,
random,
randtool
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Discrete Distributions

Name pdf cdf inv stat fit like rnd

Binomial binopdf,
pdf

binocdf,
cdf

binoinv,
icdf

binostat binofit,
mle,
dfittool

binornd,
random,
randtool

Bernoulli mle

Geometric geopdf,
pdf

geocdf,
cdf

geoinv,
icdf

geostat mle geornd,
random,
randtool

Hyper-
geometric

hygepdf,
pdf

hygecdf,
cdf

hygeinv,
icdf

hygestat hygernd,
random

Multinomial mnpdf mnrnd

Negative
binomial

nbinpdf,
pdf

nbincdf,
cdf

nbininv,
icdf

nbinstat nbinfit,
mle,
dfittool

nbinrnd,
random,
randtool

Poisson poisspdf,
pdf

poisscdf,
cdf

poissinv,
icdf

poisstat poissfit,
mle,
dfittool

poissrnd,
random,
randtool

Uniform
(discrete)

unidpdf,
pdf

unidcdf,
cdf

unidinv,
icdf

unidstat mle unidrnd,
random,
randtool
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Multivariate Distributions

Name pdf cdf inv stat fit like rnd

Gaussian
copula

copulapdf copulacdf copulastat copularnd

t copula copulapdf copulacdf copulastat copularnd

Clayton
copula

copulapdf copulacdf copulastat copularnd

Frank
copula

copulapdf copulacdf copulastat copularnd

Gumbel
copula

copulapdf copulacdf copulastat copularnd

Inverse
Wishart

iwishrnd

Multivariate
normal

mvnpdf mvncdf mvnrnd

Multivariate
t

mvtpdf mvtcdf mvtrnd

Wishart wishrnd
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Distribution Reference
This section provides reference information on the following probability
distributions supported by Statistics Toolbox functions and GUIs:

• “Bernoulli Distribution” on page 5-11

• “Beta Distribution” on page 5-12

• “Binomial Distribution” on page 5-15

• “Birnbaum-Saunders Distribution” on page 5-18

• “Chi-Square Distribution” on page 5-19

• “Copulas” on page 5-21

• “Custom Distributions” on page 5-22

• “Exponential Distribution” on page 5-23

• “Extreme Value Distribution” on page 5-26

• “F Distribution” on page 5-30

• “Gamma Distribution” on page 5-32

• “Generalized Extreme Value Distribution” on page 5-35

• “Generalized Pareto Distribution” on page 5-39

• “Geometric Distribution” on page 5-43

• “Hypergeometric Distribution” on page 5-45

• “Inverse Gaussian Distribution” on page 5-47

• “Inverse Wishart Distribution” on page 5-48

• “Johnson System of Distributions” on page 5-49

• “Logistic Distribution” on page 5-50

• “Loglogistic Distribution” on page 5-51

• “Lognormal Distribution” on page 5-52

• “Multinomial Distribution” on page 5-54

• “Multivariate Normal Distribution” on page 5-56

• “Multivariate t Distribution” on page 5-60
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• “Nakagami Distribution” on page 5-64

• “Negative Binomial Distribution” on page 5-65

• “Noncentral Chi-Square Distribution” on page 5-69

• “Noncentral F Distribution” on page 5-71

• “Noncentral t Distribution” on page 5-73

• “Nonparametric Distributions” on page 5-75

• “Normal Distribution” on page 5-76

• “Pearson System of Distributions” on page 5-79

• “Poisson Distribution” on page 5-80

• “Rayleigh Distribution” on page 5-82

• “Rician Distribution” on page 5-84

• “Student’s t Distribution” on page 5-85

• “t Location-Scale Distribution” on page 5-87

• “Uniform Distribution (Continuous)” on page 5-88

• “Uniform Distribution (Discrete)” on page 5-89

• “Weibull Distribution” on page 5-90

• “Wishart Distribution” on page 5-92
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Bernoulli Distribution

Definition of the Bernoulli Distribution
The Bernoulli distribution is a special case of the binomial distribution, with
n = 1.
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Beta Distribution

Definition of the Beta Distribution
The beta pdf is

where B( · ) is the Beta function. The indicator function I(0,1)(x) ensures that
only values of x in the range (0 1) have nonzero probability.

Background on the Beta Distribution
The beta distribution describes a family of curves that are unique in that they
are nonzero only on the interval (0 1). A more general version of the function
assigns parameters to the endpoints of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If
Y is an observation from Student’s t distribution with ν degrees of freedom,
then the following transformation generates X, which is beta distributed.

If , then

Statistics Toolbox uses this relationship to compute values of the t cdf and
inverse function as well as generating t distributed random numbers.

Parameter Estimation for the Beta Distribution
Suppose you are collecting data that has hard lower and upper bounds of zero
and one respectively. Parameter estimation is the process of determining the
parameters of the beta distribution that fit this data best in some sense.
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One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the x’s) are already observed.
So they are the fixed constants. The variables are the unknown parameters.
Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random
numbers from the beta distribution with a = 5 and b = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =
4.5330 0.2301

pci =
2.8051 0.1771
6.2610 0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The
95% confidence interval for a goes from 2.8051 to 6.2610, which includes
the true value.

Similarly the MLE for parameter b is 0.2301, compared to the true value
of 0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832, which
also includes the true value. In this made-up example you know the “true
value.” In experimentation you do not.

Example and Plot of the Beta Distribution
The shape of the beta distribution is quite variable depending on the values of
the parameters, as illustrated by the plot below.
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The constant pdf (the flat line) shows that the standard uniform distribution
is a special case of the beta distribution.
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Binomial Distribution

Definition of the Binomial Distribution
The binomial pdf is

f k n p
n
k

p pk n k( | , ) ( )=
⎛

⎝
⎜

⎞

⎠
⎟ − −1

where k is the number of successes in n trials of a Bernoulli process with
probability of success p.

The binomial distribution is discrete, defined for integers k = 0, 1, 2, ... n,
where it is nonzero.

Background of the Binomial Distribution
The binomial distribution models the total number of successes in repeated
trials from an infinite population under the following conditions:

• Only two outcomes are possible on each of n trials.

• The probability of success for each trial is constant.

• All trials are independent of each other.

James Bernoulli derived the binomial distribution in 1713. Earlier, Blaise
Pascal had considered the special case where p = 1/2.

The binomial distribution is a generalization of the Bernoulli distribution; it
generalizes to the multinomial distribution.

Parameter Estimation for the Binomial Distribution
Suppose you are collecting data from a widget manufacturing process, and
you record the number of widgets within specification in each batch of 100.
You might be interested in the probability that an individual widget is
within specification. Parameter estimation is the process of determining the
parameter, p, of the binomial distribution that fits this data best in some
sense.
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One popular criterion of goodness is to maximize the likelihood function.
The likelihood has the same form as the binomial pdf above. But for the pdf,
the parameters (n and p) are known constants and the variable is x. The
likelihood function reverses the roles of the variables. Here, the sample values
(the x’s) are already observed. So they are the fixed constants. The variables
are the unknown parameters. MLE involves calculating the value of p that
give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n = 100 and p = 0.9.

r = binornd(100,0.9)

r =
88

[phat, pci] = binofit(r,100)

phat =
0.8800

pci =
0.7998
0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The
95% confidence interval for p goes from 0.7998 to 0.9364, which includes
the true value. In this made-up example you know the “true value” of p. In
experimentation you do not.

Example and Plot of the Binomial Distribution
The following commands generate a plot of the binomial pdf for n = 10 and
p = 1/2.

x = 0:10;
y = binopdf(x,10,0.5);
plot(x,y,'+')
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Birnbaum-Saunders Distribution

Definition of the Birnbaum-Saunders Distribution
The Birnbaum-Saunders distribution has the density function

with scale parameter β > 0 and shape parameter γ > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters β and γ, then

has a standard normal distribution.

Background on the Birnbaum-Saunders Distribution
The Birnbaum-Saunders distribution was originally proposed as a lifetime
model for materials subject to cyclic patterns of stress and strain, where the
ultimate failure of the material comes from the growth of a prominent flaw. In
materials science, Miner’s Rule suggests that the damage occurring after n
cycles, at a stress level with an expected lifetime of N cycles, is proportional
to n / N. Whenever Miner’s Rule applies, the Birnbaum-Saunders model is a
reasonable choice for a lifetime distribution model.

Parameter Estimation for the Birnbaum-Saunders Distribution
See mle, dfittool.
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Chi-Square Distribution

Definition of the Chi-Square Distribution
The χ2 pdf is

where ( · ) is the Gamma function, and ν is the degrees of freedom.

Background of the Chi-Square Distribution
The χ2 distribution is a special case of the gamma distribution where b = 2 in
the equation for gamma distribution below.

The χ2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations is normally distributed with
variance σ2, and s2 is the sample standard deviation, then

Statistics Toolbox uses the above relationship to calculate confidence intervals
for the estimate of the normal parameter σ2 in the function normfit.

Example and Plot of the Chi-Square Distribution
The χ2 distribution is skewed to the right especially for few degrees of freedom
(ν). The plot shows the χ2 distribution with four degrees of freedom.

x = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)
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Copulas
See the “Copulas” on page 5-174 entry in “Random Number Generation” on
page 5-158.
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Custom Distributions
User-defined custom distributions, created using M-files and function handles,
are supported by the Statistics Toolbox functions pdf, cdf, icdf, and mle, and
the Statistics Toolbox GUI dfittool.
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Exponential Distribution

Definition of the Exponential Distribution
The exponential pdf is

Background of the Exponential Distribution
Like the chi-square distribution, the exponential distribution is a special case
of the gamma distribution (obtained by setting a = 1)

where ( · ) is the Gamma function.

The exponential distribution is special because of its utility in modeling
events that occur randomly over time. The main application area is in studies
of lifetimes.

Parameter Estimation for the Exponential Distribution
Suppose you are stress testing light bulbs and collecting data on their
lifetimes. You assume that these lifetimes follow an exponential distribution.
You want to know how long you can expect the average light bulb to last.
Parameter estimation is the process of determining the parameters of the
exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the exponential pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.
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The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with µ = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =

672.8207

muci =

547.4338
810.9437

The MLE for parameter µ is 672, compared to the true value of 700. The 95%
confidence interval for µ goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of µ so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution
For exponentially distributed lifetimes, the probability that an item will
survive an extra unit of time is independent of the current age of the item.
The example shows a specific case of this special property.

l = 10:10:60;
lpd = l+0.1;
deltap = (expcdf(lpd,50)-expcdf(l,50))./(1-expcdf(l,50))

deltap =
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

The following commands generate a plot of the exponential pdf with its
parameter (and mean), µ, set to 2.

x = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)
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Extreme Value Distribution

Definition of the Extreme Value Distribution
The probability density function for the extreme value distribution with
location parameter µ and scale parameter σ is

If T has a Weibull distribution with parameters a and b, as described in
“Weibull Distribution” on page 5-90, then log T has an extreme value
distribution with parameters µ = log a and simσ = 1/b.

Background of the Extreme Value Distribution
Extreme value distributions are often used to model the smallest or largest
value among a large set of independent, identically distributed random values
representing measurements or observations. The extreme value distribution
used in Statistics Toolbox is appropriate for modeling the smallest value
from a distribution whose tails decay exponentially fast, for example, the
normal distribution. It can also model the largest value from a distribution,
such as the normal or exponential distributions, by using the negative of the
original values.

For example, the values generated by the following code have approximately
an extreme value distribution.

xmin = min(randn(1000,5), [], 1);
negxmax = -max(randn(1000,5), [], 1);

Although the extreme value distribution is most often used as a model for
extreme values, you can also use it as a model for other types of continuous
data. For example, extreme value distributions are closely related to the
Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1
extreme value distribution.

Parameter Estimation for the Extreme Value Distribution
The function evfit returns the maximum likelihood estimates (MLEs) and
confidence intervals for the parameters of the extreme value distribution. The
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following example shows how to fit some sample data using evfit, including
estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch
of 1000 from a manufacturing process. If you believe that the sizes are
independent within and between each batch, you can fit an extreme value
distribution to measurements of the minimum diameter from a series of eight
experimental batches. The following code returns the MLEs of the distribution
parameters as parmhat and the confidence intervals as the columns of parmci.

x = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)

parmhat =
20.2506 0.8223

parmci =
19.644 0.49861
20.857 1.3562

You can find mean and variance of the extreme value distribution with these
parameters using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit =
19.776

varfit =
1.1123

Plot of the Extreme Value Distribution
The following code generates a plot of the pdf for the extreme value
distribution.

t = [-5:.01:2];
y = evpdf(t);
plot(t, y)
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The extreme value distribution is skewed to the left, and its general shape
remains the same for all parameter values. The location parameter, mu, shifts
the distribution along the real line, and the scale parameter, sigma, expands
or contracts the distribution. This example plots the probability function for
different combinations of mu and sigma.

x = -15:.01:5;
plot(x,evpdf(x,2,1),'-', x,evpdf(x,0,2),':',
x,evpdf(x,-2,4),'-.');
legend({'mu = 2, sigma = 1' 'mu = 0, sigma = 2' 'mu = -2,'...
'sigma = 4'},2)
xlabel('x')
ylabel('f(x|mu,sigma')
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F Distribution

Definition of the F Distribution
The pdf for the F distribution is

where ( · ) is the Gamma function.

Background of the F distribution
The F distribution has a natural relationship with the chi-square distribution.
If χ1 and χ2 are both chi-square with ν1 and ν2 degrees of freedom respectively,
then the statistic F below is F-distributed.

The two parameters, ν1 and ν2, are the numerator and denominator degrees
of freedom. That is, ν1 and ν2 are the number of independent pieces of
information used to calculate χ1 and χ2, respectively.

Example and Plot of the F Distribution
The most common application of the F distribution is in standard tests of
hypotheses in analysis of variance and regression.

The plot shows that the F distribution exists on the positive real numbers
and is skewed to the right.

x = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)
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Gamma Distribution

Definition of the Gamma Distribution
The gamma pdf is

where ( · ) is the Gamma function.

Background of the Gamma Distribution
The gamma distribution models sums of exponentially distributed random
variables.

The gamma distribution family is based on two parameters. The chi-square
and exponential distributions, which are children of the gamma distribution,
are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete
Gamma function.

f x a b
x
b

a( | , ) ( , )= gammainc

For b = 1 the functions are identical.

When a is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density
only for positive real numbers.

Parameter Estimation for the Gamma Distribution
Suppose you are stress testing computer memory chips and collecting data on
their lifetimes. You assume that these lifetimes follow a gamma distribution.
You want to know how long you can expect the average computer memory chip
to last. Parameter estimation is the process of determining the parameters of
the gamma distribution that fit this data best in some sense.
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One popular criterion of goodness is to maximize the likelihood function.
The likelihood has the same form as the gamma pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with a = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)

phat =

10.9821 4.7258

pci =

7.4001 3.1543
14.5640 6.2974

Note phat(1) = and phat(2) = . The MLE for parameter a is 10.98,
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.

Similarly the MLE for parameter b is 4.7, compared to the true value of 5.
The 95% confidence interval for b goes from 3.2 to 6.3, which also includes
the true value.

In the life tests you do not know the true value of a and b so it is nice to have
a confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution
In the example the gamma pdf is plotted with the solid line. The normal
pdf has a dashed line type.

x = gaminv((0.005:0.01:0.995),100,10);
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y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plot(x,y,'-',x,y1,'-.')
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Generalized Extreme Value Distribution

Definition of the Generalized Extreme Value Distribution
The probability density function for the generalized extreme value distribution
with location parameter µ, scale parameter σ, and shape parameter k ≠ 0 is
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k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type
III case. In the limit for k = 0, corresponding to the Type I case, the density is
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Background of the Generalized Extreme Value Distribution
Like the extreme value distribution, the generalized extreme value
distribution is often used to model the smallest or largest value among a
large set of independent, identically distributed random values representing
measurements or observations. For example, you might have batches of 1000
washers from a manufacturing process. If you record the size of the largest
washer in each batch, the data are known as block maxima (or minima if you
record the smallest). You can use the generalized extreme value distribution
as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a
single form, allowing a continuous range of possible shapes that includes all
three of the simpler distributions. You can use any one of those distributions
to model a particular dataset of block maxima. The generalized extreme
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value distribution allows you to “let the data decide” which distribution is
appropriate.

The three cases covered by the generalized extreme value distribution are
often referred to as the Types I, II, and III. Each type corresponds to the
limiting distribution of block maxima from a different class of underlying
distributions. Distributions whose tails decrease exponentially, such as the
normal, lead to the Type I. Distributions whose tails decrease as a polynomial,
such as Student’s t, lead to the Type II. Distributions whose tails are finite,
such as the beta, lead to the Type III.

Types I, II, and III are sometimes also referred to as the Gumbel, Frechet,
and Weibull types, though this terminology can be slightly confusing. The
Type I (Gumbel) and Type III (Weibull) cases actually correspond to the
mirror images of the usual Gumbel and Weibull distributions, for example,
as computed by the functions evcdf and evfit , or wblcdf and wblfit,
respectively. Finally, the Type II (Frechet) case is equivalent to taking the
reciprocal of values from a standard Weibull distribution.

Parameter Estimation for the Generalized Extreme Value
Distribution
If you generate 250 blocks of 1000 random values drawn from Student’s t
distribution with 5 degrees of freedom, and take their maxima, you can fit a
generalized extreme value distribution to those maxima.

blocksize = 1000;
nblocks = 250;
t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)
paramEsts =

0.1507 1.2712 5.8816

Notice that the shape parameter estimate (the first element) is positive,
which is what you would expect based on block maxima from a Student’s t
distribution.

hist(x,2:20);
set(get(gca,'child'),'FaceColor',[.9 .9 .9])
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xgrid = linspace(2,20,1000);
line(xgrid,nblocks*...

gevpdf(xgrid,paramEsts(1),paramEsts(2),paramEsts(3)));

Plot of the Generalized Extreme Value Distribution
The following code generates examples of probability density functions for the
three basic forms of the generalized extreme value distribution.

x = linspace(-3,6,1000);
y1 = gevpdf(x,-.5,1,0);
y2 = gevpdf(x,0,1,0);
y3 = gevpdf(x,.5,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0, Type III' 'K=0, Type I' 'K>0, Type II'});
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Notice that for k > 0, the distribution has zero probability density for x such
that

x   < +-
σ

μ
k

For k < 0, the distribution has zero probability density for

x   > +-
σ

μ
k

In the limit for k = 0, there is no upper or lower bound.
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Generalized Pareto Distribution

Definition of the Generalized Pareto Distribution
The probability density function for the generalized Pareto distribution with
shape parameter k ≠ 0, scale parameter σ, and threshold parameter θ, is
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In the limit for k = 0, the density is

y f x
x

= =⎛
⎝⎜

⎞
⎠⎟

− −

( | , , ) e
( )

0
1

σ θ
σ

θ
σ

for θ < x.

If k = 0 and θ = 0, the generalized Pareto distribution is equivalent to
the exponential distribution. If k > 0 and θ = σ, the generalized Pareto
distribution is equivalent to the Pareto distribution.

Background of the Generalized Pareto Distribution
Like the exponential distribution, the generalized Pareto distribution is
often used to model the tails of another distribution. For example, you might
have washers from a manufacturing process. If random influences in the
process lead to differences in the sizes of the washers, a standard probability
distribution, such as the normal, could be used to model those sizes. However,
while the normal distribution might be a good model near its mode, it might
not be a good fit to real data in the tails and a more complex model might
be needed to describe the full range of the data. On the other hand, only
recording the sizes of washers larger (or smaller) than a certain threshold
means you can fit a separate model to those tail data, which are known as
exceedences. You can use the generalized Pareto distribution in this way, to
provide a good fit to extremes of complicated data.
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The generalized Pareto distribution allows a continuous range of possible
shapes that includes both the exponential and Pareto distributions as special
cases. You can use either of those distributions to model a particular dataset
of exceedences. The generalized extreme value distribution allows you to “let
the data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding
to a limiting distribution of exceedence data from a different class of
underlying distributions.

• Distributions whose tails decrease exponentially, such as the normal, lead
to a generalized Pareto shape parameter of zero.

• Distributions whose tails decrease as a polynomial, such as Student’s t,
lead to a positive shape parameter.

• Distributions whose tails are finite, such as the beta, lead to a negative
shape parameter.

Parameter Estimation for the Generalized Pareto Distribution
If you generate a large number of random values from a Student’s t
distribution with 5 degrees of freedom, and then discard everything less than
2, you can fit a generalized Pareto distribution to those exceedences.

t = trnd(5,5000,1);
y = t(t > 2) - 2;
paramEsts = gpfit(y)
paramEsts =

0.1598 0.7968

Notice that the shape parameter estimate (the first element) is positive, which
is what you would expect based on exceedences from a Student’s t distribution.

hist(y+2,2.25:.5:11.75);
set(get(gca,'child'),'FaceColor',[.9 .9 .9])
xgrid = linspace(2,12,1000);
line(xgrid,.5*length(y)*...

gppdf(xgrid,paramEsts(1),paramEsts(2),2));
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Plot of the Generalized Pareto Distribution
The following code generates examples of the probability density functions for
the three basic forms of the generalized Pareto distribution.

x = linspace(0,10,1000);
y1 = gppdf(x,-.25,1,0);
y2 = gppdf(x,0,1,0);
y3 = gppdf(x,1,1,0)
plot(x,y1,'-', x,y2,'-', x,y3,'-')
legend({'K<0' 'K=0' 'K>0');
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Notice that for k < 0, the distribution has zero probability density for   > -x
σ
k

,
while for k ≥ 0, there is no upper bound.
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Geometric Distribution

Definition of the Geometric Distribution
The geometric pdf is

where q = 1 - p. The geometric distribution is a special case of the negative
binomial distribution, with r = 1.

Background of the Geometric Distribution
The geometric distribution is discrete, existing only on the nonnegative
integers. It is useful for modeling the runs of consecutive successes (or
failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure
in an independent succession of tests where each test results in success or
failure.

Example and Plot of the Geometric Distribution
Suppose the probability of a five-year-old battery failing in cold weather is
0.03. What is the probability of starting 25 consecutive days during a long
cold snap?

1 - geocdf(25,0.03)

ans =

0.4530

The plot shows the cdf for this scenario.

x = 0:25;
y = geocdf(x,0.03);
stairs(x,y)
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Hypergeometric Distribution

Definition of the Hypergeometric Distribution
The hypergeometric pdf is

Background of the Hypergeometric Distribution
The hypergeometric distribution models the total number of successes in a
fixed-size sample drawn without replacement from a finite population.

The distribution is discrete, existing only for nonnegative integers less than
the number of samples or the number of possible successes, whichever is
greater. The hypergeometric distribution differs from the binomial only in
that the population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretations.

• M is the size of the population.

• K is the number of items with the desired characteristic in the population.

• n is the number of samples drawn.

Sampling “without replacement” means that once a particular sample
is chosen, it is removed from the relevant population for all subsequent
selections.

Example and Plot of the Hypergeometric Distribution
The plot shows the cdf of an experiment taking 20 samples from a group of
1000 where there are 50 items of the desired type.

x = 0:10;
y = hygecdf(x,1000,50,20);
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stairs(x,y)
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Inverse Gaussian Distribution

Definition of the Inverse Gaussian Distribution
The inverse Gaussian distribution has the density function

Background on the Inverse Gaussian Distribution
Also known as the Wald distribution, the inverse Gaussian is used to model
nonnegative positively skewed data. The distribution originated in the theory
of Brownian motion, but has been used to model diverse phenomena. Inverse
Gaussian distributions have many similarities to standard Gaussian (normal)
distributions, which lead to applications in inferential statistics.

Parameter estimation for the Inverse Gaussian Distribution
See mle, dfittool.
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Inverse Wishart Distribution

Definition of the Inverse Wishart Distribution
The inverse Wishart distribution is based on the Wishart distribution. If a
random matrix has a Wishart distribution with parameters -1 and ν, then
the inverse of that random matrix has an inverse Wishart distribution with
parameters and ν. The mean of the distribution is given by

Σ
ν − −d 1

Statistics Toolbox only supports random matrix generation for the inverse
Wishart, and only for nonsingular and ν greater than d – 1.

5-48



Distribution Reference

Johnson System of Distributions
See “Pearson and Johnson Systems of Distributions” on page 5-169.
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Logistic Distribution

Definition of the Logistic Distribution
The logistic distribution has the density function

with location parameter µ and scale parameter σ > 0, for all real x.

Background on the Logistic Distribution
The logistic distribution originated with Verhulst’s work on demography in
the early 1800s. The distribution has been used for various growth models,
and is used in logistic regression. It has longer tails and a higher kurtosis
than the normal distribution.

Parameter estimation for the Logistic Distribution
See mle, dfittool.
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Loglogistic Distribution

Definition of the Loglogistic Distribution
The variable x has a loglogistic distribution with location parameter µ and
scale parameter σ > 0 if ln x has a logistic distribution with parameters µ and
σ. The relationship is similar to that between the lognormal and normal
distribution.

Parameter estimation for the Loglogistic Distribution
See mle, dfittool.
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Lognormal Distribution

Definition of the Lognormal Distribution
The lognormal pdf is

Background of the Lognormal Distribution
The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters µ and σ, then log(X) is distributed normally
with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are functions of µ
and σ that can be calculated with the lognstat function. They are:
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The lognormal distribution is applicable when the quantity of interest must
be positive, since log(X) exists only when X is positive.

Example and Plot of the Lognormal Distribution
Suppose the income of a family of four in the United States follows a lognormal
distribution with µ = log(20,000) and σ2 = 1.0. Plot the income density.

x = (10:1000:125010)';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
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set(gca,'xtick',[0 30000 60000 90000 120000])
set(gca,'xticklabel',str2mat('0','$30,000','$60,000',...

'$90,000','$120,000'))

0       $30,000 $60,000 $90,000 $120,000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−5

5-53



5 Probability Distributions

Multinomial Distribution

Definition of the Multinomial Distribution
The multinomial pdf is
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where x = (x1, ... , xk) gives the number of each of k outcomes in n trials of a
process with fixed probabilities p = (p1, ... , pk) of individual outcomes in any
one trial. The vector x has non-negative integer components that sum to n.
The vector p has non-negative integer components that sum to 1.

Background of the Multinomial Distribution
The multinomial distribution is a generalization of the binomial distribution.
The binomial distribution gives the probability of the number of “successes”
and “failures” in n independent trials of a two-outcome process. The
probability of “success” and “failure” in any one trial is given by the fixed
probabilities p and q = 1–p. The multinomial distribution gives the probability
of each combination of outcomes in n independent trials of a k-outcome
process. The probability of each outcome in any one trial is given by the fixed
probabilities p1, ... , pk.

The expected value of outcome i is npi. The variance of outcome i is npi(1 – pi).
The covariance of outcomes i and j is –npipj for distinct i and j.

Example and Plot of the Multinomial Distribution

% Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));
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% Plot the distribution
Y = reshape(Y,n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')

Note that the visualization does not show x3, which is determined by the
constraint x1 + x2 + x3 = n.
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Multivariate Normal Distribution

Definition of the Multivariate Normal Distribution
The probability density function of the d-dimensional multivariate normal
distribution is given by
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where x and μ are 1-by-d vectors and is a d-by-d symmetric positive definite
matrix. While it is possible to define the multivariate normal for singular

, the density cannot be written as above. Statistics Toolbox supports only
random vector generation for the singular case. Note that while most
textbooks define the multivariate normal with x and μ oriented as column
vectors, for the purposes of data analysis software, it is more convenient to
orient them as row vectors, and Statistics Toolbox uses that orientation.

Background of the Multivariate Normal Distribution
The multivariate normal distribution is a generalization of the univariate
normal to two or more variables. It is a distribution for random vectors
of correlated variables, each element of which has a univariate normal
distribution. In the simplest case, there is no correlation among variables, and
elements of the vectors are independent univariate normal random variables.

The multivariate normal distribution is parameterized with a mean vector, μ,
and a covariance matrix, . These are analogous to the mean μ and standard
deviation σ parameters of a univariate normal distribution. The diagonal
elements of contain the variances for each variable, while the off-diagonal
elements of contain the covariances between variables.

The multivariate normal distribution is often used as a model for multivariate
data, primarily because it is one of the few multivariate distributions that is
tractable to work with.
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Example and Plot of the Multivariate Normal Distribution
This example shows the probability density function (pdf) and cumulative
distribution function (cdf) for a bivariate normal distribution with unequal
standard deviations. You can use the multivariate normal distribution in a
higher number of dimensions as well, although visualization is not easy.

mu = [0 0];
Sigma = [.25 .3; .3 1];
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .4])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');

F = mvncdf([X1(:) X2(:)],mu,Sigma);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
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axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

Since the bivariate normal distribution is defined on the plane, you can also
compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');
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mvncdf([0 0],[1 1],mu,Sigma)

ans =
0.20974

Computing a multivariate cumulative probability very precisely can be
significantly more work than computing a univariate probability. Therefore,
the mvncdf function computes values to less than full machine precision by
default, and returns an estimate of the error as an optional second output.
You can also specify a maximum error tolerance; see mvncdf.

[F,err] = mvncdf([0 0],[1 1],mu,Sigma)

F =
0.20974

err =
1e-008
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Multivariate t Distribution

Definition of the Multivariate Student’s t Distribution
The probability density function of the d-dimensional multivariate Student’s t
distribution is given by
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where x is a 1-by-d vector, P is a d-by-d symmetric, positive definite matrix,
and ν is a positive scalar. While it is possible to define the multivariate
Student’s t for singular P, the density cannot be written as above. For the
singular case, Statistics Toolbox only supports random number generation.
Note that while most textbooks define the multivariate Student’s t with x
oriented as a column vector, for the purposes of data analysis software, it is
more convenient to orient x as a row vector, and Statistics Toolbox uses that
orientation.

Background of the Multivariate Student’s t Distribution
The multivariate Student’s t distribution is a generalization of the univariate
Student’s t to two or more variables. It is a distribution for random vectors
of correlated variables, each element of which has a univariate Student’s t
distribution. In the same way as the univariate Student’s t distribution can
be constructed by dividing a standard univariate normal random variable by
the square root of a univariate chi-square random variable, the multivariate
Student’s t distribution can be constructed by dividing a multivariate
normal random vector having zero mean and unit variances by a univariate
chi-square random variable.

The multivariate Student’s t distribution is parameterized with a correlation
matrix, P, and a positive scalar degrees of freedom parameter, ν. ν is
analogous to the degrees of freedom parameter of a univariate Student’s t
distribution. The off-diagonal elements of P contain the correlations between
variables. Note that when P is the identity matrix, variables are uncorrelated;
however, they are not independent.

The multivariate Student’s t distribution is often used as a substitute for
the multivariate normal distribution in situations where it is known that
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the marginal distributions of the individual variables have fatter tails than
the normal.

Example and Plot of the Multivariate Student’s t Distribution
This example shows the probability density function (pdf) and cumulative
distribution function (cdf) for a bivariate Student’s t distribution. You can use
the multivariate Student’s t distribution in a higher number of dimensions as
well, although visualization is not easy.

Rho = [1 .6; .6 1];
nu = 5;
x1 = -3:.2:3; x2 = -3:.2:3;
[X1,X2] = meshgrid(x1,x2);
F = mvtpdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 .2])
xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
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F = mvtcdf([X1(:) X2(:)],Rho,nu);
F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]);
axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

Since the bivariate Student’s t distribution is defined on the plane, you can
also compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);
xlabel('x'); ylabel('y');
line([0 0 1 1 0],[1 0 0 1 1],'linestyle','--','color','k');
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mvtcdf([0 0],[1 1],Rho,nu)

ans =
0.14013

Computing a multivariate cumulative probability very precisely can be
significantly more work than computing a univariate probability. Therefore,
the mvtcdf function computes values to less than full machine precision by
default, and returns an estimate of the error as an optional second output.
You can also specify a maximum error tolerance; see mvtcdf.

[F,err] = mvtcdf([0 0],[1 1],Rho,nu)

F =
0.14013

err =
1e-008
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Nakagami Distribution

Definition of the Nakagami Distribution
The Nakagami distribution has the density function

with shape parameter µ and scale parameter ω > 0, for x > 0. If x has a
Nakagami distribution with parameters µ and ω, then x2 has a gamma
distribution with shape parameter µ and scale parameter ω/µ.

Background on the Nakagami Distribution
In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

Parameter estimation for the Nakagami Distribution
See mle, dfittool.
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Negative Binomial Distribution

Definition of the Negative Binomial Distribution
When the parameter is an integer, the negative binomial pdf is

where q = 1 – p. When r is not an integer, the binomial coefficient in the
definition of the pdf is replaced by the equivalent expression

Background of the Negative Binomial Distribution
In its simplest form (when r is an integer), the negative binomial distribution
models the number of failures x before a specified number of successes is
reached in a series of independent, identical trials. Its parameters are the
probability of success in a single trial, p, and the number of successes, r. A
special case of the negative binomial distribution, when r = 1, is the geometric
distribution, which models the number of failures before the first success.

More generally, r can take on non-integer values. This form of the negative
binomial distribution has no interpretation in terms of repeated trials, but,
like the Poisson distribution, it is useful in modeling count data. The negative
binomial distribution is more general than the Poisson distribution because it
has a variance that is greater than its mean, making it suitable for count data
that do not meet the assumptions of the Poisson distribution. In the limit,
as r increases to infinity, the negative binomial distribution approaches the
Poisson distribution.

Parameter Estimation for the Negative Binomial Distribution
Suppose you are collecting data on the number of auto accidents on a busy
highway, and would like to be able to model the number of accidents per day.
Because these are count data, and because there are a very large number of
cars and a small probability of an accident for any specific car, you might
think to use the Poisson distribution. However, the probability of having an
accident is likely to vary from day to day as the weather and amount of traffic
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change, and so the assumptions needed for the Poisson distribution are not
met. In particular, the variance of this type of count data sometimes exceeds
the mean by a large amount. The data below exhibit this effect: most days
have few or no accidents, and a few days have a large number.

accident = [2 3 4 2 3 1 12 8 14 31 23 1 10 7 0];
mean(accident)
ans =

8.0667

var(accident)
ans =

79.352

The negative binomial distribution is more general than the Poisson, and is
often suitable for count data when the Poisson is not. The function nbinfit
returns the maximum likelihood estimates (MLEs) and confidence intervals
for the parameters of the negative binomial distribution. Here are the results
from fitting the accident data:

[phat,pci] = nbinfit(accident)
phat =

1.006 0.11088
pci =

0.015286 0.00037634
1.9967 0.22138

It is difficult to give a physical interpretation in this case to the individual
parameters. However, the estimated parameters can be used in a model
for the number of daily accidents. For example, a plot of the estimated
cumulative probability function shows that while there is an estimated 10%
chance of no accidents on a given day, there is also about a 10% chance that
there will be 20 or more accidents.

plot(0:50,nbincdf(0:50,phat(1),phat(2)),'.-');
xlabel('Accidents per Day')
ylabel('Cumulative Probability')
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Example and Plot of the Negative Binomial Distribution
The negative binomial distribution can take on a variety of shapes ranging
from very skewed to nearly symmetric. This example plots the probability
function for different values of r, the desired number of successes: .1, 1, 3, 6.

x = 0:10;
plot(x,nbinpdf(x,.1,.5),'s-', ...

x,nbinpdf(x,1,.5),'o-', ...
x,nbinpdf(x,3,.5),'d-', ...
x,nbinpdf(x,6,.5),'^-');

legend({'r = .1' 'r = 1' 'r = 3' 'r = 6'})
xlabel('x')
ylabel('f(x|r,p')
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Noncentral Chi-Square Distribution

Definition of the Noncentral Chi-Square Distribution
There are many equivalent formulas for the noncentral chi-square distribution
function. One formulation uses a modified Bessel function of the first kind.
Another uses the generalized Laguerre polynomials. Statistics Toolbox
computes the cumulative distribution function values using a weighted
sum of χ2 probabilities with the weights equal to the probabilities of a
Poisson distribution. The Poisson parameter is one-half of the noncentrality
parameter of the noncentral chi-square

where δ is the noncentrality parameter.

Background of the Noncentral Chi-Square Distribution
The χ2 distribution is actually a simple special case of the noncentral
chi-square distribution. One way to generate random numbers with a χ2

distribution (with ν degrees of freedom) is to sum the squares of ν standard
normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The
sum of squares of these numbers yields the noncentral chi-square distribution.
The noncentral chi-square distribution requires two parameters: the degrees
of freedom and the noncentrality parameter. The noncentrality parameter is
the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Ricean
or generalized Rayleigh distribution.

Example of the Noncentral Chi-Square Distribution
The following commands generate a plot of the noncentral chi-square pdf.
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x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'-',x,p1,'-')
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Noncentral F Distribution

Definition of the Noncentral F Distribution
Similar to the noncentral χ2 distribution, the toolbox calculates noncentral
F distribution probabilities as a weighted sum of incomplete beta functions
using Poisson probabilities as the weights.

I(x|a,b) is the incomplete beta function with parameters a and b, and δ is
the noncentrality parameter.

Background of the Noncentral F Distribution
As with the χ2 distribution, the F distribution is a special case of the
noncentral F distribution. The F distribution is the result of taking the ratio
of χ2 random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral
F distribution.

The main application of the noncentral F distribution is to calculate the power
of a hypothesis test relative to a particular alternative.

Example and Plot of the Noncentral F Distribution
The following commands generate a plot of the noncentral F pdf.

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')
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Noncentral t Distribution

Definition of the Noncentral t Distribution
The most general representation of the noncentral t distribution is quite
complicated. Johnson and Kotz [27] give a formula for the probability that a
noncentral t variate falls in the range [–t, t].

I(x|a,b) is the incomplete beta function with parameters a and b, δ is the
noncentrality parameter, and ν is the number of degrees of freedom.

Background of the Noncentral t Distribution
The noncentral t distribution is a generalization of Student’s t distribution.

Student’s t distribution with n – 1 degrees of freedom models the t-statistic

t
x
s n

= − μ
/

where is the sample mean and s is the sample standard deviation of a
random sample of size n from a normal population with mean μ. If the
population mean is actually μ0, then the t-statistic has a noncentral t
distribution with noncentrality parameter

δ
μ μ
σ

=
−0

/ n

The noncentrality parameter is the normalized difference between μ0 and μ.

The noncentral t distribution gives the probability that a t test will correctly
reject a false null hypothesis of mean μ when the population mean is actually
μ0; that is, it gives the power of the t test. The power increases as the
difference μ0 – μ increases, and also as the sample size n increases.
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Example and Plot of the Noncentral t Distribution
The following commands generate a plot of the noncentral t pdf.

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')
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Nonparametric Distributions
See the discussion of ksdensity in “Probability Density Estimation” on page
3-10.
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Normal Distribution

Definition of the Normal Distribution
The normal pdf is

Background of the Normal Distribution
The normal distribution is a two-parameter family of curves. The first
parameter, µ, is the mean. The second, σ, is the standard deviation. The
standard normal distribution (written (x)) sets µ to 0 and σ to 1.

(x) is functionally related to the error function, erf.

The first use of the normal distribution was as a continuous approximation
to the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem, which states (roughly) that the sum of independent
samples from any distribution with finite mean and variance converges to the
normal distribution as the sample size goes to infinity.

Parameter Estimation for the Normal Distribution
To use statistical parameters such as mean and standard deviation reliably,
you need to have a good estimator for them. The maximum likelihood
estimates (MLEs) provide one such estimator. However, an MLE might be
biased, which means that its expected value of the parameter might not
equal the parameter being estimated. For example, an MLE is biased for
estimating the variance of a normal distribution. An unbiased estimator
that is commonly used to estimate the parameters of the normal distribution
is the minimum variance unbiased estimator (MVUE). The MVUE has the
minimum variance of all unbiased estimators of a parameter.
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The MVUEs of parameters µ and σ2 for the normal distribution are the
sample mean and variance. The sample mean is also the MLE for µ. The
following are two common formulas for the variance.

where

Equation 1 is the maximum likelihood estimator for σ2, and equation 2 is
the MVUE.

As an example, suppose you want to estimate the mean, µ, and the variance,
σ2, of the heights of all fourth grade children in the United States. The
function normfit returns the MVUE for µ, the square root of the MVUE for
σ2, and confidence intervals for µ and σ2. Here is a playful example modeling
the heights in inches of a randomly chosen fourth grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

mu =
50.2025

s =
1.7946

muci =
49.5210
50.8841

sci =
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1.4292
2.4125

Note that s^2 is the MVUE of the variance.

s^2

ans =
3.2206

Example and Plot of the Normal Distribution
The plot shows the bell curve of the standard normal pdf, with µ = 0 and σ = 1.
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Pearson System of Distributions
See “Pearson and Johnson Systems of Distributions” on page 5-169.
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Poisson Distribution

Definition of the Poisson Distribution
The Poisson pdf is

Background of the Poisson Distribution
The Poisson distribution is appropriate for applications that involve counting
the number of times a random event occurs in a given amount of time,
distance, area, etc. Sample applications that involve Poisson distributions
include the number of Geiger counter clicks per second, the number of people
walking into a store in an hour, and the number of flaws per 1000 feet of
video tape.

The Poisson distribution is a one-parameter discrete distribution that takes
nonnegative integer values. The parameter, λ, is both the mean and the
variance of the distribution. Thus, as the size of the numbers in a particular
sample of Poisson random numbers gets larger, so does the variability of the
numbers.

As Poisson showed, the Poisson distribution is the limiting case of a binomial
distribution where N approaches infinity and p goes to zero while Np = λ.

The Poisson and exponential distributions are related. If the number of counts
follows the Poisson distribution, then the interval between individual counts
follows the exponential distribution.

Parameter Estimation for the Poisson Distribution
The MLE and the MVUE of the Poisson parameter, λ, is the sample mean.
The sum of independent Poisson random variables is also Poisson distributed
with the parameter equal to the sum of the individual parameters. Statistics
Toolbox makes use of this fact to calculate confidence intervals λ. As λ gets
large the Poisson distribution can be approximated by a normal distribution
with µ = λ and σ2 = λ. Statistics Toolbox uses this approximation for
calculating confidence intervals for values of λ greater than 100.
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Example and Plot of the Poisson Distribution
The plot shows the probability for each nonnegative integer when λ = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+')
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Rayleigh Distribution

Definition of the Rayleigh Distribution
The Rayleigh pdf is

y f x b
x

b
e

x
b= =

−⎛

⎝
⎜

⎞

⎠
⎟

( | )
2

2

2

2

Background of the Rayleigh Distribution
The Rayleigh distribution is a special case of the Weibull distribution. If
A and B are the parameters of the Weibull distribution, then the Rayleigh
distribution with parameter b is equivalent to the Weibull distribution with

parameters A b= 2 and B = 2.

If the component velocities of a particle in the x and y directions are two
independent normal random variables with zero means and equal variances,
then the distance the particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

Parameter Estimation for the Rayleigh Distribution
The raylfit function returns the MLE of the Rayleigh parameter. This
estimate is

b
n

xi
i

n
=

=
∑1

2
2

1
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Example and Plot of the Rayleigh Distribution
The following commands generate a plot of the Rayleigh pdf.

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)
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Rician Distribution

Definition of the Rician Distribution
The Rician distribution has the density function

with noncentrality parameter s ≥ 0 and scale parameter σ > 0, for x > 0. I0
is the zero-order modified Bessel function of the first kind. If x has a Rician
distribution with parameters s and σ, then (x/σ)2 has a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter (s/σ)2.

Background on the Rician Distribution
In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent
of the fading.

Parameter estimation for the Rician Distribution
See mle, dfittool.
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Student’s t Distribution

Definition of Student’s t Distribution
Student’s t pdf is

where ( · ) is the Gamma function.

Background of Student’s t Distribution
The t distribution is a family of curves depending on a single parameter ν (the
degrees of freedom). As ν goes to infinity, the t distribution approaches the
standard normal distribution.

W. S. Gossett discovered the distribution through his work at the Guinness
brewery. At the time, Guinness did not allow its staff to publish, so Gossett
used the pseudonym “Student.”

If x is a random sample of size n from a normal distribution with mean μ,
then the statistic

t
x
s n

= − μ
/

where is the sample mean and s is the sample standard deviation, has
Student’s t distribution with n – 1 degrees of freedom.

Example and Plot of Student’s t Distribution
The plot compares the t distribution with ν = 5 (solid line) to the shorter
tailed, standard normal distribution (dashed line).

x = -5:0.1:5;
y = tpdf(x,5);
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z = normpdf(x,0,1);
plot(x,y,'-',x,z,'-.')
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t Location-Scale Distribution

Definition of the t Location-Scale Distribution
The t location-scale distribution has the density function

with location parameter µ, scale parameter σ > 0, and shape parameter ν > 0.
If x has a t location-scale distribution, with parameters µ, σ, and ν, then

x − μ
σ

has a Student’s t distribution with ν degrees of freedom.

Background of the t Location-Scale Distribution
The t location-scale distribution is useful for modeling data distributions
with heavier tails (more prone to outliers) than the normal distribution. It
approaches the normal distribution as ν approaches infinity, and smaller
values of ν yield heavier tails.

Parameter estimation for the t Location-Scale Distribution
See mle, dfittool.
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Uniform Distribution (Continuous)

Definition of the Continuous Uniform Distribution
The uniform cdf is

Background of the Continuous Uniform Distribution
The uniform distribution (also called rectangular) has a constant pdf between
its two parameters a (the minimum) and b (the maximum). The standard
uniform distribution (a = 0 and b = 1) is a special case of the beta distribution,
obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

Parameter Estimation for the Continuous Uniform Distribution
The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Continuous Uniform Distribution
The example illustrates the inversion method for generating normal random
numbers using rand and norminv. Note that the MATLAB function, randn,
does not use inversion since it is not efficient for this case.

u = rand(1000,1);
x = norminv(u,0,1);
hist(x)
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Uniform Distribution (Discrete)

Definition of the Discrete Uniform Distribution
The discrete uniform pdf is

Background of the Discrete Uniform Distribution
The discrete uniform distribution is a simple distribution that puts equal
weight on the integers from one to N.

Example and Plot of the Discrete Uniform Distribution
As for all discrete distributions, the cdf is a step function. The plot shows
the discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)
set(gca,'Xlim',[0 11])

Pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)
numbers =

293 372 5 213 37 231 380 326 515 468
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Weibull Distribution

Definition of the Weibull Distribution
The Weibull pdf is

Background of the Weibull Distribution
Waloddi Weibull offered the distribution that bears his name as an
appropriate analytical tool for modeling the breaking strength of materials.
Current usage also includes reliability and lifetime modeling. The Weibull
distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If
f(t) and F(t) are the pdf and cdf of a distribution, then the hazard rate is

Substituting the pdf and cdf of the exponential distribution for f(t) and F(t)
above yields a constant. The example below shows that the hazard rate for
the Weibull distribution can vary.

Parameter Estimation for the Weibull Distribution
Suppose you want to model the tensile strength of a thin filament using
the Weibull distribution. The function wblfit gives maximum likelihood
estimates and confidence intervals for the Weibull parameters.

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)

p =
0.4715 1.9811

ci =
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0.4248 1.7067
0.5233 2.2996

The default 95% confidence interval for each parameter contains the true
value.

Example and Plot of the Weibull Distribution
The exponential distribution has a constant hazard function, which is not
generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull
(solid line) distributions having the same mean life. The Weibull hazard rate
here increases with age (a reasonable assumption).

t = 0:0.1:4.5;
h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'-',t,h2,'-')
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Wishart Distribution

Definition of the Wishart Distribution
The probability density function of the d-dimensional Wishart distribution is
given by

y = f( , , ) = 
  e

2

(( -d-1)/2) -trace

( d)/2Χ Σ
Χ

Σ Χ

ν
π

ν

ν
⋅

⋅

−( )( )1 2/

((d(d-1))/2 ... ( -(d-1))/2⋅ ⋅ ( ) ⋅ ⋅Σ Γ Γν ν ν/ /2 2

where X and are d-by-d symmetric positive definite matrices, and ν is
a scalar greater than d – 1. While it is possible to define the Wishart for
singular or for integer ν ≤ d – 1, the density cannot be written as above.
Statistics Toolbox only supports random matrix generation for the Wishart,
including the singular cases.

Background of the Wishart Distribution
The Wishart distribution is a generalization of the univariate chi-square
distribution to two or more variables. It is a distribution for symmetric
positive semidefinite matrices, typically covariance matrices, the diagonal
elements of which are each chi-square random variables. In the same way
as the chi-square distribution can be constructed by summing the squares of
independent, identically distributed, zero-mean univariate normal random
variables, the Wishart distribution can be constructed by summing the inner
products of independent, identically distributed, zero-mean multivariate
normal random vectors.

The Wishart distribution is parameterized with a symmetric, positive
semidefinite matrix, , and a positive scalar degrees of freedom parameter, ν.
ν is analogous to the degrees of freedom parameter of a univariate chi-square
distribution, and ν is the mean of the distribution.

The Wishart distribution is often used as a model for the distribution of the
sample covariance matrix for multivariate normal random data, after scaling
by the sample size.
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Example of the Wishart Distribution
If x is a bivariate normal random vector with mean zero and covariance matrix

Σ = ⎛

⎝
⎜

⎞

⎠
⎟

1 5
5 2

.
.

then you can use the Wishart distribution to generate a sample covariance
matrix without explicitly generating x itself. Notice how the sampling
variability is quite large when the degrees of freedom is small.

mu = [0 0];
Sigma = [1 .5; .5 2];
n = 10; S1 = wishrnd(Sigma,n)/(n-1)

S1 =
1.7959 0.64107

0.64107 1.5496

n = 1000; S2 = wishrnd(Sigma,n)/(n-1)

S2 =
0.9842 0.50158

0.50158 2.1682

5-93



5 Probability Distributions

Distribution Functions
For each distribution supported by Statistics Toolbox, a selection of
the following types of distribution functions is available for statistical
programming. This section gives a general overview of the use of each type
of function, independent of the particular distribution. For specific functions
available for specific distributions, see “Supported Distributions” on page 5-3.

Probability Density Functions
(p. 5-95)

Overview of probability density
functions

Cumulative Distribution Functions
(p. 5-98)

Overview of cumulative distribution
functions

Inverse Cumulative Distribution
Functions (p. 5-100)

Overview of inverse cumulative
distribution functions

Distribution Statistics Functions
(p. 5-102)

Overview of distribution statistics
functions

Distribution Fitting Functions
(p. 5-104)

Overview of distribution fitting
functions

Negative Log-Likelihood Functions
(p. 5-112)

Overview of negative log-likelihood
functions

Random Number Generators
(p. 5-116)

Overview of random number
generators
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Probability Density Functions
Probability density functions (pdfs) for supported distributions in Statistics
Toolbox all end with pdf, as in binopdf or exppdf. Specific function names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the pdf assigns a probability to each outcome. In
this context, the pdf is often called a probability mass function (pmf).

For example, the discrete binomial pdf

f k
n
k

p pk n k( ) ( )=
⎛

⎝
⎜

⎞

⎠
⎟ − −1

assigns probability to the event of k successes in n trials of a Bernoulli process
(such as coin flipping) with probability p of success at each trial. Each of the
integers k = 0, 1, 2, ..., n is assigned a positive probability, with the sum of
the probabilities equal to 1. The probabilities are computed with the binopdf
function:

p = 0.2; % Probability of success for each trial
n = 10; % Number of trials
k = 0:n; % Outcomes
m = binopdf(k,n,p); % Probability mass vector
bar(k,m) % Visualize the probability distribution
grid on
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For continuous distributions, the pdf assigns a probability density to each
outcome. The probability of any single outcome is zero. The pdf must be
integrated over a set of outcomes to compute the probability that an outcome
falls within that set. The integral over the entire set of outcomes is 1.

For example, the continuous exponential pdf

f t e t( ) = −λ λ

is used to model the probability that a process with constant failure rate λ will
have a failure within time t . Each time t > 0 is assigned a positive probability
density. Densities are computed with the exppdf function:

lambda = 2; % Failure rate
t = 0:0.01:3; % Outcomes
f = exppdf(t,1/lambda); Probability density vector
plot(t,f)% Visualize the probability distribution
grid on
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Probabilities for continuous pdfs can be computed with the quad function. In
the example above, the probability of failure in the time interval [0, 1] is
computed as follows:

f_lambda = @(t)exppdf(t,1/lambda); % Pdf with fixed lambda
P = quad(f_lambda,0,1) % Integrate from 0 to 1
P =

0.8647

Alternatively, the cumulative distribution function (cdf) for the exponential
function, expcdf, can be used:

P = expcdf(1,1/lambda) % Cumulative probability from 0 to 1
P =

0.8647
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Cumulative Distribution Functions
Cumulative distribution functions (cdfs) for supported distributions in
Statistics Toolbox all end with cdf, as in binocdf or expcdf. Specific function
names for specific distributions can be found in “Supported Distributions”
on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the cdf F is related to the pdf f by

F x f y
y x

( ) ( )=
≤
∑

For continuous distributions, the cdf F is related to the pdf f by

F x f y dy
x

( ) ( )=
−∞
∫

Cdfs are used to compute probabilities of events. In particular, if F is a cdf
and x and y are outcomes, then

• P(y ≤ x) = F(x)

• P(y ≥ x) = 1 – F(x)

• P(x1 ≤ y ≤ x2) = F(x2) – F(x1)

For example, the t-statistic

t
x
s n

= − μ
/

follows a Student’s t distribution with n – 1 degrees of freedom when computed
from repeated random samples from a normal population with mean μ. Here

is the sample mean, s is the sample standard deviation, and n is the sample
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size. The probability of observing a t-statistic greater than or equal to the
value computed from a sample can be found with the tcdf function:

mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =

0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =

0.4020

This probability is the same as the p-value returned by a t-test of the null
hypothesis that the sample comes from a normal population with mean μ:

[h,ptest] = ttest(x,mu,0.05,'right')
h =

0
ptest =

0.4020
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Inverse Cumulative Distribution Functions
Inverse cumulative distribution functions for supported distributions in
Statistics Toolbox all end with inv, as in binoinv or expinv. Specific function
names for specific distributions can be found in “Supported Distributions”
on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of cumulative probabilities between 0 and 1 followed by
a list of parameter values specifying a particular member of the distribution
family.

For continuous distributions, the inverse cdf returns the unique outcome
whose cdf value is the input cumulative probability.

For example, the expinv function can be used to compute inverses of
exponential cumulative probabilities:

x = 0.5:0.2:1.5 % Outcomes
x =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = expcdf(x,1) % Cumulative probabilities
p =

0.3935 0.5034 0.5934 0.6671 0.7275 0.7769
expinv(p,1) % Return original outcomes
ans =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000

For discrete distributions, there may be no outcome whose cdf value is the
input cumulative probability. In these cases, the inverse cdf returns the first
outcome whose cdf value equals or exceeds the input cumulative probability.

For example, the binoinv function can be used to compute inverses of
binomial cumulative probabilities:

x = 0.5:0.2:1.5 % Outcomes
x =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = binocdf(x,10,0.2) % Cumulative probabilities
p =

0.1074 0.1074 0.1074 0.3758 0.3758 0.3758
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>> binoinv(p,10,0.2) % Return binomial outcomes
ans =

0 0 0 1 1 1

The inverse cdf is useful in hypothesis testing, where critical outcomes of a
test statistic are computed from cumulative significance probabilities. For
example, norminv can be used to compute a 95% confidence interval under
the assumption of normal variability:

p = [0.025 0.975]; % Interval containing 95% of [0,1]
x = norminv(p,0,1) % Assume standard normal variability
x =

-1.9600 1.9600 % 95% confidence interval

n = 20; % Sample size
y = normrnd(8,1,n,1); % Random sample (assume mean is unknown)
ybar = mean(y);
ci = ybar + (1/sqrt(n))*x % Confidence interval for mean
ci =

7.6779 8.5544
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Distribution Statistics Functions
Distribution statistics functions for supported distributions in Statistics
Toolbox all end with stat, as in binostat or expstat. Specific function
names for specific distributions can be found in “Supported Distributions”
on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member
of the distribution family. Functions return the mean and variance of the
distribution, as a function of the parameters.

For example, the wblstat function can be used to visualize the mean of the
Weibull distribution as a function of its two distribution parameters:

a = 0.5:0.1:3;
b = 0.5:0.1:3;
[A,B] = meshgrid(a,b);
M = wblstat(A,B);
surfc(A,B,M)
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Distribution Fitting Functions

• “Fitting Supported Distributions” on page 5-104

• “Fitting Piecewise Distributions” on page 5-106

Fitting Supported Distributions
Distribution fitting functions for supported distributions in Statistics Toolbox
all end with fit, as in binofit or expfit. Specific function names for specific
distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of data, presumed to be samples from some member
of the selected distribution family. Functions return maximum likelihood
estimates (MLEs) of distribution parameters, that is, parameters for the
distribution family member with the maximum likelihood of producing the
data as a random sample.

The Statistics Toolbox function mle is a convenient front end to the individual
distribution fitting functions, and more. The function computes MLEs for
distributions beyond those for which Statistics Toolbox provides specific pdf
functions.

For some pdfs, MLEs can be given in closed form and computed directly. For
other pdfs, a search for the maximum likelihood must be employed. The
search can be controlled with an options input argument, created using the
statset function. For efficient searches, it is important to choose a reasonable
distribution model and set appropriate convergence tolerances.

MLEs can be heavily biased, especially for small samples. As sample size
increases, however, MLEs become unbiased minimum variance estimators
with approximate normal distributions. This is used to compute confidence
bounds for the estimates.

For example, consider the following distribution of means from repeated
random samples of an exponential distribution:

mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples
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samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately
normally distributed, regardless of the distribution of the data in the samples.
The normfit function can be used to find the normal distribution that best
fits the means:

[muhat,sigmahat,muci,sigmaci] = normfit(means)
muhat =

1.0003
sigmahat =

0.0319
muci =

0.9997
1.0010

sigmaci =
0.0314
0.0323

The function returns MLEs for the mean and standard deviation and their
95% confidence intervals.

To visualize the distribution of sample means together with the fitted normal
distribution, you must scale the fitted pdf, with area = 1, to the area of the
histogram being used to display the means:

numbins = 50;
hist(means,numbins)
hold on
[bincounts,binpositions] = hist(means,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);
x = binpositions(1):0.001:binpositions(end);
y = normpdf(x,muhat,sigmahat);
plot(x,histarea*y,'r','LineWidth',2)
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Fitting Piecewise Distributions
The parametric methods discussed in “Fitting Supported Distributions” on
page 5-104 fit data samples with smooth distributions that have a relatively
low-dimensional set of parameters controlling their shape. These methods
work well in many cases, but there is no guarantee that a given sample will
be described accurately by any of the supported distributions in Statistics
Toolbox.

The empirical distributions computed by ecdf and discussed in “Empirical
Cumulative Distribution Function” on page 3-15 assign equal probability
to each observation in a sample, providing an exact match of the sample
distribution. However, the distributions are not smooth, especially in the tails
where data may be sparse.

The paretotails function fits a distribution by piecing together the empirical
distribution in the center of the sample with smooth Pareto distributions
in the tails.
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The output of paretotails is an object with associated methods to evaluate
the cdf, inverse cdf, and other functions of the fitted distribution. The
paretotails class is a subclass of the piecewisedistribution class, and
many of its methods are derived from that class. Never call the constructor
for the piecewisedistribution class directly. Instead, use the subclass
constructor paretotails.

The tables below list methods for the piecewisedistribution and
paretotails classes. For full descriptions of individual methods, type one of
the following, depending on the class:

help piecewisedistribution/methodname
help paretotails/methodname

Methods with supporting reference pages, including examples, are linked
from the tables. An example follows the tables.

The following table lists methods available for all piecewisedistribution
objects.

Piecewise Distribution
Method

Description

boundary Boundary points of piecewise distribution
segments.

cdf (piecewisedistribution) Cumulative distribution function for
piecewise distribution.

disp Display piecewisedistribution object,
without printing object name.

display Display piecewisedistribution
object, printing object name. This
method is invoked when the name of
a piecewisedistribution object is
entered at the command prompt.

icdf
(piecewisedistribution)

Inverse cumulative distribution function
for piecewise distribution.

nsegments Number of segments of piecewise
distribution.
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Piecewise Distribution
Method

Description

pdf (piecewisedistribution) Probability density function for piecewise
distribution.

random
(piecewisedistribution)

Random numbers from piecewise
distribution.

segment Segment of piecewise distribution
containing input values.

The following table lists additional methods for paretotails objects.

Pareto Tails
Method

Description

lowerparams Parameters of generalized Pareto distribution lower tail.

paretotails Construct Pareto tails object.

subsref Subscripted reference for paretotails object. This method
is invoked by parenthesis indexing, as demonstrated in
the example below.

upperparams Parameters of generalized Pareto distribution upper tail.

As an example, consider the following data, with about 20% outliers:

left_tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);
center = randn(80,1);
data = [left_tail;center;right_tail];

Neither a normal distribution nor a t distribution fits the tails very well:

probplot(data);
p = mle(data,'dist','tlo');
h = probplot(gca,@(data,mu,sig,df))
cdf('tlocationscale',data,mu,sig,df),p);
set(h,'color','r','linestyle','-')
title('{\bf Probability Plot}')
legend('Data','Normal','t','Location','NW')

5-108



Distribution Functions

On the other hand, the empirical distribution provides a perfect fit, but the
outliers make the tails very discrete:

ecdf(data)
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Random samples generated from this distribution by inversion might include,
for example, values around 4.33 and 9.25, but nothing in-between.

The paretotails function fits a distribution by piecing together the empirical
distribution in the center of the sample with smooth Pareto distributions in
the tails. This provides a single, well-fit model for the entire sample. The
following uses generalized Pareto distributions (GPDs) for the lower and
upper 10% of the data:

pfit = paretotails(data,0.1,0.9)
pfit =
Piecewise distribution with 3 segments
-Inf < x < -1.30726 (0 < p < 0.1)

lower tail, GPD(-1.10167,1.12395)

-1.30726 < x < 1.27213 (0.1 < p < 0.9)
interpolated empirical cdf
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1.27213 < x < Inf (0.9 < p < 1)
upper tail, GPD(1.03844,0.726038)

x = -4:0.01:10;
plot(x,pfit(x))

Note that the fit object pfit returned by paretotails allows for functional
syntax of the form pfit(x) for evaluating the piecewise cdf. You can access
other information about the fit using the methods listed in the tables above.
Options for paretotails also allow for kernel smoothing of the center of
the cdf.
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Negative Log-Likelihood Functions
Negative log-likelihood functions for supported distributions in Statistics
Toolbox all end with like, as in explike. Specific function names for specific
distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member of
the distribution family followed by an array of data. Functions return the
negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in search
algorithms such as the one implemented by the fminsearch function in
MATLAB. Additional search algorithms are implemented by functions in
Optimization Toolbox and Genetic Algorithm and Direct Search Toolbox.

When used to compute maximum likelihood estimates (MLEs), negative
log-likelihood functions allow you to choose a search algorithm and exercise
low-level control over algorithm execution. By contrast, the functions
discussed in “Distribution Fitting Functions” on page 5-104 use preset
algorithms with options limited to those set by the statset function.

Likelihoods are conditional probability densities. A parametric family of
distributions is specified by its pdf f (x,a), where x and a represent the
variables and parameters, respectively. When a is fixed, the pdf is used
to compute the density at x, f(x|a). When x is fixed, the pdf is used to
compute the likelihood of the parameters a, f(a|x). The joint likelihood of the
parameters over an independent random sample X is

L a f a x
x X

( ) ( | )=
∈
∏

Given X, MLEs maximize L(a) over all possible a.

In numerical algorithms, the log-likelihood function, log(L(a)), is
(equivalently) optimized. The logarithm transforms the product of potentially
small likelihoods into a sum of logs, which is easier to distinguish from 0
in computation. For convenience, the negative log-likelihood functions in
Statistics Toolbox return the negative of this sum, since the optimization
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algorithms to which the values are passed typically search for minima rather
than maxima.

For example, use gamrnd to generate a random sample from a specific gamma
distribution:

a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);

Given X, the gamlike function can be used to visualize the likelihood surface
in the neighborhood of a:

mesh = 50;
delta = 0.5;
a1 = linspace(a(1)-delta,a(1)+delta,mesh);
a2 = linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for i = 1:mesh

for j = 1:mesh
logL(i,j) = gamlike([a1(i),a2(j)],X);

end
end

[A1,A2] = meshgrid(a1,a2);
surfc(A1,A2,logL)
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The MATLAB fminsearch function can be used to search for the minimum of
the likelihood surface:

LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X
MLES = fminsearch(LL,[1,2])
MLES =

1.0231 1.9729

These can be compared to the MLEs returned by the gamfit function, which
uses a combination search and solve algorithm:

ahat = gamfit(X)
ahat =

1.0231 1.9728

The MLEs can be added to the surface plot (rotated to show the minimum):

hold on
plot3(MLES(1),MLES(2),LL(MLES),...

'ro','MarkerSize',5,...
'MarkerFaceColor','r')
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Random Number Generators
Random number generators (RNGs) for supported distributions in Statistics
Toolbox all end with rnd, as in binornd or exprnd. Specific RNG names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each RNG represents a parametric family of distributions. Input arguments
are lists of parameter values specifying a particular member of the distribution
family followed by the dimensions of an array. RNGs return random numbers
from the specified distribution in an array of the specified dimensions.

RNGs in Statistics Toolbox depend on the MATLAB base generators rand
and/or randn, using the techniques discussed in “Methods of Random Number
Generation” on page 5-158 to generate random numbers from particular
distributions. Dependencies of specific RNGs are listed in the table below.

MATLAB resets the state of the base RNGs each time it is started. Thus,
by default, dependent RNGs in Statistics Toolbox will generate the same
sequence of values with each MATLAB session. To change this behavior,
the state of the base RNGs must be set explicitly in startup.m or in the
relevant program code. States can be set to fixed values, for reproducibility, or
to time-dependent values, to assure new random sequences. For details on
setting the state and the method used by the base RNGs, see rand and randn.

For example, to simulate flips of a biased coin:

p = 0.55; % Probability of heads
n = 100; % Number of flips per trial
N = 1e3; % Number of trials
rand('state',sum(100*clock)) % Set base generator
sims = unifrnd(0,1,n,N) < p; % 1 for heads; 0 for tails

The empirical probability of heads for each trial is given by:

phat = sum(sims)/n;

The probability of heads for each trial can also be simulated by:

prand = = binornd(n,p,1,N)/n;

You can compare the two simulations with a histogram:
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hist([phat' prand'])
legend('UNIFRND','BINORND')
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Dependencies of the Random Number Generators
The following table lists the dependencies of the RNGs in Statistics Toolbox
on the MATLAB base RNGs rand and/or randn. Set the states and methods of
the RNGs in the right-hand column to assure reproducibility/variability of
the outputs of the RNGs in the left-hand column.

RNG MATLAB Base RNG

betarnd rand, randn

binornd rand

chi2rnd rand, randn

evrnd rand

exprnd rand

frnd rand, randn

gamrnd rand, randn

geornd rand

gevrnd rand

gprnd rand

hygernd rand

iwishrnd rand, randn

johnsrnd randn

lhsdesign rand

lhsnorm rand

lognrnd randn

mhsample rand or randn, depending on
the RNG given for the proposal
distribution

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn
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RNG MATLAB Base RNG

nctrnd rand, randn

ncx2rnd randn

normrnd randn

pearsrnd rand or randn, depending on the
distribution type

poissrnd rand, randn

random rand or randn, depending on the
specified distribution

randsample rand

raylrnd randn

slicesample rand

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wishrnd rand, randn
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Distribution GUIs
The following sections describe GUIs in Statistics Toolbox that provide
convenient, interactive access to the distribution functions described in
“Distribution Functions” on page 5-94:

Distribution Function Tool (p. 5-120) Interactive effects of parameter
changes to pdfs, cdfs

Distribution Fitting Tool (p. 5-122) Interactive distribution fitting

Random Number Generation Tool
(p. 5-155)

Interactive random number
generation from supported
distributions

Distribution Function Tool
To interactively see the influence of parameter changes on the shapes of
the pdfs and cdfs of distributions supported by Statistics Toolbox, use the
Probability Distribution Function Tool.

Run the tool by typing disttool at the command line. You can also run it
from the Demos tab in the Help browser.

5-120



Distribution GUIs

������
���	
���	��


��
�	��

�����

��
�	��
�	���
������
�����

��
�	��

���	

�
�������

���
�
��
��
��

��
���	�

���
��

��
���	�

�����

��
���	�

��
	
��

����	��
��
��
���	�
�

Start by selecting a distribution. Then choose the function type: probability
density function (pdf) or cumulative distribution function (cdf).
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Once the plot displays, you can

• Calculate a new function value by typing a new x value in the text box on
the x-axis, dragging the vertical reference line, or clicking in the figure
where you want the line to be. The new function value displays in the
text box to the left of the plot.

• For cdf plots, find critical values corresponding to a specific probability by
typing the desired probability in the text box on the y-axis or by dragging
the horizontal reference line.

• Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

Distribution Fitting Tool
The Distribution Fitting Tool is a GUI for fitting univariate distributions to
data. This section describes how to use the Distribution Fitting Tool and
covers the following topics:

• “Main Window of the Distribution Fitting Tool” on page 5-123

• “Example: Fitting a Distribution” on page 5-125

• “Creating and Managing Data Sets” on page 5-131

• “Creating a New Fit” on page 5-135

• “Displaying Results” on page 5-140

• “Managing Fits” on page 5-141

• “Evaluating Fits” on page 5-143

• “Excluding Data” on page 5-146

• “Saving and Loading Sessions” on page 5-151

• “Generating an M-File to Fit and Plot Distributions” on page 5-152

• “Using Custom Distributions” on page 5-153

• “Additional Distributions Available in the Distribution Fitting Tool” on
page 5-155
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Main Window of the Distribution Fitting Tool
To open the Distribution Fitting Tool, enter the command

dfittool

The following figure shows the main window of the Distribution Fitting Tool.
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Plot Buttons. Buttons at the top of the tool allow you to adjust the plot
displayed in the main window:
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• — Toggle the legend on (default) or off.

• — Toggle grid lines on or off (default).

• — Restore default axes limits.

Display Type. The Display Type field specifies the type of plot displayed
in the main window. Each type corresponds to a probability function, for
example, a probability density function. The following display types are
available:

• Density (PDF) — Displays a probability density function (PDF) plot for
the fitted distribution.

• Cumulative probability (CDF) — Displays a cumulative probability
plot of the data.

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Task Buttons. The task buttons enable you to perform the tasks necessary
to fit distributions to data. Each button opens a new window in which you
perform the task. The buttons include

• Data — Import and manage data sets. See “Creating and Managing Data
Sets” on page 5-131.

• New Fit — Create new fits. See “Creating a New Fit” on page 5-135.

• Manage Fits — Manage existing fits. See “Managing Fits” on page 5-141.

• Evaluate — Evaluate fits at any points you choose. See “Evaluating
Fits” on page 5-143.

• Exclude — Create rules specifying which values to exclude when fitting a
distribution. See “Excluding Data” on page 5-146.

Display Pane. The display pane displays plots of the data sets and fits you
create. Whenever you make changes in one of the task windows, the results
are updated in the display pane.
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Menu Options. The Distribution Fitting Tool menus contain items that
enable you to do the following:

• Save and load sessions. See “Saving and Loading Sessions” on page 5-151.

• Generate an M-file with which you can fit distributions to data and plot the
results independently of the Distribution Fitting Tool. See “Generating an
M-File to Fit and Plot Distributions” on page 5-152.

• Define and import custom distributions. See “Using Custom Distributions”
on page 5-153.

Example: Fitting a Distribution
This section presents an example that illustrates how to use the Distribution
Fitting Tool. The example involves the following steps:

• “Create Random Data for the Example” on page 5-125

• “Import Data into the Distribution Fitting Tool” on page 5-125

• “Create a New Fit” on page 5-128

Create Random Data for the Example. To try the example, first generate
some random data to which you will fit a distribution. The following command
generates a vector data, of length 100, whose entries are random numbers
from a normal distribution with mean.36 and standard deviation 1.4.

data = normrnd(.36, 1.4, 100, 1);

Import Data into the Distribution Fitting Tool. To import the vector data
into the Distribution Fitting Tool, click the Data button in main window. This
opens the window shown in the following figure.
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The Data field displays all numeric arrays in the MATLAB workspace. Select
data from the drop-down list, as shown in the following figure.
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This displays a histogram of the data in the Data preview pane.

In the Data set name field, type a name for the data set, such as My data,
and click Create Data Set to create the data set. The main window of the
Distribution Fitting Tool now displays a larger version of the histogram in the
Data preview pane, as shown in the following figure.

Histogram of the Data

Note Because the example uses random data, you might see a slightly
different histogram if you try this example for yourself.
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Create a New Fit. To fit a distribution to the data, click New Fit in the
main window of the Distribution Fitting Tool. This opens the window shown
in the following figure.
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To fit a normal distribution, the default entry of the Distribution field, to
My data:
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1 Enter a name for the fit, such as My fit, in the Fit name field.

2 Select My data from the drop-down list in the Data field.

3 Click Apply.

The Results pane displays the mean and standard deviation of the normal
distribution that best fits My data, as shown in the following figure.

The main window of the Distribution Fitting Tool displays a plot of the
normal distribution with this mean and standard deviation, as shown in the
following figure.
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Plot of the Distribution and Data
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Creating and Managing Data Sets
This section describes how create and manage data sets.

To begin, click the Data button in the main window of the Distribution Fitting
Tool to open the Data window shown in the following figure.

Importing Data. The Import workspace vectors pane enables you to
create a data set by importing a vector from the MATLAB workspace. The
following sections describe the fields of the Import workspace vectors pane.

Data

The drop-down list in the Data field contains the names of all matrices and
vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace.
Select the array containing the data you want to fit. The actual data you
import must be a vector. If you select a matrix in the Data field, the first
column of the matrix is imported by default. To select a different column or
row of the matrix, click Select Column or Row. This displays the matrix
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in the Array Editor, where you can select a row or column by highlighting it
with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.

When you select a vector in the Data field, a histogram of the data is
displayed in the Data preview pane.

Censoring

If some of the points in the data set are censored, enter a Boolean vector, of
the same size as the data vector, specifying the censored entries of the data. A
1 in the censoring vector specifies that the corresponding entry of the data
vector is censored, while a 0 specifies that the entry is not censored. If you
enter a matrix, you can select a column or row by clicking Select Column or
Row. If you do not want to censor any data, leave the Censoring field blank.

Frequency

Enter a vector of positive integers of the same size as the data vector to specify
the frequency of the corresponding entries of the data vector. For example, a
value of 7 in the 15th entry of frequency vector specifies that there are 7 data
points corresponding to the value in the 15th entry of the data vector. If all
entries of the data vector have frequency 1, leave the Frequency field blank.

Data name

Enter a name for the data set you import from the workspace, such as My
data.

As an example, if you create the vector data described in “Example: Fitting a
Distribution” on page 5-125, and select it in the Data field, the upper half of
the Data window appears as in the following figure.
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After you have entered the information in the preceding fields, click Create
Data Set to create the data set My data.

Managing Data Sets. The Manage data sets pane enables you to view
and manage the data sets you create. When you create a data set, its name
appears in the Data sets list. The following figure shows the Manage data
sets pane after creating the data set My data.

For each data set in the Data sets list, you can

• Select the Plot check box to display a plot of the data in the main
Distribution Fitting Tool window. When you create a new data set, Plot is
selected by default. Clearing the Plot check box removes the data from the
plot in the main window. You can specify the type of plot displayed in the
Display Type field in the main window.

• If Plot is selected, you can also select Bounds to display confidence
interval bounds for the plot in the main window. These bounds are
pointwise confidence bounds around the empirical estimates of these
functions. The bounds are only displayed when you set Display Type in
the main window to one of the following:
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- Cumulative probability (CDF)

- Survivor function

- Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density
(PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds
check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

• View — Displays the data in a table in a new window.

• Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.

• Rename — Renames the data set.

• Delete — Deletes the data set.

Setting Bin Rules. To set bin rules for the histogram of a data set, click Set
Bin Rules. This opens the dialog box shown in the following figure.

You can select from the following rules:
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• Freedman-Diaconis rule — Algorithm that chooses bin widths and
locations automatically, based on the sample size and the spread of the
data. This rule, which is the default, is suitable for many kinds of data.

• Scott rule — Algorithm intended for data that are approximately normal.
The algorithm chooses bin widths and locations automatically.

• Number of bins — Enter the number of bins. All bins have equal widths.

• Bins centered on integers — Specifies bins centered on integers.

• Bin width — Enter the width of each bin. If you select this option, you can
make the following choices:

- Automatic bin placement — Places the edges of the bins at integer
multiples of the Bin width.

- Bin boundary at — Enter a scalar to specify the boundaries of the
bins. The boundary of each bin is equal to this scalar plus an integer
multiple of the Bin width.

The Set Bin Width Rules dialog box also provides the following options:

• Apply to all existing data sets — When selected, the rule is applied to
all data sets. Otherwise, the rule is only applied to the data set currently
selected in the Data window.

• Save as default — When selected, the current rule is applied to any
new data sets that you create. You can also set default bin width rules
by selecting Set Default Bin Rules from the Tools menu in the main
window.

Creating a New Fit
This section describes how to create a new fit. To begin, click the New Fit
button at the top of the main window to open a New Fit window. If you created
the data set My data, as described in “Example: Fitting a Distribution” on
page 5-125, My data appears in the Data field, as shown in the following
figure.
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Fit Name. Enter a name for the fit in the Fit Name field.

Data. The Data field contains a drop-down list of the data sets you have
created. Select the data set to which you want to fit a distribution.

Distribution. Select the type of distribution you want to fit from the
Distribution drop-down list. See “Available Distributions” on page 5-137 for
a list of distributions supported by the Distribution Fitting Tool.

Note Only the distributions that apply to the values of the selected data set
are displayed in the Distribution field. For example, positive distributions
are not displayed when the data include values that are zero or negative.
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You can specify either a parametric or a nonparametric distribution. When
you select a parametric distribution from the drop-down list, a description of
its parameters is displayed in the pane below the Exclusion rule field. The
Distribution Fitting Tool estimates these parameters to fit the distribution to
the data set. When you select Nonparametric fit, options for the fit appear
in the pane, as described in “Options for Nonparametric Fits” on page 5-139.

Exclusion Rule. You can specify a rule to exclude some the data in the
Exclusion rule field. You can create an exclusion rule by clicking Exclude
in the main window of the Distribution Fitting Tool. For more information,
see “Excluding Data” on page 5-146.

Apply the New Fit. Click Apply to fit the distribution. For a parametric
fit, the Results pane displays the values of the estimated parameters. For a
nonparametric fit, the Results pane displays information about the fit.

When you click Apply, the main window of Distribution Fitting Tool displays
a plot of the distribution, along with the corresponding data.

Note When you click Apply, the title of the window changes to Edit Fit. You
can now make changes to the fit you just created and click Apply again to
save them. After closing the Edit Fit window, you can reopen it from the Fit
Manager window at any time to edit the fit.

Available Distributions. This section lists the distributions available in
the Distribution Fitting Tool.

Most, but not all, of the distributions available in the Distribution Fitting Tool
are supported elsewhere in Statistics Toolbox (see “Supported Distributions”
on page 5-3), and have dedicated distribution fitting functions. These
functions are used to compute the majority of the fits in the Distribution
Fitting Tool, and are referenced in the list below.

Other fits are computed using functions internal to the Distribution Fitting
Tool. Distributions that do not have corresponding fitting functions in
Statistics Toolbox are described in “Additional Distributions Available in the
Distribution Fitting Tool” on page 5-155.
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Not all of the distributions listed below are available for all data sets. The
Distribution Fitting Tool determines the extent of the data (nonnegative, unit
interval, etc.) and displays appropriate distributions in the Distribution
drop-down list. Distribution data ranges are given parenthetically in the
list below.

• Beta (unit interval values) distribution, fit using the function betafit.

• Binomial (nonnegative values) distribution, fit using the function binopdf.

• Birnbaum-Saunders (positive values) distribution.

• Exponential (nonnegative values) distribution, fit using the function
expfit.

• Extreme value (all values) distribution, fit using the function evfit.

• Gamma (positive values) distribution, fit using the function gamfit.

• Generalized extreme value (all values) distribution, fit using the function
gevfit.

• Generalized Pareto (all values) distribution, fit using the function gpfit.

• Inverse Gaussian (positive values) distribution.

• Logistic (all values) distribution.

• Loglogistic (positive values) distribution.

• Lognormal (positive values) distribution, fit using the function lognfit.

• Nakagami (positive values) distribution.

• Negative binomial (nonnegative values) distribution, fit using the function
nbinpdf.

• Nonparametric (all values) distribution, fit using the function ksdensity.
See “Options for Nonparametric Fits” on page 5-139 for a description of
available options.

• Normal (all values) distribution, fit using the function normfit.

• Poisson (nonnegative integer values) distribution, fit using the function
poisspdf.

• Rayleigh (positive values) distribution using the function raylfit.

• Rician (positive values) distribution.
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• t location-scale (all values) distribution.

• Weibull (positive values) distribution using the function wblfit.

Options for Nonparametric Fits. When you select Non-parametric in the
Distribution field, a set of options appears in the pane below Exclusion
rule, as shown in the following figure.

The options for nonparametric distributions are

• Kernel — Type of kernel function to use. The options are

- Normal

- Box

- Triangle

- Epanechnikov

• Bandwidth — The bandwidth of the kernel smoothing window. Select
auto for a default value that is optimal for estimating normal densities.
This value is displayed in the Fit results pane after you click Apply.
Select specify and enter a smaller value to reveal features such as multiple
modes or a larger value to make the fit smoother.

• Domain — The allowed x-values for the density. The options are

- unbounded — The density extends over the whole real line.

- positive — The density is restricted to positive values.

- specify — Enter lower and upper bounds for the domain of the density.
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When you select positive or specify, the nonparametric fit has zero
probability outside the specified domain.

Displaying Results
This section explains the different ways to display results in the main window
of the Distribution Fitting Tool. The main window displays plots of

• The data sets for which you select Plot in the Data window.

• The fits for which you select Plot in the Fit Manager window.

• Confidence bounds for

- Data sets for which you select Bounds in the Data window.

- Fits for which you select Bounds in the Fit Manager.

Display Type. The Display Type field in the main window specifies the type
of plot displayed. Each type corresponds to a probability function, for example,
a probability density function. The following display types are available:

• Density (PDF) — Displays a probability density function (PDF) plot
for the fitted distribution. The main window displays data sets using a
probability histogram, in which the height of each rectangle is the fraction
of data points that lie in the bin divided by the width of the bin. This makes
the sum of the areas of the rectangles equal to 1.

• Cumulative probability (CDF) — Displays a cumulative probability
plot of the data. The main window displays data sets using a cumulative
probability step function. The height of each step is the cumulative sum of
the heights of the rectangles in the probability histogram.

• Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

• Probability plot — Displays a probability plot of the data. You can
specify the type of distribution used to construct the probability plot in the
Distribution field, which is only available when you select Probability
plot. The choices for the distribution are

- Exponential

- Extreme value

- Logistic
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- Log-Logistic

- Lognormal

- Normal

- Rayleigh

- Weibull

In addition to these choices, you can create a probability plot against a
parametric fit that you create in the New Fit panel. These fits are added
at the bottom of the Distribution drop-down list when you create them.

• Survivor function — Displays a survivor function plot of the data.

• Cumulative hazard — Displays a cumulative hazard plot of the data.

Note Some of these distributions are not available if the plotted data
includes 0 or negative values.

Confidence Bounds. You can display confidence bounds for data sets and
fits, provided that you set Display Type to Cumulative probability (CDF),
Survivor function, Cumulative hazard, or Quantile for fits only.

• To display bounds for a data set, select Bounds next to the data set in the
Data sets pane of the Data window.

• To display bounds for a fit, select Bounds next to the fit in the Fit
Manager window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the
View menu in the main window and choose from the options.

Managing Fits
This section describes how to manage fits that you have created. To begin,
click the Manage Fits button in the main window of the Distribution Fitting
Tool. This opens the Fit Manager window as shown in the following figure.
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The Table of fits displays a list of the fits you create.

Plot. Select Plot to display a plot of the fit in the main window of the
Distribution Fitting Tool. When you create a new fit, Plot is selected by
default. Clearing the Plot check box removes the fit from the plot in the
main window.

Bounds. If Plot is selected, you can also select Bounds to display confidence
bounds in the plot. The bounds are displayed when you set Display Type in
the main window to one of the following:

• Cumulative probability (CDF)

• Quantile (inverse CDF)

• Survivor function

• Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density
(PDF) or probability plots. In addition, bounds are not supported for
nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the
plot in the main window.
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When you select a fit in the Table of fits, the following buttons are enabled
below the table:

• New Fit — Opens a New Fit window.

• Copy — Creates a copy of the selected fit.

• Edit — Opens an Edit Fit window, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit window.
To edit a different fit, select it in the Table of fits and click Edit to open
another Edit Fit window.

• Delete — Deletes the selected fit.

Evaluating Fits
The Evaluate window enables you to evaluate any fit at whatever points you
choose. To open the window, click the Evaluate button in the main window of
the Distribution Fitting Tool. The following figure shows the Evaluate window.
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The Evaluate window contains the following items:

• Fit pane — Displays the names of existing fits. Select one or more fits
that you want to evaluate. Using your platform specific functionality, you
can select multiple fits.

• Function — Select the type of probability function you want to evaluate
for the fit. The available functions are

- Density (PDF) — Computes a probability density function.

- Cumulative probability (CDF) — Computes a cumulative probability
function.

- Quantile (inverse CDF) — Computes a quantile (inverse CDF)
function.

- Survivor function — Computes a survivor function.

- Cumulative hazard — Computes a cumulative hazard function.

- Hazard rate — Computes the hazard rate.
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• At x = — Enter a vector of points at which you want to evaluate the
distribution function. If you change Function to Quantile (inverse
CDF), the field name changes to At p = and you enter a vector of probability
values.

• Compute confidence bounds — Select this box to compute confidence
bounds for the selected fits. The check box is only enabled if you set
Function to one of the following:

- Cumulative probability (CDF)

- Quantile (inverse CDF)

- Survivor function

- Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for
nonparametric fits and for some parametric fits. In these cases, the tool
returns NaN for the bounds.

• Level — Set the level for the confidence bounds.

• Plot function — Select this box to display a plot of the distribution
function, evaluated at the points you enter in the At x = field, in a new
window.

Note The settings for Compute confidence bounds, Level, and Plot
function do not affect the plots that are displayed in the main window of
the Distribution Fitting Tool. The settings only apply to plots you create by
clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure
shows the results of evaluating the cumulative density function for the fit
My fit, created in “Example: Fitting a Distribution” on page 5-125, at the
points in the vector -3:0.5:3.
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The window displays the following values in the columns of the table to the
right of the Fit pane:

• X — The entries of the vector you enter in At x = field

• Y — The corresponding values of the CDF at the entries of X

• LB — The lower bounds for the confidence interval, if you select Compute
confidence bounds

• UB — The upper bounds for the confidence interval, if you select Compute
confidence bounds

To save the data displayed in the Evaluate window, click Export to
Workspace. This saves the values in the table to a matrix in the MATLAB
workspace.

Excluding Data
To exclude values from fit, click the Exclude button in the main window of
the Distribution Fitting Tool. This opens the Exclude window, in which you
can create rules for excluding specified values. You can use these rules to
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exclude data when you create a new fit in the New Fit window. The following
figure shows the Exclude window.

The following sections describe how to create an exclusion rule.

Exclusion Rule Name. Enter a name for the exclusion rule in the
Exclusion rule name field.

Exclude Sections. In the Exclude sections pane, you can specify bounds
for the excluded data:

• In the Lower limit: exclude Y drop-down list, select <= or < from the
drop-down list and enter a scalar in the field to the right. This excludes
values that are either less than or equal to or less than that scalar,
respectively.

• In the Upper limit: exclude Y drop-down list, select >= or > from the
drop-down list and enter a scalar in the field to the right to exclude
values that are either greater than or equal to or greater than the scalar,
respectively.
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Exclude Graphically. The Exclude Graphically button enables you to
define the exclusion rule by displaying a plot of the values in a data set and
selecting the bounds for the excluded data with the mouse. For example,
if you created the data set My data, described in “Creating and Managing
Data Sets” on page 5-131, select it from the drop-down list next to Exclude
graphically and then click the Exclude graphically button. This displays
the values in My data in a new window as shown in the following figure.

To set a lower limit for the boundary of the excluded region, click Add Lower
Limit. This displays a vertical line on the left side of the plot window. Move
the line with the mouse to the point you where you want the lower limit, as
shown in the following figure.

5-148



Distribution GUIs

Moving the vertical line changes the value displayed in the Lower limit:
exclude data field in the Exclude window, as shown in the following figure.

The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded region
by clicking Add Upper Limit and moving the vertical line that appears at
the right side of the plot window. After setting the lower and upper limits,
click Close and return to the Exclude window.
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Create Exclusion Rule. Once you have set the lower and upper limits for the
boundary of the excluded data, click Create Exclusion Rule to create the
new rule. The name of the new rule now appears in the Existing exclusion
rules pane.

When you select an exclusion rule in the Existing exclusion rules pane,
the following buttons are enabled:

• Copy — Creates a copy of the rule, which you can then modify. To save the
modified rule under a different name, click Create Exclusion Rule.

• View — Opens a new window in which you can see which data points are
excluded by the rule. The following figure shows a typical example.

The shaded areas in the plot graphically display which data points are
excluded. The table to the right lists all data points. The shaded rows
indicate excluded points:

• Rename — Renames the rule

• Delete — Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to
your data. The rule does not exclude points from the display of the data set.
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Saving and Loading Sessions
This section explains how to save your work in the current Distribution
Fitting Tool session and then load it in a subsequent session, so that you can
continue working where you left off.

Saving a Session. To save the current session, select Save Session from
the File menu in the main window. This opens a dialog box that prompts you
to enter a filename, such as my_session.dfit, for the session. Clicking Save
saves the following items created in the current session:

• Data sets

• Fits

• Exclusion rules

• Plot settings

• Bin width rules

Loading a Session. To load a previously saved session, select Load Session
from the File menu in the main window and enter the name of a previously
saved session. Clicking Open restores the information from the saved session
to the current session of the Distribution Fitting Tool.
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Generating an M-File to Fit and Plot Distributions
The Generate M-file option in the File menu enables you to create an M-file
that

• Fits the distributions used in the current session to any data vector in the
MATLAB workspace.

• Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a
standard MATLAB figure window, without having to reopen the Distribution
Fitting Tool.

As an example, assuming you created the fit described in “Creating a New
Fit” on page 5-135, do the following steps:

1 Select Generate M-file from the File menu.

2 Save the M-file as normal_fit.m in a directory on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the
MATLAB workspace. For example, the following commands

new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')

fit a normal distribution to a data set and generate a plot of the data and
the fit.
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Note By default, the M-file labels the data in the legend using the same name
as the data set in the Distribution Fitting Tool. You can change the label
using the legend command, as illustrated by the preceding example.

Using Custom Distributions
This section explains how to use custom distributions with the Distribution
Fitting Tool.

Defining Custom Distributions. To define a custom distribution, select
Define Custom Distribution from the File menu. This opens an M-file
template in the MATLAB editor. You then edit this M-file so that it computes
the distribution you want.

The template includes example code that computes the Laplace distribution,
beginning at the lines
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% -
% Remove the following return statement to define the
% Laplace distributon
% -
return

To use this example, simply delete the command return and save the M-file.
If you save the template in a directory on the MATLAB path, under its
default name dfittooldists.m, the Distribution Fitting Tool reads it in
automatically when you start the tool. You can also save the template under a
different name, such as laplace.m, and then import the custom distribution
as described in the following section.

Importing Custom Distributions. To import a custom distribution, select
Import Custom Distributions from the File menu. This opens a dialog box
in which you can select the M-file that defines the distribution. For example,
if you created the file laplace.m, as described in the preceding section, you
can enter laplace.m and select Open in the dialog box. The Distribution
field of the New Fit window now contains the option Laplace.

5-154



Distribution GUIs

Additional Distributions Available in the Distribution Fitting Tool
The following distributions are available in the Distribution Fitting Tool, but
do not have dedicated distribution functions as described in “Distribution
Functions” on page 5-94. The distributions can be used with the functions
pdf, cdf, icdf, and mle in a limited capacity. See the reference pages for these
functions for details on the limitations.

• “Birnbaum-Saunders Distribution” on page 5-18

• “Inverse Gaussian Distribution” on page 5-47

• “Loglogistic Distribution” on page 5-51

• “Logistic Distribution” on page 5-50

• “Nakagami Distribution” on page 5-64

• “Rician Distribution” on page 5-84

• “t Location-Scale Distribution” on page 5-87

For a complete list of the distributions available for use with the Distribution
Fitting Tool, see “Supported Distributions” on page 5-3. Distributions listing
dfittool in the fit column of the tables in that section can be used with
the Distribution Fitting Tool.

Random Number Generation Tool
The Random Number Generation Tool is a graphical user interface that
generates random samples from specified probability distributions and
displays the samples as histograms. Use the tool to explore the effects of
changing parameters and sample size on the distributions.

Run the tool by typing randtool at the command line. You can also run it
from the Demos tab in the Help browser.
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Start by selecting a distribution, then enter the desired sample size.
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You can also

• Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same size and
parameters.

• Export the current sample to your workspace. A dialog box enables you
to provide a name for the sample.
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Random Number Generation
Random number generators for supported distributions are discussed in
“Random Number Generators” on page 5-116.

A GUI for generating random numbers from supported distributions is
discussed in “Random Number Generation Tool” on page 5-155.

This section discusses additional topics in random number generation.

Methods of Random Number
Generation (p. 5-158)

Programming methods for random
number generators

Additional Random Number
Generators (p. 5-167)

Additional random number
generators available in Statistics
Toolbox

Copulas (p. 5-174) Simulating dependent random
variables using copulas

Methods of Random Number Generation
A working definition of randomness was given in 1951 by Berkeley Professor
D. H. Lehmer, an early pioneer in computing:

A random sequence is a vague notion... in which each term is unpredictable
to the uninitiated and whose digits pass a certain number of tests traditional
with statisticians...

Mathematical definitions of randomness use notions of information content,
noncomputability, and stochasticity, among other things. The various
definitions, however, do not always agree on which sequences are random
and which are not.

Practical methods for generating random numbers from specific distributions
usually start with uniform random numbers. Once you have a uniform
random number generator, like the MATLAB rand function, you can produce
random numbers from other distributions using the methods described below.
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Direct Methods
Direct methods make direct use of the definition of the distribution.

For example, consider binomial random numbers. You can think of a binomial
random number as the number of heads in N tosses of a coin with probability
p of a heads on any toss. If you generate N uniform random numbers on the
interval (0,1) and count the number less than p, then the count is a binomial
random number with parameters N and p.

The following function is a simple implementation of a binomial RNG using
this approach:

function X = directbinornd(N,p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u = rand(N,1);
X(i) = sum(u < p);

end

For example,

X = directbinornd(100,0.3,1e4,1);
hist(X,101)
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The Statistics Toolbox function binornd uses a modified direct method, based
on the definition of a binomial random variable as the sum of Bernoulli
random variables.

The method above is easily converted to a random number generator for the
Poisson distribution with parameter λ. Recall that the Poisson distribution
is the limiting case of the binomial distribution as N approaches infinity,
p approaches zero, and Np is held fixed at λ. To generate Poisson random
numbers, you could create a version of the above generator that inputs λ
rather than N and p, and then internally sets N to some large number and
p to λ/N.

The Statistics Toolbox function poissrnd actually uses two direct methods: a
waiting time method for small values of λ, and a method due to Ahrens and
Dieter for larger values of λ.
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Inversion Methods
Inversion methods are based on the observation that continuous cumulative
distribution functions (cdfs) range uniformly over the interval (0,1). If u is a
uniform random number on (0,1), then a random number X from a continuous
distribution with specified cdf F can be obtained using X = F-1(U).

For example, the following code generates random numbers from a specific
exponential distribution using the inverse cdf and the MATLAB uniform
random number generator rand:

mu = 1;
X = expinv(rand(1e4,1),mu);

The distribution of the generated random numbers can be compared to the
pdf of the specified exponential distribution. The pdf, with area = 1, must be
scaled to the area of the histogram used to display the distribution:

numbins = 50;
hist(X,numbins)
hold on
[bincounts,binpositions] = hist(X,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);
x = binpositions(1):0.001:binpositions(end);
y = exppdf(x,mu);
plot(x,histarea*y,'r','LineWidth',2)
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Inversion methods can be adapted to discrete distributions. Suppose you want
a random number X from a discrete distribution with a probability mass
vector P(X =xi) = pi, where x0 <x1 <x2 < ... . You could generate a uniform
random number u on (0,1) and then set X = xi if F(xi–1) <u <F(xi).

For example, the following function implements an inversion method for a
discrete distribution with probability mass vector p:

function X = discreteinvrnd(p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u = rand;
I = find(u < cumsum(p));
X(i) = min(I);

end

The function can be used to generate random numbers from any discrete
distribution:
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p = [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
X = discreteinvrnd(p,1e4,1);
[n,x] = hist(X,length(p));
bar(1:length(p),n)

Acceptance-Rejection Methods
The functional form of some distributions makes it difficult or time-consuming
to generate random numbers using direct or inversion methods.
Acceptance-rejection methods can provide a good solution in these cases.

Acceptance-rejection methods also begin with uniform random numbers, but
they require the availability of an additional random number generator. If
the goal is to generate a random number from a continuous distribution with
pdf f, acceptance-rejection methods first generate a random number from a
continuous distribution with pdf g satisfying f (x) ≤ cg (x) for some c and all x.
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A continuous acceptance-rejection RNG proceeds as follows:

1 Choose a density g.

2 Find a constant c such that f (x) / g (x) ≤ c for all x.

3 Generate a uniform random number u.

4 Generate a random number v from g.

5 If c*u ≤ f (v) / g (v) , accept and return v.

6 Otherwise, reject v and go to 3.

For efficiency, you need a cheap method for generating random numbers from
g, and the scalar c should be small. The expected number of iterations to
produce a random number is c.

The following function implements an acceptance-rejection method for
generating random numbers from pdf f, given f, g, the RNG grnd for g, and
the constant c:
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function X = accrejrnd(f,g,grnd,c,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

accept = false;
while accept == false

u = rand();
v = grnd();
if c*u <= f(v)/g(v)

X(i) = v;
accept = true;

end
end

end

For example, the function f (x) = xe–x2/2 satisfies the conditions for a pdf on
[0,∞) (nonnegative and integrates to 1). The exponential pdf with mean 1, f (x)
= e–x, dominates g for c greater than about 2.2. Thus, you can use rand and
exprnd to generate random numbers from f :

f = @(x)x.*exp(-(x.^2)/2);
g = @(x)exp(-x);
grnd = @()exprnd(1);
X = accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf f is actually a Rayleigh distribution with shape parameter 1. The
distribution of random numbers generated by the acceptance-rejection method
can be compared to those generated by raylrnd:

Y = raylrnd(1,1e4,1);
hist([X Y])
legend('A-R RNG','Rayleigh RNG')
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The Statistics Toolbox function raylrnd uses a transformation method,
expressing a Rayleigh random variable in terms of a chi-square random
variable, which can be computed using randn.

Acceptance-rejection methods can be adapted to discrete distributions. In
this case, the goal is to generate random numbers from a distribution with
probability mass Pp(X =i) = pi, assuming you have a method for generating
random numbers from a distribution with probability mass Pq(X =i) = qi.
The RNG proceeds as follows:

1 Choose a density Pq.

2 Find a constant c such that pi / qi ≤ c for all i .

3 Generate a uniform random number u.

4 Generate a random number v from Pq.

5 If c*u ≤ pv / qv , accept and return v.

6 Otherwise, reject v and go to 3.
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Additional Random Number Generators
In addition to the direct, inverse, and acceptance-rejection methods described
in “Methods of Random Number Generation” on page 5-158, Statistics
Toolbox offers Markov chain Monte-Carlo methods and the Pearson and
Johnson systems of distributions for generating random numbers from any
distribution.

Markov Chain Samplers
In Bayesian data analysis, it is difficult to sample from the posterior
distribution if it is in a nonstandard form. To generate random numbers
for a nonstandard form, Markov chain algorithms draw dependent samples
whose stationary distribution is the posterior distribution. Two algorithms
are provided here—Metropolis-Hastings and slice sampling.

Metropolis-Hastings Algorithm. The Metropolis-Hastings algorithm
draws samples from a distribution that is only known up to a constant.
Random numbers are generated from a distribution with a probability density
function that is equal to or proportional to a proposal function.

The following steps are used to generate random numbers:

1 Assume a initial value x(t).

2 Draw a sample, y(t), from a proposal distribution q(y | x(t)).

3 Accept y(t) as the next sample x(t+1) with probability r(x(t),y(t)), and keep
x(t) as the next sample x(t+1) with probability 1–r(x(t),y(t)), where

r x y min
f y
f x

q x y
q y x

( , )
( )
( )

( | )
( | )

,= 1
⎧
⎨
⎩

⎫
⎬
⎭

4 Increment t → t+1, and repeat steps 2 and 3 until the desired number of
samples are obtained.

You can generate random numbers using the Metropolis-Hastings method
with the mhsample function. To produce quality samples efficiently with
Metropolis-Hastings algorithm, it is crucial to select a good proposal
distribution. If it is difficult to find an efficient proposal distribution, you
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can use the slice sampling algorithm without explicitly specifying a proposal
distribution.

Slice Sampling Algorithm. In instances where it is difficult to find
an efficient Metropolis-Hastings proposal distribution, there are a few
algorithms, such as the slice sampling algorithm, that do not require an
explicit specification for the proposal distribution. The slice sampling
algorithm draws samples from the region under the density function using a
sequence of vertical and horizontal steps. First, it selects a height at random
between 0 and the density function f (x). Then, it selects a new x value at
random by sampling from the horizontal “slice” of the density above the
selected height. A similar slice sampling algorithm is used for a multivariate
distribution.

If a function f (x) proportional to the density function is given, the following
steps are used to generate random numbers:

1 Assume a initial value x(t) within the domain of f (x).

2 Draw a real value y uniformly from (0,f (x(t))), thereby defining a horizontal
“slice” as S = {x: y < f (x)}.

3 Find an interval I = (L,R) around x(t) that contains all, or much of the
“slice” S.

4 Draw the new point x(t+1) within this interval.

5 Increment t → t+1 and repeat steps 2 through 4 until the desired number of
samples are obtained.

Slice sampling can generate random numbers from a distribution with an
arbitrary form of the density function, provided that an efficient numerical
procedure is available to find the interval I = (L,R), which is the “slice” of
the density.

You can generate random numbers using the slice sampling method with
the slicesample function.
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Pearson and Johnson Systems of Distributions
In many simulation applications, you need to generate random inputs that are
similar to existing data. One simple way to do that is to resample from the
original data, using the randsample function. You might also fit a parametric
distribution from one of the families described in the “Distribution Reference”
on page 5-9, and then generate random values from that distribution.
However, choosing a suitable family can sometimes be difficult. The Pearson
and Johnson systems can help by making such a choice unnecessary. Each
is a flexible parametric family of distributions that includes a wide range of
distribution shapes, and it is often possible to find a distribution within one of
these two systems that provides a good match to your data.

As an example, load the carbig dataset, which includes a variable MPG
containing measurements of the gas mileage for each car.

load carbig
MPG = MPG(~isnan(MPG));
hist(MPG,15);
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The Pearson System of Distributions. The statistician Karl Pearson
devised a system, or family, of distributions that includes a unique distribution
corresponding to every valid combination of mean, standard deviation,
skewness, and kurtosis. If you compute sample values for each of these
moments from data, it is easy to find the distribution in the Pearson system
that matches these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in
a single parametric framework. It includes common distributions such
as the normal and t distributions, simple transformations of standard
distributions such as a shifted and scaled beta distribution and the inverse
gamma distribution, and one distribution—the Type IV—that is not a simple
transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system
that also have those same first four moments, and the distribution in the
Pearson system may not be a good match to your data, particularly if the
data are multimodal. But the system does cover a wide range of distribution
shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches
the MPG data, simply compute the four sample moments and treat those as
distribution parameters.

moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution
within the Pearson system matches the combination of moments.

type

type =

1

In this case, pearsrnd has determined that the data are best described with a
Type I Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.
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ecdf(MPG);
[Fi,xi] = ecdf(r);
hold on, stairs(xi,Fi,'r'); hold off

The Johnson System of Distributions. Statistician Norman Johnson
devised a different system of distributions that also includes a unique
distribution for every valid combination of mean, standard deviation,
skewness, and kurtosis. However, since it is more natural to describe
distributions in the Johnson system using quantiles, working with this system
is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal
random variable, plus the identity transformation. The three nontrivial cases
are known as SL, SU, and SB, corresponding to exponential, logistic, and
hyperbolic sine transformations. All three can be written as

Χ Γ
Ζ

 =  + (
( - )

)γ δ
ξ

λ
⋅
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where Z is a standard normal random variable, is the transformation, and
γ, δ, ξ, and λ are scale and location parameters. The fourth case, SN, is the
identity transformation.

To generate a sample from the Johnson distribution that matches the MPG
data, first define the four quantiles to which the four evenly spaced standard
normal quantiles of -1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you
compute the sample quantiles of the data for the cumulative probabilities of
0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])

probs =
0.066807 0.30854 0.69146 0.93319

quantiles = quantile(MPG,probs)

quantiles =

13.0000 18.0000 27.2000 36.0000

Then treat those quantiles as distribution parameters.

[r1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution
within the Johnson system matches the quantiles.

type

type =

SB

You can verify that the sample resembles the original data by overlaying the
empirical cumulative distribution functions.

ecdf(MPG);
[Fi,xi] = ecdf(r1);
hold on, stairs(xi,Fi,'r'); hold off
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In some applications, it may be important to match the quantiles better in
some regions of the data than in others. To do that, specify four evenly spaced
standard normal quantiles at which you want to match the data, instead of
the default -1.5, -0.5, 0.5, and 1.5. For example, you might care more about
matching the data in the right tail than in the left, and so you would specify
standard normal quantiles that emphasizes the right tail.

qnorm = [-.5 .25 1 1.75]
probs = normcdf(qnorm);
qemp = quantile(MPG,probs);
r2 = johnsrnd([qnorm; qemp],10000,1);

qnorm =
-0.5 0.25 1 1.75

However, while the new sample matches the original data better in the right
tail, it matches much worse in the left tail.

[Fj,xj] = ecdf(r2);
hold on, stairs(xj,Fj,'g'); hold off
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Copulas
Statistics Toolbox provides functions to create sequences of random data
according to many common univariate distributions. The toolbox also includes
functions to generate random data from several multivariate distributions,
such as mvnrnd for the multivariate normal and mvtrnd for the multivariate
t. However, these standard multivariate distributions do not allow for cases
with complicated relationships among the variables or where the individual
variables are from different distributions.

Copulas are functions that describe dependencies among variables, and
provide a way to create distributions to model correlated multivariate data.
Using a copula, a data analyst can construct a multivariate distribution by
specifying marginal univariate distributions, and then choose a particular
copula to provide a correlation structure between variables. Bivariate
distributions, as well as distributions in higher dimensions, are possible.
This section discusses how to use copulas to generate dependent multivariate
random data in MATLAB, using Statistics Toolbox.
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Dependence Between Simulation Inputs
One of the design decisions for a Monte-Carlo simulation is a choice of
probability distributions for the random inputs. Selecting a distribution
for each individual variable is often straightforward, but deciding what
dependencies should exist between the inputs may not be. Ideally, input data
to a simulation should reflect what is known about dependence among the
real quantities being modeled. However, there may be little or no information
on which to base any dependence in the simulation. In such cases, it is useful
to experiment with different possibilities in order to determine the model’s
sensitivity.

It can be difficult to actually generate random inputs with dependence
when they have distributions that are not from a standard multivariate
distribution. Further, some of the standard multivariate distributions can
model only very limited types of dependence. It is always possible to make the
inputs independent, and while that is a simple choice, it is not always sensible
and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk might have two
random inputs that represent different sources of insurance losses. These
inputs might be modeled as lognormal random variables. A reasonable
question to ask is how dependence between these two inputs affects the
results of the simulation. Indeed, it might be known from real data that
the same random conditions affect both sources and ignoring that in the
simulation could lead to the wrong conclusions.

The lognrnd function is used to simulate independent lognormal random
variables. In the example below, the mvnrnd function is used to generate n
pairs of independent normal random variables, and then exponentiate them.
Notice that the covariance matrix used here is diagonal, i.e., independence
between the columns of Z.

n = 1000;
sigma = .5;
SigmaInd = sigma.^2 .* [1 0; 0 1]

SigmaInd =
0.25 0

0 0.25
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ZInd = mvnrnd([0 0], SigmaInd, n);
XInd = exp(ZInd);
plot(XInd(:,1),XInd(:,2),'.'); axis equal; axis([0 5 0 5]);
xlabel('X1'); ylabel('X2');

Dependent bivariate lognormal random variables are also easy to generate,
using a covariance matrix with nonzero off-diagonal terms.

rho = .7;
SigmaDep = sigma.^2 .* [1 rho; rho 1]

SigmaDep =
0.25 0.175

0.175 0.25

ZDep = mvnrnd([0 0], SigmaDep, n);
XDep = exp(ZDep);

A second scatter plot demonstrates the difference between these two bivariate
distributions.
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plot(XDep(:,1),XDep(:,2),'.');
axis equal; axis([0 5 0 5]);
xlabel('X1'); ylabel('X2');

It is clear that there is a tendency in the second data set for large values of X1
to be associated with large values of X2, and similarly for small values. This
dependence is determined by the correlation parameter, ρ, of the underlying
bivariate normal. The conclusions drawn from the simulation could well
depend on whether or not X1 and X2 were generated with dependence. The
bivariate lognormal distribution is a simple solution in this case, and of
course easily generalizes to higher dimensions in cases where the marginal
distributions are different lognormals. Other multivariate distributions also
exist. For example, the multivariate t and the Dirichlet distributions are used
to simulate dependent t and beta random variables, respectively. But the
list of simple multivariate distributions is not long, and they only apply in
cases where the marginals are all in the same family (or even the exact same
distributions). This can be a serious limitation in many situations.
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A More General Method for Constructing Dependent Bivariate
Distributions
Although the construction discussed in the previous section creates a bivariate
lognormal that is simple, it serves to illustrate a method which is more
generally applicable. First, generate pairs of values from a bivariate normal
distribution. There is statistical dependence between these two variables, and
each has a normal marginal distribution. Next, apply a transformation (the
exponential function) separately to each variable, changing the marginal
distributions into lognormals. The transformed variables still have a
statistical dependence.

If a suitable transformation could be found, this method could be generalized
to create dependent bivariate random vectors with other marginal
distributions. In fact, a general method of constructing such a transformation
does exist, although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf),
denoted here by , to a standard normal random variable results in
a random variable that is uniform on the interval [0, 1]. To see this,
if Z has a standard normal distribution, then the cdf of U = (Z) is
Pr{U ≤ u} = Pr{ (Z) ≤ u} = Pr{Z ≤ -1(u)} = u,
and that is the cdf of a Unif(0,1) random variable. Histograms of some
simulated normal and transformed values demonstrate that fact.

n = 1000;
z = normrnd(0,1,n,1);
hist(z,-3.75:.5:3.75); xlim([-4 4]);
title('1000 Simulated N(0,1) Random Values');
xlabel('Z'); ylabel('Frequency');
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u = normcdf(z);
hist(u,.05:.1:.95);
title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)');
xlabel('U'); ylabel('Frequency');
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Borrowing from the theory of univariate random number generation, applying
the inverse cdf of any distribution, F, to a Unif(0,1) random variable results
in a random variable whose distribution is exactly F. This is known as the
Inversion Method. The proof is essentially the opposite of the above proof
for the forward case. Another histogram illustrates the transformation to a
gamma distribution.

x = gaminv(u,2,1);
hist(x,.25:.5:9.75);
title('1000 Simulated N(0,1) Values Transformed to Gamma(2,1)');
xlabel('X'); ylabel('Frequency');
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This two-step transformation can be applied to each variable of a standard
bivariate normal, creating dependent random variables with arbitrary
marginal distributions. Because the transformation works on each component
separately, the two resulting random variables need not even have the same
marginal distributions. The transformation is defined as

Z = [Z1 Z2] ~ N([0 0], ) 

U = [ (Z1) (Z2)] 
X = [G

1
1
ρ

ρ
⎡

⎣
⎢

⎤

⎦
⎥

Φ Φ
11(U1) G2(U2)]

where G1 and G2 are inverse cdfs of two possibly different distributions. For
example, you can generate random vectors from a bivariate distribution with
t5 and Gamma(2,1) marginals.

n = 1000; rho = .7; Z = mvnrnd([0 0],
[1 rho; rho 1], n); U = normcdf(Z);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
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This plot has histograms alongside a scatter plot to show both the marginal
distributions, and the dependence.

Rank Correlation Coefficients
Dependence between X1 and X2 in this construction is determined by the
correlation parameter, ρ, of the underlying bivariate normal. However, it is
not true that the linear correlation of X1 and X2 is ρ. For example, in the
original lognormal case, there is a closed form for that correlation:

cor(X1,X2) = 
(e  - 1)

(e  - 1)
 

2

2

ρσ

σ

which is strictly less than ρ, unless ρ is exactly one. In more general cases
such as the Gamma/t construction above, the linear correlation between X1
and X2 is difficult or impossible to express in terms of ρ, but simulations can
be used to show that the same effect happens.

That is because the linear correlation coefficient expresses the linear
dependence between random variables, and when nonlinear transformations
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are applied to those random variables, linear correlation is not preserved.
Instead, a rank correlation coefficient, such as Kendall’s τ or Spearman’s ρ,
is more appropriate.

Roughly speaking, these rank correlations measure the degree to which
large or small values of one random variable associate with large or small
values of another. However, unlike the linear correlation coefficient, they
measure the association only in terms of ranks. As a consequence, the rank
correlation is preserved under any monotonic transformation. In particular,
the transformation method just described preserves the rank correlation.
Therefore, knowing the rank correlation of the bivariate normal Z exactly
determines the rank correlation of the final transformed random variables,
X. While the linear correlation coefficient, ρ, is still needed to parameterize
the underlying bivariate normal, Kendall’s τ or Spearman’s ρ are more useful
in describing the dependence between random variables, because they are
invariant to the choice of marginal distribution.

It turns out that for the bivariate normal, there is a simple one-to-one mapping
between Kendall’s τ or Spearman’s ρ, and the linear correlation coefficient ρ:

τ
π

ρ ρ τ
π

ρ
π

ρ

  = 
2

    or    = sin( )   

 = 
6

) s

arcsin( )

arcsin(

2

2
  or    = 2sin( )sρ ρ

π
6

rho = -1:.01:1;
tau = 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;
subplot(1,1,1);
plot(rho,tau,'-',rho,rho_s,'-',[-1 1],[-1 1],'k:');
axis([-1 1 -1 1]);
xlabel('rho');
ylabel('Rank correlation coefficient');
legend('Kendall''s \tau', ...

'Spearman''s \rho_s', ...
'location','northwest');

5-183



5 Probability Distributions

Thus, it is easy to create the desired rank correlation between X1 and X2,
regardless of their marginal distributions, by choosing the correct ρ parameter
value for the linear correlation between Z1 and Z2.

Notice that for the multivariate normal distribution, Spearman’s rank
correlation is almost identical to the linear correlation. However, this is not
true once you transform to the final random variables.

Copulas
The first step of the construction described in the previous section defines
what is known as a copula, specifically, a bivariate Gaussian copula. A copula
is a multivariate probability distribution, where each random variable has
a uniform marginal distribution on the unit interval [0,1]. These variables
may be completely independent, deterministically related (e.g., U2 = U1),
or anything in between. Because of the possibility for dependence among
variables, you can use a copula to construct a new multivariate distribution
for dependent variables. By transforming each of the variables in the copula
separately using the inversion method, possibly using different cdfs, the
resulting distribution can have arbitrary marginal distributions. Such
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multivariate distributions are often useful in simulations, when you know
that the different random inputs are not independent of each other.

Statistics Toolbox provides functions to compute the probability density
function (pdf) and the cumulative distribution function (cdf) for Gaussian
copulas, functions to compute rank correlations from linear correlations
and vice versa, and a function to generate random vectors. For example,
use the copularnd function to create scatter plots of random values from a
bivariate Gaussian copula for various levels of ρ, to illustrate the range of
different dependence structures. The family of bivariate Gaussian copulas
is parameterized by the linear correlation matrix:

Ρ =
⎛
⎝⎜

⎞
⎠⎟

1
1
ρ

ρ

U1 and U2 approach linear dependence as ρ approaches ±1, and approach
complete independence as ρ approaches zero.

n = 500;
U = copularnd('Gaussian',[1 .8; .8 1], n);
subplot(2,2,1); plot(U(:,1),U(:,2),'.');
title('\rho = 0.8'); xlabel('U1'); ylabel('U2');
U = copularnd('Gaussian', [1 .1; .1 1], n);
subplot(2,2,2); plot(U(:,1),U(:,2),'.');
title('\rho = 0.1'); xlabel('U1'); ylabel('U2');
U = copularnd('Gaussian', [1 -.1; -.1 1], n);
subplot(2,2,3); plot(U(:,1),U(:,2),'.');
title('\rho = -0.1'); xlabel('U1'); ylabel('U2');
U = copularnd('Gaussian', [1 -.8; -.8 1], n);
subplot(2,2,4); plot(U(:,1),U(:,2),'.');
title('\rho = -0.8'); xlabel('U1'); ylabel('U2');
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The dependence between U1 and U2 is completely separate from the marginal
distributions of X1=G(U1) and X2 = G(U2). X1 and X2 can be given any
marginal distributions, and still have the same rank correlation. This is one
of the main appeals of copulas—they allow this separate specification of
dependence and marginal distribution. You can also compute the pdf and the
cdf for a copula. For example, these plots show the pdf and cdf for ρ = .8.

u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
subplot(1,1,1);
[U1,U2] = meshgrid(u1,u2);
Rho = [1 .8; .8 1];
f = copulapdf('t',[U1(:) U2(:)],Rho,5);
f = reshape(f,size(U1));
surf(u1,u2,log(f),'FaceColor','interp','EdgeColor','none');
view([-15,20]);
xlabel('U1'); ylabel('U2'); zlabel('Probability Density');
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u1 = linspace(1e-3,1-1e-3,50);
u2 = linspace(1e-3,1-1e-3,50);
[U1,U2] = meshgrid(u1,u2);
F = copulacdf('t',[U1(:) U2(:)],Rho,5);
F = reshape(F,size(U1));
surf(u1,u2,F,'FaceColor','interp','EdgeColor','none');
view([-15,20]);
xlabel('U1'); ylabel('U2'); zlabel('Cumulative Probability');
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t Copulas
A different family of copulas can be constructed by starting from a bivariate t
distribution, and transforming using the corresponding t cdf. The bivariate t
distribution is parameterized with P, the linear correlation matrix, and ν, the
degrees of freedom. Thus, for example, you can speak of a t1 or a t5 copula,
based on the multivariate t with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics Toolbox provides functions for t
copulas to compute the pdf, cdf, and rank correlations; and to generate
random vectors. For example, use the copularnd function to create scatter
plots of random values from a bivariate t1 copula for various levels of ρ, to
illustrate the range of different dependence structures.

n = 500;
nu = 1;
U = copularnd('t', [1 .8; .8 1], nu, n);
subplot(2,2,1); plot(U(:,1),U(:,2),'.');
title('\rho = 0.8'); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 .1; .1 1], nu, n);

5-188



Random Number Generation

subplot(2,2,2); plot(U(:,1),U(:,2),'.');
title('\rho = 0.1'); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 -.1; -.1 1], nu, n);
subplot(2,2,3); plot(U(:,1),U(:,2),'.');
title('\rho = -0.1'); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 -.8; -.8 1], nu, n);
subplot(2,2,4); plot(U(:,1),U(:,2),'.');
title('\rho = -0.8'); xlabel('U1'); ylabel('U2');

A t copula has uniform marginal distributions for U1 and U2, just as a
Gaussian copula does. The rank correlation τ or ρs between components in a t
copula is also the same function of ρ as for a Gaussian. However, as these plots
demonstrate, a t1 copula differs quite a bit from a Gaussian copula, even when
their components have the same rank correlation. The difference is in their
dependence structure. Not surprisingly, as the degrees of freedom parameter
ν is made larger, a tν copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over
a t copula. For example, using a t copula with 1 degree of freedom, you can
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again generate random vectors from a bivariate distribution with Gamma(2,1)
and t5 marginals:

n = 1000;
rho = .7;
nu = 1;
U = copularnd('t', [1 rho; rho 1], nu, n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

Compared to the bivariate Gamma/t distribution constructed earlier, which
was based on a Gaussian copula, the distribution constructed here, based on a
t1 copula, has the same marginal distributions and the same rank correlation
between variables but a very different dependence structure. This illustrates
the fact that multivariate distributions are not uniquely defined by their
marginal distributions, or by their correlations. The choice of a particular
copula in an application may be based on actual observed data, or different
copulas may be used as a way of determining the sensitivity of simulation
results to the input distribution.
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Copulas in Higher Dimensions
The Gaussian and t copulas are known as elliptical copulas. It is easy to
generalize elliptical copulas to a higher number of dimensions. For example,
simulate data from a trivariate distribution with Gamma(2,1), Beta(2,2), and
t5 marginals using a Gaussian copula as follows:

n = 1000;
Rho = [1 .4 .2; .4 1 -.8; .2 -.8 1];
U = copularnd('Gaussian', Rho, n);
X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];
subplot(1,1,1);
plot3(X(:,1),X(:,2),X(:,3),'.');
grid on; view([-55, 15]);
xlabel('X1'); ylabel('X2'); zlabel('X3');

Notice that the relationship between the linear correlation parameter ρ and,
for example, Kendall’s τ, holds for each entry in the correlation matrix P
used here. You can verify that the sample rank correlations of the data are
approximately equal to the theoretical values.

tauTheoretical = 2.*asin(Rho)./pi
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tauTheoretical =
1 0.26198 0.12819

0.26198 1 -0.59033
0.12819 -0.59033 1

tauSample = corr(X, 'type','Kendall')

tauSample =
1 0.27254 0.12701

0.27254 1 -0.58182
0.12701 -0.58182 1

Archimedean Copulas
Statistics Toolbox also supports three bivariate Archimedean copula families:
the Clayton, the Frank, and the Gumbel. These are one-parameter families
that are defined directly in terms of their cdfs, rather than being defined
constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and t bivariate
copulas, first use the copulastat function to find the rank correlation for a
Gaussian or t copula with linear correlation parameter of 0.8, then use the
copulaparam function to find the Clayton copula parameter that corresponds
to that rank correlation.

tau = copulastat('Gaussian', .8 ,'type', 'kendall')

tau =
0.59033

alpha = copulaparam('Clayton', tau, 'type', 'kendall')

alpha =
2.882

Finally, plot a random sample from the Clayton copula. Repeat the same
procedure for the Frank and Gumbel copulas.

n = 500;
U = copularnd('Clayton', alpha, n);
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subplot(2,2,1); plot(U(:,1),U(:,2),'.');
title(sprintf('Clayton Copula, \\alpha = %.2f',alpha)); ...

xlabel('U1'); ylabel('U2');
alpha = copulaparam('Frank', tau, 'type', 'kendall');
U = copularnd('Frank', alpha, n);
subplot(2,2,2); plot(U(:,1),U(:,2),'.');
title(sprintf('Frank Copula, \\alpha = %.2f',alpha)); ...

xlabel('U1'); ylabel('U2');
alpha = copulaparam('Gumbel', tau, 'type', 'kendall');
U = copularnd('Gumbel', alpha, n);
subplot(2,2,3); plot(U(:,1),U(:,2),'.');
title(sprintf('Gumbel Copula, \\alpha = %.2f',alpha)); ...

xlabel('U1'); ylabel('U2');

Copulas and Nonparametric Marginal Distributions
To simulate dependent multivariate data using a copula, you must specify
each of the following:

1 The copula family (and any shape parameters)
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2 The rank correlations among variables

3 Marginal distributions for each variable

Suppose you have return data for two stocks, and would like to run a Monte
Carlo simulation with inputs that follow the same distributions as the data.

load stockreturns
nobs = size(stocks,1);
subplot(2,1,1); hist(stocks(:,1),10); xlim([-3.5 3.5]);
xlabel('X1'); ylabel('Frequency');
subplot(2,1,2); hist(stocks(:,2),10); xlim([-3.5 3.5]);
xlabel('X2'); ylabel('Frequency');

You could fit a parametric model separately to each dataset, and use those
estimates as the marginal distributions. However, a parametric model may
not be sufficiently flexible. Instead, you can use an nonparametric model
to transform to the marginal distributions. All that is needed is a way to
compute the inverse cdf for the nonparametric model.
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The simplest nonparametric model is the empirical cdf, as computed by the
ecdf function. For a discrete marginal distribution, this is appropriate.
However, for a continuous distribution, it is a good idea to use a model that is
smoother than the step function computed by ecdf. One way to do that is to
estimate the empirical cdf, and interpolate between the midpoints of the steps
with a piecewise linear function. Another way is to use kernel smoothing.
For example, compare the empirical cdf to a kernel smoothed cdf estimate
for the first variable.

[Fi,xi] = ecdf(stocks(:,1));
subplot(1,1,1);
stairs(xi,Fi,'b');
hold on
Fi_sm = ksdensity(stocks(:,1),xi,'function','cdf','width',.15);
plot(xi,Fi_sm,'r-');
hold off
xlabel('X1'); ylabel('Cumulative Probability');

For the simulation, you might want to experiment with different copulas and
correlations. Here, you’ll use a bivariate t copula with a fairly small degrees of
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freedom parameter. For the correlation parameter, you can compute the rank
correlation of the data, and then find the corresponding linear correlation
parameter for the t copula.

nu = 5;
tau = corr(stocks(:,1),stocks(:,2),'type','kendall')

tau =
0.51798

rho = copulaparam('t', tau, nu, 'type','kendall')

rho =
0.72679

Next, generate random values from the t copula, and transform using the
nonparametric inverse cdfs. The ksdensity function allows you to make a
kernel estimate of distribution, and evaluate the inverse cdf at the copula
points all in one step.

n = 1000;
U = copularnd('t',[1 rho; rho 1],nu,n);
X1 = ksdensity(stocks(:,1),U(:,1),...

'function','icdf','width',.15);
X2 = ksdensity(stocks(:,2),U(:,2),...

'function','icdf','width',.15);

Alternatively, when you have a large amount of data or need to simulate more
than one set of values, it may be more efficient to compute the inverse cdf
over a grid of values in the interval (0,1), and use interpolation to evaluate it
at the copula points.

p = linspace(.00001, .99999, 1000);
G1 = ksdensity(stocks(:,1) ,p ,'function', 'icdf', 'width',.15);
X1 = interp1(p, G1, U(:,1), 'spline');
G2 = ksdensity(stocks(:,2) ,p ,'function', 'icdf', 'width',.15);
X2 = interp1(p, G2, U(:,2), 'spline');
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Notice that the marginal histograms of the simulated data are a smoothed
version of the histograms for the original data. The amount of smoothing is
controlled by the bandwidth input to ksdensity.
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Hypothesis Test Terminology (p. 6-3) Explains the basic terminology and
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Hypothesis Test Assumptions (p. 6-5) Discusses the role of assumptions in
hypothesis testing

Example: Hypothesis Testing (p. 6-7) An extended example using a variety
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Available Hypothesis Tests (p. 6-12) Describes the available hypothesis
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6 Hypothesis Tests

Introduction
Hypothesis testing is a common method of drawing inferences about a
population based on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of
Massachusetts the average price of a gallon of regular unleaded gas was
$1.15. How could you determine the truth of the statement? You could try to
find prices at every gas station in the state at the time. That approach would
be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly
selected gas stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the
selection process. Suppose your sample average comes out to be $1.18. Is the
$0.03 difference an artifact of random sampling or significant evidence that
the average price of a gallon of gas was in fact greater than $1.15? Hypothesis
testing is a statistical method for making such decisions.
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Hypothesis Test Terminology
All hypothesis tests share the same basic terminology and structure.

• A null hypothesis is an assertion about a population that you would like
to test. It is “null” in the sense that it often represents a status quo belief,
such as the absence of a characteristic or the lack of an effect. It may be
formalized by asserting that a population parameter, or a combination of
population parameters, has a certain value. In the example given in the
“Introduction” on page 6-2, the null hypothesis would be that the average
price of gas across the state was $1.15. This is written H0: µ = 1.15.

• An alternative hypothesis is a contrasting assertion about the population
that can be tested against the null hypothesis. In the example given in the
“Introduction” on page 6-2, possible alternative hypotheses are:

H1: µ ≠ 1.15 — State average was different from $1.15 (two-tailed test)

H1: µ > 1.15 — State average was greater than $1.15 (right-tail test)

H1: µ< 1.15 — State average was less than $1.15 (left-tail test)

• To conduct a hypothesis test, a random sample from the population is
collected and a relevant test statistic is computed to summarize the sample.
This statistic varies with the type of test, but its distribution under the null
hypothesis must be known (or assumed).

• The p-value of a test is the probability, under the null hypothesis, of
obtaining a value of the test statistic as extreme or more extreme than the
value computed from the sample.

• The significance level of a test is a threshold of probability α agreed to before
the test is conducted. A typical value of α is 0.05. If the p-value of a test is
less than α, the test rejects the null hypothesis. If the p-value is greater
than α, there is insufficient evidence to reject the null hypothesis. Note
that lack of evidence for rejecting the null hypothesis is not evidence for
accepting the null hypothesis. Also note that substantive “significance” of
an alternative cannot be inferred from the statistical significance of a test.

• The significance level α can be interpreted as the probability of rejecting
the null hypothesis when it is actually true—a type I error. The distribution
of the test statistic under the null hypothesis determines the probability
α of a type I error. Even if the null hypothesis is not rejected, it may still
be false—a type II error. The distribution of the test statistic under the
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alternative hypothesis determines the probability β of a type II error. Type
II errors are often due to small sample sizes. The power of a test, 1 – β, is
the probability of correctly rejecting a false null hypothesis.

• Results of hypothesis tests are often communicated with a confidence
interval. A confidence interval is an estimated range of values with a
specified probability of containing the true population value of a parameter.
Upper and lower bounds for confidence intervals are computed from the
sample estimate of the parameter and the known (or assumed) sampling
distribution of the estimator. A typical assumption is that estimates will be
normally distributed with repeated sampling (as dictated by the Central
Limit Theorem). Wider confidence intervals correspond to poor estimates
(smaller samples); narrow intervals correspond to better estimates
(larger samples). If the null hypothesis asserts the value of a population
parameter, the test rejects the null hypothesis when the hypothesized value
lies outside the computed confidence interval for the parameter.
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Hypothesis Test Assumptions
Different hypothesis tests make different assumptions about the distribution
of the random variable being sampled in the data. These assumptions must
be considered when choosing a test and when interpreting the results.

For example, the z-test (ztest) and the t-test (ttest) both assume that
the data are independently sampled from a normal distribution. Statistics
Toolbox offers a number of functions for testing this assumption, such as
chi2gof, jbtest, lillietest, and normplot.

Both the z-test and the t-test are relatively robust with respect to departures
from this assumption, so long as the sample size n is large enough. Both
tests compute a sample mean , which, by the Central Limit Theorem, has
an approximately normal sampling distribution with mean equal to the
population mean μ, regardless of the population distribution being sampled.

The difference between the z-test and the t-test is in the assumption of the
standard deviation σ of the underlying normal distribution. A z-test assumes
that σ is known; a t-test does not. As a result, a t-test must compute an
estimate s of the standard deviation from the sample.

Test statistics for the z-test and the t-test are, respectively,

z
x

n

t
x
s n

= −

= −

μ
σ

μ
/

/

Under the null hypothesis that the population is distributed with mean μ, the
z-statistic has a standard normal distribution, N(0,1). Under the same null
hypothesis, the t-statistic has Student’s t distribution with n – 1 degrees of
freedom. For small sample sizes, Student’s t distribution is flatter and wider
than N(0,1), compensating for the decreased confidence in the estimate s.
As sample size increases, however, Student’s t distribution approaches the
standard normal distribution, and the two tests become essentially equivalent.
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Knowing the distribution of the test statistic under the null hypothesis allows
for accurate calculation of p-values. Interpreting p-values in the context of the
test assumptions allows for critical analysis of test results.

Assumptions underlying each of the hypothesis tests in Statistics Toolbox are
given in the reference page for the implementing function.
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Example: Hypothesis Testing
This example uses the gas price data in the file gas.mat. The file contains two
random samples of prices for a gallon of gas around the state of Massachusetts
in 1993. The first sample, price1, contains 20 random observations around
the state on a single day in January. The second sample, price2, contains 20
random observations around the state one month later.

load gas
prices = [price1 price2];

As a first step, you might want to test the assumption that the samples come
from normal distributions.

A normal probability plot gives a quick idea.

normplot(prices)

Both scatters approximately follow straight lines through the first and third
quartiles of the samples, indicating approximate normal distributions.
The February sample (the right-hand line) shows a slight departure from
normality in the lower tail. A shift in the mean from January to February is
evident.
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A hypothesis test can be used to quantify the test of normality. Since each
sample is relatively small, a Lilliefors test is recommended.

lillietest(price1)
ans =

0
lillietest(price2)
ans =

0

The default significance level of lillietest is 5%. The logical 0 returned by
each test indicates a failure to reject the null hypothesis that the samples are
normally distributed. This failure may reflect normality in the population or
it may reflect a lack of strong evidence against the null hypothesis due to
the small sample size.

Now compute the sample means:

sample_means = mean(prices)
sample_means =

115.1500 118.5000

You might want to test the null hypothesis that the mean price across the
state on the day of the January sample was $1.15. If you know that the
standard deviation in prices across the state has historically, and consistently,
been $0.04, then a z-test is appropriate.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)
h =

0
pvalue =

0.8668
ci =

1.1340 1.1690

The logical output h = 0 indicates a failure to reject the null hypothesis
at the default significance level of 5%. This is a consequence of the high
probability under the null hypothesis, indicated by the p-value, of observing
a value as extreme or more extreme of the z-statistic computed from the
sample. The 95% confidence interval on the mean [1.1340 1.1690] includes
the hypothesized population mean of $1.15.
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Does the later sample offer stronger evidence for rejecting a null hypothesis
of a state-wide average price of $1.15 in February? The shift shown in the
probability plot and the difference in the computed sample means suggest
this. The shift might indicate a significant fluctuation in the market, raising
questions about the validity of using the historical standard deviation. If a
known standard deviation cannot be assumed, a t-test is more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)
h =

1
pvalue =

4.9517e-04
ci =

1.1675 1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the
default significance level of 5%. In this case, the 95% confidence interval on
the mean does not include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely.
The function ttest2 tests if two independent samples come from normal
distributions with equal but unknown standard deviations and the same
mean, against the alternative that the means are unequal.

[h,sig,ci] = ttest2(price1,price2)
h =

1
sig =

0.0083
ci =

-5.7845 -0.9155

The null hypothesis is rejected at the default 5% significance level, and
the confidence interval on the difference of means does not include the
hypothesized value of 0.

A notched box plot is another way to visualize the shift.

6-9



6 Hypothesis Tests

boxplot(prices,1)
set(gca,'XtickLabel',str2mat('January','February'))
xlabel('Month')
ylabel('Prices ($0.01)')

The plot displays the distribution of the samples around their medians. The
heights of the notches in each box are computed so that the side-by-side boxes
have nonoverlapping notches when their medians are different at a default 5%
significance level. The computation is based on an assumption of normality
in the data, but the comparison is reasonably robust for other distributions.
The side-by-side plots provide a kind of visual hypothesis test, comparing
medians rather than means. The plot above appears to barely reject the null
hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function
ranksum, can be used to quantify the test of equal medians. It tests if two
independent samples come from identical continuous (not necessarily normal)
distributions with equal medians, against the alternative that they do not
have equal medians.

[p,h] = ranksum(price1, price2)
p =

0.0092
h =

1
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The test rejects the null hypothesis of equal medians at the default 5%
significance level.
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Available Hypothesis Tests

Note In addition to the functions listed below, Statistics Toolbox also includes
functions for analysis of variance (ANOVA), which perform hypothesis tests in
the context of linear modeling. These functions are discussed in the Chapter
7, “Linear Models” section of the documentation.

Function Description

ansaribradley Ansari-Bradley test. Tests if two independent samples
come from the same distribution, against the alternative
that they come from distributions that have the same
median and shape but different variances.

chi2gof Chi-square goodness-of-fit test. Tests if a sample comes
from a specified distribution, against the alternative
that it does not come from that distribution.

dwtest Durbin-Watson test. Tests if the residuals from a linear
regression are independent, against the alternative that
there is autocorrelation among them.

jbtest Jarque-Bera test. Tests if a sample comes from a
normal distribution with unknown mean and variance,
against the alternative that it does not come from a
normal distribution.

kstest One-sample Kolmogorov-Smirnov test. Tests if a sample
comes from a continuous distribution with specified
parameters, against the alternative that it does not
come from that distribution.

kstest2 Two-sample Kolmogorov-Smirnov test. Tests if two
samples come from the same continuous distribution,
against the alternative that they do not come from the
same distribution.

lillietest Lilliefors test. Tests if a sample comes from a
distribution in the normal family, against the
alternative that it does not come from a normal
distribution.
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Function Description

ranksum Wilcoxon rank sum test. Tests if two independent
samples come from identical continuous distributions
with equal medians, against the alternative that they
do not have equal medians.

runstest Runs test. Tests if a sequence of values comes in
random order, against the alternative that the ordering
is not random.

signrank One-sample or paired-sample Wilcoxon signed rank test.
Tests if a sample comes from a continuous distribution
symmetric about a specified median, against the
alternative that it does not have that median.

signtest One-sample or paired-sample sign test. Tests if a
sample comes from an arbitrary continuous distribution
with a specified median, against the alternative that it
does not have that median.

ttest One-sample or paired-sample t-test. Tests if a sample
comes from a normal distribution with unknown
variance and a specified mean, against the alternative
that it does not have that mean.

ttest2 Two-sample t-test. Tests if two independent samples
come from normal distributions with unknown but
equal (or, optionally, unequal) variances and the same
mean, against the alternative that the means are
unequal.

vartest One-sample chi-square variance test. Tests if a sample
comes from a normal distribution with specified
variance, against the alternative that it comes from a
normal distribution with a different variance.

vartest2 Two-sample F-test for equal variances. Tests if two
independent samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.
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Function Description

vartestn Bartlett multiple-sample test for equal variances. Tests
if multiple samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.

ztest One-sample z-test. Tests if a sample comes from a
normal distribution with known variance and specified
mean, against the alternative that it does not have that
mean.

6-14



7

Linear Models

Introduction (p. 7-2) Introduction to linear modeling

Linear Regression (p. 7-3) Linear models for regression
analysis

Analysis of Variance (p. 7-32) Linear models for analysis of
variance



7 Linear Models

Introduction
Linear models represent the relationship between a continuous response
variable and one or more predictor variables (either continuous or categorical)
in the form y = Xβ + , where

• y is an n-by-1 vector of observations of the response variable.

• X is the n-by-p design matrix determined by the predictors.

• β is a p-by-1 vector of unknown parameters to be estimated.

• ε is an n-by-1 vector of independent, identically distributed random
disturbances.

The general form of the linear model is used to solve a variety of “Linear
Regression” on page 7-3 and “Analysis of Variance” on page 7-32 problems.

For examples of simple linear models using MATLAB functions, see MATLAB
Data Analysis.
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Linear Regression
• “Multiple Linear Regression” on page 7-3

• “Quadratic Response Surface Models” on page 7-12

• “Stepwise Regression” on page 7-16

• “Generalized Linear Models” on page 7-20

• “Robust and Nonparametric Methods” on page 7-25

Multiple Linear Regression
The purpose of multiple linear regression is to establish a quantitative
relationship between a group of predictor variables (the columns of X) and a
response, y. This relationship is useful for

• Understanding which predictors have the greatest effect.

• Knowing the direction of the effect (i.e., increasing x increases/decreases y).

• Using the model to predict future values of the response when only the
predictors are currently known.

The following sections explain multiple linear regression in greater detail:

• “Mathematical Foundations of Multiple Linear Regression” on page 7-3

• “Example: Multiple Linear Regression” on page 7-6

• “Polynomial Curve Fitting Demo” on page 7-7

Mathematical Foundations of Multiple Linear Regression
The linear model takes its common form

where:

• y is an n-by-1 vector of observations.

• X is an n-by-p matrix of regressors.
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• β is a p-by-1 vector of parameters.

• ε is an n-by-1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector
of parameters, β. The least squares solution is

This equation is useful for developing later statistical formulas, but has poor
numeric properties. regress uses QR decomposition of X followed by the
backslash operator to compute b. The QR decomposition is not necessary for
computing b, but the matrix R is useful for computing confidence intervals.

You can plug b back into the model formula to get the predicted y values at
the data points.

Note Statisticians use a hat (circumflex) over a letter to denote an estimate
of a parameter or a prediction from a model. The projection matrix H is called
the hat matrix, because it puts the “hat” on y.

The residuals are the difference between the observed and predicted y values.

The residuals are useful for detecting failures in the model assumptions,
since they correspond to the errors, ε, in the model equation. By assumption,
these errors each have independent normal distributions with mean zero and
a constant variance.

The residuals, however, are correlated and have variances that depend on the
locations of the data points. It is a common practice to scale (“Studentize”)
the residuals so they all have the same variance.
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In the equation below, the scaled residual, ti, has a Student’s t distribution
with (n-p-1) degrees of freedom

where

and:

• ti is the scaled residual for the ith data point.

• ri is the raw residual for the ith data point.

• n is the sample size.

• p is the number of parameters in the model.

• hi is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the
errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing ti with the critical values of
the t distribution. If ti is large, this casts doubt on the assumption that this
residual has the same variance as the others.

A confidence interval for the mean of each error is

Confidence intervals that do not include zero are equivalent to rejecting the
hypothesis (at a significance probability of α) that the residual mean is zero.
Such confidence intervals are good evidence that the observation is an outlier
for the given model.

7-5



7 Linear Models

Example: Multiple Linear Regression
The example comes from Chatterjee and Hadi in a paper on regression
diagnostics. The data set (originally from Moore) has five predictor variables
and one response.

load moore
X = [ones(size(moore,1),1) moore(:,1:5)];

Matrix X has a column of ones, and then one column of values for each of
the five predictor variables. The column of ones is necessary for estimating
the y-intercept of the linear model.

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b(1), which corresponds to the column index of the column
of ones.

stats
stats =

0.8107 11.9886 0.0001 0.0685

The elements of the vector stats are the regression R2 statistic, the F statistic
(for the hypothesis test that all the regression coefficients are zero), the
p-value associated with this F statistic, and an estimate of the error variance.

R2 is 0.8107 indicating the model accounts for over 80% of the variability in
the observations. The F statistic of about 12 and its p-value of 0.0001 indicate
that it is highly unlikely that all of the regression coefficients are zero. The
error variance of 0.0685 indicates that there a small random variability
between the variable and the regression function.

rcoplot(r,rint)
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The plot shows the residuals plotted in case order (by row). The 95%
confidence intervals about these residuals are plotted as error bars. The first
observation is an outlier since its error bar does not cross the zero reference
line.

In problems with just a single predictor, it is simpler to use the polytool
function. This function can form an X matrix with predictor values, their
squares, their cubes, and so on.

Polynomial Curve Fitting Demo
The polytool demo is an interactive graphic environment for polynomial
curve fitting and prediction. You can use polytool to do curve fitting and
prediction for any set of x-y data, but, for the sake of demonstration, Statistics
Toolbox provides a data set (polydata.mat) to illustrate some basic concepts.

With the polytool demo you can

• Plot the data, the fitted polynomial, and global confidence bounds on a
new predicted value.

• Change the degree of the polynomial fit.

• Evaluate the polynomial at a specific x-value, or drag the vertical reference
line to evaluate the polynomial at varying x-values.

• Display the predicted y-value and its uncertainty at the current x-value.

• Control the confidence bounds and choose between least squares or robust
fitting.

• Export fit results to the workspace.
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Note From the command line, you can call polytool and specify the data
set, the order of the polynomial, and the confidence intervals, as well as
labels to replace X Values and Y Values. See the polytool function
reference page for details.

The following sections explore the use of polytool:

• “Fitting a Polynomial” on page 7-8

• “Confidence Bounds” on page 7-11

Fitting a Polynomial.

1 Load the data. Before you start the demonstration, you must first load a
data set. This example uses polydata.mat. For this data set, the variables
x and y are observations made with error from a cubic polynomial. The
variables x1 and y1 are data points from the “true” function without error.

load polydata

Your variables appear in the Workspace browser.

2 Try a linear fit. Run polytool and provide it with the data to which
the polynomial is fit. Because this code does not specify the degree of the
polynomial, polytool does a linear fit to the data.

polytool(x,y)
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The linear fit is not very good. The bulk of the data with x-values between
0 and 2 has a steeper slope than the fitted line. The two points to the right
are dragging down the estimate of the slope.

3 Try a cubic fit. In the Degree text box at the top, type 3 for a cubic
model. Then, drag the vertical reference line to the x-value of 2 (or type 2
in the X Values text box).
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This graph shows a much better fit to the data. The confidence bounds are
closer together indicating that there is less uncertainty in prediction. The
data at both ends of the plot track the fitted curve.

4 Finally, overfit the data. If the cubic polynomial is a good fit, it is
tempting to try a higher order polynomial to see if even more precise
predictions are possible. Since the true function is cubic, this amounts
to overfitting the data. Use the data entry box for degree and type 5 for
a quintic model.
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As measured by the confidence bounds, the fit is precise near the data
points. But, in the region between the data groups, the uncertainty of
prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does
not contain enough information to estimate the higher order polynomial
terms precisely, so even interpolation using polynomials can be risky in
some cases.

Confidence Bounds. By default, the confidence bounds are nonsimultaneous
bounds for a new observation. What does this mean? Let be the true but
unknown function you want to estimate. The graph contains the following
three curves:

• , the fitted function

• , the lower confidence bounds

• , the upper confidence bounds
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Suppose you plan to take a new observation at the value . Call it
. This new observation has its own error , so it satisfies

the equation

What are the likely values for this new observation? The confidence bounds
provide the answer. The interval [ , ] is a 95% confidence bound
for .

These are the default bounds, but the Bounds menu on the polytool figure
window provides options for changing the meaning of these bounds. This
menu has options that enable you to specify whether the bounds should be
simultaneous or not, and whether the bounds are to apply to the estimated
function, i.e., curve, or to a new observation. Using these options you can
produce any of the following types of confidence bounds.

Confidence bound table of one heading row, four data rows, and three columns.

Is Simultaneous For Quantity Yields Confidence Bounds for

Nonsimultaneous Observation yn+1(xn+1) (default)

Nonsimultaneous Curve p(xn+1)

Simultaneous Observation yn+1(x), globally for any x

Simultaneous Curve p(x), simultaneously for all x

Quadratic Response Surface Models
Response Surface Methodology (RSM) is a tool for understanding the
quantitative relationship between multiple input variables and one output
variable.

Consider one output, z, as a polynomial function of two inputs, x and y. The
function z = f (x,y) describes a two-dimensional surface in the space (x,y,z). In
general, you can have as many input variables as you want and the resulting
surface becomes a hypersurface. Also, you can have multiple output variables
with a separate hypersurface for each one.
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For three inputs (x1, x2, x3), the equation of a quadratic response surface is

It is difficult to visualize a k-dimensional surface in k+1 dimensional space
for k > 2.

Exploring Graphs of Multidimensional Polynomials
The function rstool performs an interactive fit and plot of a multidimensional
response surface model (RSM). Note that, in general, this GUI provides an
environment for exploration of the graph of a multidimensional polynomial.

You can learn about rstool by trying the commands below. The chemistry
behind the data in reaction.mat deals with reaction kinetics as a function
of the partial pressure of three chemical reactants: hydrogen, n-pentane,
and isopentane.

load reaction
rstool(reactants,rate,'quadratic',0.01,xn,yn)

rstool displays a “vector” of three plots. The dependent variable of all three
plots is the reaction rate. The first plot has hydrogen as the independent
variable. The second and third plots have n-pentane and isopentane
respectively.
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Each plot shows the fitted relationship of the reaction rate to the independent
variable at a fixed value of the other two independent variables. The fixed
value of each independent variable is in an editable text box below each axis,
and is marked by a vertical dashed blue line. You can change the fixed value
of any independent variable by either typing a new value in the box or by
dragging any of the three vertical lines to a new position.

When you change the value of an independent variable, all the plots update
to show the current picture at the new point in the space of the independent
variables.

Note that while this example only uses three inputs (reactants) and one
output (rate), rstool can accommodate an arbitrary number of inputs and
outputs. Interpretability may be limited by the size of your monitor for large
numbers of inputs or outputs.

Exporting Variables to the Workspace. Click Export to save variables
in the GUI to the base workspace.
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Fitted parameters, i.e., coefficients, appear in the following order. Some
polynomial models use a subset of these terms but keep them in this order.

1 Constant term

2 Linear terms

3 Interaction terms formed by taking pairwise products of the columns of
the input matrix

4 Squared terms

Changing the Order of the Polynomial. Below the Export button, there
is a pop-up menu that enables you to change the polynomial model. If you
use the commands above, this menu has the string Full Quadratic already
selected. The choices are:

• Linear — includes constant and linear terms.

• Pure Quadratic — includes constant, linear and squared terms.

• Interactions — includes constant, linear, and cross product terms.

• Full Quadratic — includes interactions and squared terms.

• User Specified — available only if you provide a matrix of model terms as
the third argument to rstool. See the rstool and x2fx function reference
pages for details.)

The rstool GUI is used by the rsmdemo function to visualize the results
of a designed experiment for studying a chemical reaction. See “Design of
Experiments Demo” on page 11-11.
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Stepwise Regression
Stepwise regression is a technique for choosing the variables, i.e., terms, to
include in a multiple regression model. Forward stepwise regression starts
with no model terms. At each step it adds the most statistically significant
term (the one with the highest F statistic or lowest p-value) until there are
none left. Backward stepwise regression starts with all the terms in the
model and removes the least significant terms until all the remaining terms
are statistically significant. It is also possible to start with a subset of all the
terms and then add significant terms or remove insignificant terms.

An important assumption behind the method is that some input variables in
a multiple regression do not have an important explanatory effect on the
response. If this assumption is true, then it is a convenient simplification to
keep only the statistically significant terms in the model.

One common problem in multiple regression analysis is multicollinearity
of the input variables. The input variables may be as correlated with each
other as they are with the response. If this is the case, the presence of one
input variable in the model may mask the effect of another input. Stepwise
regression might include different variables depending on the choice of
starting model and inclusion strategy.

Statistics Toolbox includes two functions for performing stepwise regression:

• stepwise — an interactive graphical tool that enables you to explore
stepwise regression.

• stepwisefit — a command-line tool for performing stepwise regression.
You can use stepwisefit to return the results of a stepwise regression
to the MATLAB workspace.

Stepwise Regression Demo
The stepwise function provides an interactive graphical interface that you
can use to compare competing models.

This example uses the Hald ([21], p. 167) data set. The Hald data come from
a study of the heat of reaction of various cement mixtures. There are four
components in each mixture, and the amount of heat produced depends on the
amount of each ingredient in the mixture.
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Here are the commands to get started.

load hald
stepwise(ingredients,heat)

For each term on the y-axis, the plot shows the regression (least squares)
coefficient as a dot with horizontal bars indicating confidence intervals. Blue
dots represent terms that are in the model, while red dots indicate terms that
are not currently in the model. The horizontal bars indicate 90% (colored)
and 95% (grey) confidence intervals.

To the right of each bar, a table lists the value of the regression coefficient for
that term, along with its t-statistic and p-value. The coefficient for a term
that is not in the model is the coefficient that would result from adding that
term to the current model.

From the Stepwise menu, select Scale Inputs to center and normalize the
columns of the input matrix to have a standard deviation of 1.
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Note When you call the stepwise function, you can also specify the initial
state of the model and the confidence levels to use. See the stepwise function
reference page for details.

Additional Diagnostic Statistics. Several diagnostic statistics appear
below the plot.

• Intercept — the estimated value of the constant term

• RMSE — the root mean squared error of the current model

• R-square — the amount of response variability explained by the model

• Adjusted R-square — the R-square statistic adjusted for the residual
degrees of freedom

• F — the overall F statistic for the regression

• P — the associated significance probability

Moving Terms In and Out of the Model. There are two ways you can
move terms in and out of the model:

• Click on a line in the plot or in the table to toggle the state of the
corresponding term. The resulting change to the model depends on the
color of the line:

- Clicking a blue line, corresponding to a term currently in the model,
removes the term from the model and changes the line to red.

- Clicking a red line, corresponding to a term currently not in the model,
adds the term to the model and changes the line to blue.

• Select the recommended step shown under Next Step to the right of
the table. The recommended step is either to add the most statistically
significant term, or to remove the least significant term. Click Next
Step to perform the recommended step. After you do so, the stepwise
GUI displays the next term to add or remove. When there are no more
recommended steps, the GUI displays “Move no terms.”

Alternatively, you can perform all the recommended steps at once by
clicking All Steps.
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Assessing the Effect of Adding a Term. The demo can produce a partial
regression leverage plot for the term you choose. If the term is not in the
model, the plot shows the effect of adding it by plotting the residuals of the
terms that are in the model against the residuals of the chosen term. If the
term is in the model, the plot shows the effect of adding it if it were not
already in the model. That is, the demo plots the residuals of all other terms
in the model against the residuals of the chosen term.

From the Stepwise menu, select Added Variable Plot to display a list of
terms. Select the term for which you want a plot, and click OK. This example
selects X4, the recommended term in the figure above.
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Model History. The Model History plot shows the RMSE for every model
generated during the current session. Click one of the dots to return to the
model at that point in the analysis.
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Exporting Variables. The Export pop-up menu enables you to export
variables from the stepwise function to the base workspace. Check the
variables you want to export and, optionally, change the variable name in the
corresponding edit box. Click OK.

Generalized Linear Models
So far, the functions in this section have dealt with models that have a linear
relationship between the response and one or more predictors. Sometimes you
may have a nonlinear relationship instead. To fit nonlinear models you can
use the functions described in Chapter 8, “Nonlinear Models”. However, there
are some nonlinear models, known as generalized linear models, that you can
fit using simpler linear methods. To understand generalized linear models,
first review the linear models you have seen so far. Each of these models has
the following three characteristics:

• The response has a normal distribution with mean .

• A coefficient vector defines a linear combination of the predictors .

• The model equates the two as .

In generalized linear models, these characteristics are generalized as follows:

• The response has a distribution that may be normal, binomial, Poisson,
gamma, or inverse Gaussian, with parameters including a mean µ.

• A coefficient vector defines a linear combination of the predictors .

• A link function defines the link between the two as .

The following sections explore these models in greater detail:

• “Example: Generalized Linear Models” on page 7-20

• “Generalized Linear Model Demo” on page 7-25

Example: Generalized Linear Models
For example, consider the following data derived from the carbig data set, in
which the cars have various weights. You record the total number of cars of
each weight and the number qualifying as poor-mileage cars because their
miles per gallon value is below some target. Assume that you don’t know the

7-20



Linear Regression

miles per gallon for each car, only the number passing the test. It might be
reasonable to assume that the value of the variable poor follows a binomial
distribution with parameter N=total and with a p parameter that depends on
the car weight. A plot shows that the proportion of poor-mileage cars follows
a nonlinear S-shape.

w = [2100 2300 2500 2700 2900 3100...
3300 3500 3700 3900 4100 4300]';

poor = [1 2 0 3 8 8 14 17 19 15 17 21]';
total = [48 42 31 34 31 21 23 23 21 16 17 21]';

[w poor total]
ans =

2100 1 48
2300 2 42
2500 0 31
2700 3 34
2900 8 31
3100 8 21
3300 14 23
3500 17 23
3700 19 21
3900 15 16
4100 17 17
4300 21 21

plot(w,poor./total,'x')
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This shape is typical of graphs of proportions, as they have natural boundaries
at 0.0 and 1.0.

A linear regression model would not produce a satisfactory fit to this graph.
Not only would the fitted line not follow the data points, it would produce
invalid proportions less than 0 for light cars, and higher than 1 for heavy cars.

There is a class of regression models for dealing with proportion data.
The logistic model is one such model. It defines the relationship between
proportion p and weight w to be

Is this a good model for the data? It would be helpful to graph the data on
this scale, to see if the relationship appears linear. However, some of the
proportions are 0 and 1, so you cannot explicitly evaluate the left-hand-side
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of the equation. A useful trick is to compute adjusted proportions by adding
small increments to the poor and total values—say a half observation to
poor and a full observation to total. This keeps the proportions within range.
A graph now shows a more nearly linear relationship.

padj = (poor+.5) ./ (total+1);
plot(w,log(padj./(1-padj)),'x')
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You can use the glmfit function to fit this logistic model.

b = glmfit(w,[poor total],'binomial')

b =
-13.3801

0.0042
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To use these coefficients to compute a fitted proportion, you have to invert the
logistic relationship. Some simple algebra shows that the logistic equation
can also be written as

Fortunately, the function glmval can decode this link function to compute the
fitted values. Using this function, you can graph fitted proportions for a range
of car weights, and superimpose this curve on the original scatter plot.

x = 2100:100:4500;
y = glmval(b,x,'logit');
plot(w,poor./total,'x',x,y,'r-')
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Generalized linear models can fit a variety of distributions with a variety of
relationships between the distribution parameters and the predictors.
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Generalized Linear Model Demo
The glmdemo function begins a slide show describing generalized linear
models. It presents examples of what functions and distributions are
available with generalized linear models. It then presents an example where
traditional linear least squares fitting is not appropriate, and shows how to
use the glmfit function to fit a logistic regression model and the glmval
function to compute predictions from that model. (See the glmfit and glmval
function reference pages for details.)

To run glmdemo from the command line, type playshow glmdemo.

Robust and Nonparametric Methods
As mentioned in the previous sections, regression and analysis of variance
procedures depend on certain assumptions, such as a normal distribution
for the error term. Sometimes such an assumption is not warranted. For
example, if the distribution of the errors is asymmetric or prone to extreme
outliers, that is a violation of the assumption of normal errors.

Statistics Toolbox has a robust regression function that is useful when there
may be outliers. Robust methods are designed to be relatively insensitive to
large changes in a small part of the data.

Statistics Toolbox also has nonparametric versions of the one-way and
two-way analysis of variance functions. Unlike classical tests, nonparametric
tests make only mild assumptions about the data, and are appropriate when
the distribution of the data is not normal. On the other hand, they are less
powerful than classical methods for normally distributed data.

The following sections describe the robust regression and nonparametric
functions in greater detail:

• “Robust Regression” on page 7-26

• “Kruskal-Wallis Test” on page 7-29

• “Friedman’s Test” on page 7-30

Both of the nonparametric functions described here can return a stats
structure that you can use as input to the multcompare function to perform
multiple comparisons.
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Robust Regression
“Example: Multiple Linear Regression” on page 7-6 shows that there is an
outlier when you use ordinary least squares regression to model a response as
a function of five predictors. How does that outlier affect the results?

There is a type of regression known as “robust” regression that can be used to
limit the effect of outliers. The idea is to assign a weight to each point so that
outliers are given reduced weight. This makes the results less sensitive to
the presence of outliers. The weighting is done automatically and iteratively
as follows. In the first iteration, the fit is an ordinary least squares fit with
each point having the same weight. Then new weights are computed to give
lower weight to points that are far from their predicted values, and the fit is
repeated using these weights. The process continues until it converges.

So, to determine how the outlier affects the results in this example, first
estimate the coefficients using the robustfit function.

load moore
x = moore(:,1:5);
y = moore(:,6);
[br,statsr] = robustfit(x,y);
br
br =

-1.7742
0.0000
0.0009
0.0002
0.0062
0.0001

Compare these estimates to those you obtain from the regress function.

b
b =

-2.1561
-0.0000
0.0013
0.0001
0.0079
0.0001
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To understand why the two differ, it is helpful to look at the weight variable
from the robust fit. It measures how much weight was given to each point
during the final iteration of the fit. In this case, the first point had a very low
weight so it was effectively ignored.

statsr.w'
ans =

Columns 1 through 7
0.0577 0.9977 0.9776 0.9455 0.9687 0.8734 0.9177

Columns 8 through 14
0.9990 0.9653 0.9679 0.9768 0.9882 0.9998 0.9979

Columns 15 through 20
0.8185 0.9757 0.9875 0.9991 0.9021 0.6953

Robust Fitting Demo. The robustdemo function presents a simple
comparison of least squares and robust fits for a response and a single
predictor. You can use data provided by the demo or supply your own. See
the robustdemo function reference page for information about using your
own data:

1 Start the demo. To begin using robustdemo with the built-in sample
data, simply type the function name.

robustdemo

The resulting figure presents a scatter plot with two fitted lines. One line
is the fit from an ordinary least squares regression. The other is from a
robust regression. Along the bottom of the figure are the equations for the
fitted line and the estimated error standard deviation for each fit.

The effect of any point on the least squares fit depends on the residual
and leverage for that point. The residual is the vertical distance from the
point to the line. The leverage is a measure of how far the point is from the
center of the x data.

The effect of any point on the robust fit also depends on the weight assigned
to the point. Points far from the line get lower weight.

7-27



7 Linear Models

2 Compare effects of leverage and weight. Use the right mouse button
to click on any point and see its least squares leverage and robust weight.

In this example, the right-most point has a leverage value of 0.35. It is also
far from the line, so it exerts a large influence on the least squares fit. It
has a small weight, though, so it is effectively excluded from the robust fit.

3 See how changes in data affect the two fits. Using the left mouse
button, select any point, and drag it to a new location while holding the left
button down. When you release the point, both fits update.

Bringing the right-most point closer to the line makes the two fitted lines
nearly identical. Now, the point has nearly full weight in the robust fit.
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Kruskal-Wallis Test
The example “Example: One-Way ANOVA” on page 7-33 uses one-way
analysis of variance to determine if the bacteria counts of milk varied from
shipment to shipment. The one-way analysis rests on the assumption that
the measurements are independent, and that each has a normal distribution
with a common variance and with a mean that was constant in each column.
You can conclude that the column means were not all the same. The following
example repeats that analysis using a nonparametric procedure.

The Kruskal-Wallis test is a nonparametric version of one-way analysis of
variance. The assumption behind this test is that the measurements come
from a continuous distribution, but not necessarily a normal distribution. The
test is based on an analysis of variance using the ranks of the data values, not
the data values themselves. Output includes a table similar to an ANOVA
table, and a box plot.

You can run this test as follows:
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p = kruskalwallis(hogg)
p =

0.0020

The low p-value means the Kruskal-Wallis test results agree with the one-way
analysis of variance results.

Friedman’s Test
The example “Example: Two-Way ANOVA” on page 7-38 uses two-way
analysis of variance to study the effect of car model and factory on car
mileage. The example tests whether either of these factors has a significant
effect on mileage, and whether there is an interaction between these factors.
The conclusion of the example is there is no interaction, but that each
individual factor has a significant effect. The next example examines whether
a nonparametric analysis leads to the same conclusion.

Friedman’s test is a nonparametric test for data having a two-way layout (data
grouped by two categorical factors). Unlike two-way analysis of variance,
Friedman’s test does not treat the two factors symmetrically and it does not
test for an interaction between them. Instead, it is a test for whether the
columns are different after adjusting for possible row differences. The test is
based on an analysis of variance using the ranks of the data across categories
of the row factor. Output includes a table similar to an ANOVA table.

You can run Friedman’s test as follows.

p = friedman(mileage, 3)

ans =

7.4659e-004

Recall the classical analysis of variance gave a p-value to test column effects,
row effects, and interaction effects. This p-value is for column effects. Using
either this p-value or the p-value from ANOVA (p < 0.0001), you conclude that
there are significant column effects.
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In order to test for row effects, you need to rearrange the data to swap the
roles of the rows in columns. For a data matrix x with no replications, you
could simply transpose the data and type

p = friedman(x')

With replicated data it is slightly more complicated. A simple way is to
transform the matrix into a three-dimensional array with the first dimension
representing the replicates, swapping the other two dimensions, and restoring
the two-dimensional shape.

x = reshape(mileage, [3 2 3]);
x = permute(x, [1 3 2]);
x = reshape(x, [9 2])
x =

33.3000 32.6000
33.4000 32.5000
32.9000 33.0000
34.5000 33.4000
34.8000 33.7000
33.8000 33.9000
37.4000 36.6000
36.8000 37.0000
37.6000 36.7000

friedman(x, 3)

ans =

0.0082

Again, the conclusion is similar to that of the classical analysis of variance.
Both this p-value and the one from ANOVA (p = 0.0039) lead you to conclude
that there are significant row effects.

You cannot use Friedman’s test to test for interactions between the row and
column factors.
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Analysis of Variance
• “One-Way Analysis of Variance” on page 7-32

• “Two-Way Analysis of Variance” on page 7-37

• “N-Way Analysis of Variance” on page 7-40

• “Other ANOVA Models” on page 7-53

• “Analysis of Covariance” on page 7-54

One-Way Analysis of Variance
The purpose of one-way ANOVA is to find out whether data from several
groups have a common mean. That is, to determine whether the groups are
actually different in the measured characteristic.

One-way ANOVA is a simple special case of the linear model. The one-way
ANOVA form of the model is

where:

• yij is a matrix of observations in which each column represents a different
group.

• α.j is a matrix whose columns are the group means. (The “dot j” notation
means that α applies to all rows of the jth column. That is, the value αij
is the same for all i.)

• εij is a matrix of random disturbances.

The model assumes that the columns of y are a constant plus a random
disturbance. You want to know if the constants are all the same.

The following sections explore one-way ANOVA in greater detail:

• “Example: One-Way ANOVA” on page 7-33

• “Multiple Comparisons” on page 7-34

• “Example: Multiple Comparisons” on page 7-35
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Example: One-Way ANOVA
The data below comes from a study by Hogg and Ledolter [23] of bacteria
counts in shipments of milk. The columns of the matrix hogg represent
different shipments. The rows are bacteria counts from cartons of milk chosen
randomly from each shipment. Do some shipments have higher counts than
others?

load hogg
hogg

hogg =

24 14 11 7 19
15 7 9 7 24
21 12 7 4 19
27 17 13 7 15
33 14 12 12 10
23 16 18 18 20

[p,tbl,stats] = anova1(hogg);
p

p =
1.1971e-04

The standard ANOVA table has columns for the sums of squares, degrees of
freedom, mean squares (SS/df), F statistic, and p-value.

You can use the F statistic to do a hypothesis test to find out if the bacteria
counts are the same. anova1 returns the p-value from this hypothesis test.
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In this case the p-value is about 0.0001, a very small value. This is a strong
indication that the bacteria counts from the different tankers are not the
same. An F statistic as extreme as the observed F would occur by chance only
once in 10,000 times if the counts were truly equal.

The p-value returned by anova1 depends on assumptions about the random
disturbances εij in the model equation. For the p-value to be correct, these
disturbances need to be independent, normally distributed, and have constant
variance. See “Robust and Nonparametric Methods” on page 7-25 for a
nonparametric function that does not require a normal assumption.

You can get some graphical assurance that the means are different by
looking at the box plots in the second figure window displayed by anova1.
Note however that the notches are used for a comparison of medians, not a
comparison of means. For more information on this display, see “Box Plots”
on page 4-6.

Multiple Comparisons
Sometimes you need to determine not just whether there are any differences
among the means, but specifically which pairs of means are significantly
different. It is tempting to perform a series of t tests, one for each pair of
means, but this procedure has a pitfall.

In a t test, you compute a t statistic and compare it to a critical value. The
critical value is chosen so that when the means are really the same (any
apparent difference is due to random chance), the probability that the t
statistic will exceed the critical value is small, say 5%. When the means
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are different, the probability that the statistic will exceed the critical value
is larger.

In this example there are five means, so there are 10 pairs of means to
compare. It stands to reason that if all the means are the same, and if there is
a 5% chance of incorrectly concluding that there is a difference in one pair,
then the probability of making at least one incorrect conclusion among all 10
pairs is much larger than 5%.

Fortunately, there are procedures known as multiple comparison procedures
that are designed to compensate for multiple tests.

Example: Multiple Comparisons
You can perform a multiple comparison test using the multcompare function
and supplying it with the stats output from anova1.

[c,m] = multcompare(stats)
c =

1.0000 2.0000 2.4953 10.5000 18.5047
1.0000 3.0000 4.1619 12.1667 20.1714
1.0000 4.0000 6.6619 14.6667 22.6714
1.0000 5.0000 -2.0047 6.0000 14.0047
2.0000 3.0000 -6.3381 1.6667 9.6714
2.0000 4.0000 -3.8381 4.1667 12.1714
2.0000 5.0000 -12.5047 -4.5000 3.5047
3.0000 4.0000 -5.5047 2.5000 10.5047
3.0000 5.0000 -14.1714 -6.1667 1.8381
4.0000 5.0000 -16.6714 -8.6667 -0.6619

m =
23.8333 1.9273
13.3333 1.9273
11.6667 1.9273
9.1667 1.9273

17.8333 1.9273

The first output from multcompare has one row for each pair of groups, with
an estimate of the difference in group means and a confidence interval for that
group. For example, the second row has the values

1.0000 3.0000 4.1619 12.1667 20.1714
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indicating that the mean of group 1 minus the mean of group 3 is
estimated to be 12.1667, and a 95% confidence interval for this difference is
[4.1619, 20.1714]. This interval does not contain 0, so you can conclude that
the means of groups 1 and 3 are different.

The second output contains the mean and its standard error for each group.

It is easier to visualize the difference between group means by looking at the
graph that multcompare produces.

There are five groups. The graph instructs you to Click on the group you
want to test. Three groups have slopes significantly different from group one.

The graph shows that group 1 is significantly different from groups 2, 3, and
4. By using the mouse to select group 4, you can determine that it is also
significantly different from group 5. Other pairs are not significantly different.
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Two-Way Analysis of Variance
The purpose of two-way ANOVA is to find out whether data from several
groups have a common mean. One-way ANOVA and two-way ANOVA differ
in that the groups in two-way ANOVA have two categories of defining
characteristics instead of one.

Suppose an automobile company has two factories, and each factory makes
the same three models of car. It is reasonable to ask if the gas mileage in the
cars varies from factory to factory as well as from model to model. There are
two predictors, factory and model, to explain differences in mileage.

There could be an overall difference in mileage due to a difference in the
production methods between factories. There is probably a difference in the
mileage of the different models (irrespective of the factory) due to differences
in design specifications. These effects are called additive.

Finally, a factory might make high mileage cars in one model (perhaps
because of a superior production line), but not be different from the other
factory for other models. This effect is called an interaction. It is impossible
to detect an interaction unless there are duplicate observations for some
combination of factory and car model.

Two-way ANOVA is a special case of the linear model. The two-way ANOVA
form of the model is

where, with respect to the automobile example above:

• is a matrix of gas mileage observations (with row index i, column
index j, and repetition index k).

• is a constant matrix of the overall mean gas mileage.

• is a matrix whose columns are the deviations of each car’s gas mileage
(from the mean gas mileage ) that are attributable to the car’s model.
All values in a given column of are identical, and the values in each
row of sum to 0.

• is a matrix whose rows are the deviations of each car’s gas mileage
(from the mean gas mileage ) that are attributable to the car’s factory. All
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values in a given row of are identical, and the values in each column
of sum to 0.

• is a matrix of interactions. The values in each row of sum to 0, and
the values in each column of sum to 0.

• is a matrix of random disturbances.

Example: Two-Way ANOVA
The purpose of the example is to determine the effect of car model and factory
on the mileage rating of cars.

load mileage
mileage

mileage =

33.3000 34.5000 37.4000
33.4000 34.8000 36.8000
32.9000 33.8000 37.6000
32.6000 33.4000 36.6000
32.5000 33.7000 37.0000
33.0000 33.9000 36.7000

cars = 3;
[p,tbl,stats] = anova2(mileage,cars);
p

p =
0.0000 0.0039 0.8411

There are three models of cars (columns) and two factories (rows). The reason
there are six rows in mileage instead of two is that each factory provides
three cars of each model for the study. The data from the first factory is in the
first three rows, and the data from the second factory is in the last three rows.

The standard ANOVA table has columns for the sums of squares,
degrees-of-freedom, mean squares (SS/df), F statistics, and p-values.
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You can use the F statistics to do hypotheses tests to find out if the mileage is
the same across models, factories, and model-factory pairs (after adjusting for
the additive effects). anova2 returns the p-value from these tests.

The p-value for the model effect is zero to four decimal places. This is a strong
indication that the mileage varies from one model to another. An F statistic
as extreme as the observed F would occur by chance less than once in 10,000
times if the gas mileage were truly equal from model to model. If you used the
multcompare function to perform a multiple comparison test, you would find
that each pair of the three models is significantly different.

The p-value for the factory effect is 0.0039, which is also highly significant.
This indicates that one factory is out-performing the other in the gas mileage
of the cars it produces. The observed p-value indicates that an F statistic as
extreme as the observed F would occur by chance about four out of 1000 times
if the gas mileage were truly equal from factory to factory.

There does not appear to be any interaction between factories and models.
The p-value, 0.8411, means that the observed result is quite likely (84 out 100
times) given that there is no interaction.

The p-values returned by anova2 depend on assumptions about the random
disturbances εijk in the model equation. For the p-values to be correct these
disturbances need to be independent, normally distributed, and have constant
variance. See “Robust and Nonparametric Methods” on page 7-25 for
nonparametric methods that do not require a normal distribution.

In addition, anova2 requires that data be balanced, which in this case means
there must be the same number of cars for each combination of model and
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factory. The next section discusses a function that supports unbalanced data
with any number of predictors.

N-Way Analysis of Variance
You can use N-way ANOVA to determine if the means in a set of data differ
when grouped by multiple factors. If they do differ, you can determine which
factors or combinations of factors are associated with the difference.

N-way ANOVA is a generalization of two-way ANOVA. For three factors, the
model can be written

In this notation parameters with two subscripts, such as (αβ)ij., represent
the interaction effect of two factors. The parameter (αβγ)ijk represents the
three-way interaction. An ANOVA model can have the full set of parameters
or any subset, but conventionally it does not include complex interaction
terms unless it also includes all simpler terms for those factors. For example,
one would generally not include the three-way interaction without also
including all two-way interactions.

The anovan function performs N-way ANOVA. Unlike the anova1 and anova2
functions, anovan does not expect data in a tabular form. Instead, it expects
a vector of response measurements and a separate vector (or text array)
containing the values corresponding to each factor. This input data format is
more convenient than matrices when there are more than two factors or when
the number of measurements per factor combination is not constant.

The following examples explore anovan in greater detail:

• “Example: N-Way ANOVA with a Small Data Set” on page 7-40

• “Example: N-Way ANOVA with a Large Data Set” on page 7-42

• “Example: ANOVA with Random Effects” on page 7-46

Example: N-Way ANOVA with a Small Data Set
Consider the following two-way example using anova2.
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m = [23 15 20;27 17 63;43 3 55;41 9 90]
m =

23 15 20
27 17 63
43 3 55
41 9 90

anova2(m,2)

ans =
0.0197 0.2234 0.2663

The factor information is implied by the shape of the matrix m and the number
of measurements at each factor combination (2). Although anova2 does not
actually require arrays of factor values, for illustrative purposes you could
create them as follows.

cfactor = repmat(1:3,4,1)

cfactor =
1 2 3
1 2 3
1 2 3
1 2 3

rfactor = [ones(2,3); 2*ones(2,3)]

rfactor =

1 1 1
1 1 1
2 2 2
2 2 2

The cfactor matrix shows that each column of m represents a different level
of the column factor. The rfactor matrix shows that the top two rows of m
represent one level of the row factor, and bottom two rows of m represent a
second level of the row factor. In other words, each value m(i,j) represents
an observation at column factor level cfactor(i,j) and row factor level
rfactor(i,j).
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To solve the above problem with anovan, you need to reshape the matrices m,
cfactor, and rfactor to be vectors.

m = m(:);
cfactor = cfactor(:);
rfactor = rfactor(:);

[m cfactor rfactor]

ans =

23 1 1
27 1 1
43 1 2
41 1 2
15 2 1
17 2 1
3 2 2
9 2 2

20 3 1
63 3 1
55 3 2
90 3 2

anovan(m,{cfactor rfactor},2)

ans =

0.0197
0.2234
0.2663

Example: N-Way ANOVA with a Large Data Set
The previous example used anova2 to study a small data set measuring car
mileage. This example illustrates how to analyze a larger set of car data with
mileage and other information on 406 cars made between 1970 and 1982.
First, load the data set and look at the variable names.

load carbig
whos
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Name Size Bytes Class

Acceleration 406x1 3248 double array
Cylinders 406x1 3248 double array
Displacement 406x1 3248 double array
Horsepower 406x1 3248 double array
MPG 406x1 3248 double array
Model 406x36 29232 char array
Model_Year 406x1 3248 double array
Origin 406x7 5684 char array
Weight 406x1 3248 double array
cyl4 406x5 4060 char array
org 406x7 5684 char array
when 406x5 4060 char array

The example focusses on four variables. MPG is the number of miles per gallon
for each of 406 cars (though some have missing values coded as NaN). The
other three variables are factors: cyl4 (four-cylinder car or not), org (car
originated in Europe, Japan, or the USA), and when (car was built early in the
period, in the middle of the period, or late in the period).

First, fit the full model, requesting up to three-way interactions and Type 3
sums-of-squares.

varnames = {'Origin';'4Cyl';'MfgDate'};
anovan(MPG,{org cyl4 when},3,3,varnames)

ans =
0.0000

NaN
0

0.7032
0.0001
0.2072
0.6990
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Note that many terms are marked by a # symbol as not having full rank,
and one of them has zero degrees of freedom and is missing a p-value. This
can happen when there are missing factor combinations and the model has
higher-order terms. In this case, the cross-tabulation below shows that there
are no cars made in Europe during the early part of the period with other than
four cylinders, as indicated by the 0 in table(2,1,1).

[table, chi2, p, factorvals] = crosstab(org,when,cyl4)

table(:,:,1) =

82 75 25
0 4 3
3 3 4

table(:,:,2) =
12 22 38
23 26 17
12 25 32

chi2 =

207.7689

p =

0

factorvals =
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'USA' 'Early' 'Other'
'Europe' 'Mid' 'Four'
'Japan' 'Late' []

Consequently it is impossible to estimate the three-way interaction effects,
and including the three-way interaction term in the model makes the fit
singular.

Using even the limited information available in the ANOVA table, you can see
that the three-way interaction has a p-value of 0.699, so it is not significant.
So this time you examine only two-way interactions.

[p,tbl,stats,terms] = anovan(MPG,{org cyl4 when},2,3,varnames);
terms

terms =
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1

Now all terms are estimable. The p-values for interaction term 4
(Origin*4Cyl) and interaction term 6 (4Cyl*MfgDate) are much larger than
a typical cutoff value of 0.05, indicating these terms are not significant. You
could choose to omit these terms and pool their effects into the error term.
The output terms variable returns a matrix of codes, each of which is a bit
pattern representing a term. You can omit terms from the model by deleting
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their entries from terms and running anovan again, this time supplying the
resulting vector as the model argument.

terms([4 6],:) = []

terms =

1 0 0
0 1 0
0 0 1
1 0 1

anovan(MPG,{org cyl4 when},terms,3,varnames)

ans =

1.0e-003 *

0.0000
0
0

0.1140

Now you have a more parsimonious model indicating that the mileage of
these cars seems to be related to all three factors, and that the effect of the
manufacturing date depends on where the car was made.

Example: ANOVA with Random Effects
In an ordinary ANOVA model, each grouping variable represents a fixed
factor. The levels of that factor are a fixed set of values. Your goal is to
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determine whether different factor levels lead to different response values.
This section presents an example that shows how to use anovan to fit models
where a factor’s levels represent a random selection from a larger (infinite)
set of possible levels.

This section covers the following topics:

• “Setting Up the Model” on page 7-47

• “Fitting a Random Effects Model” on page 7-48

• “F Statistics for Models with Random Effects” on page 7-49

• “Variance Components” on page 7-51

Setting Up the Model. To set up the example, first load the data, which is
stored in a 6-by-3 matrix, mileage.

load mileage

The anova2 function works only with balanced data, and it infers the values
of the grouping variables from the row and column numbers of the input
matrix. The anovan function, on the other hand, requires you to explicitly
create vectors of grouping variable values. To create these vectors, do the
following steps:

1 Create an array indicating the factory for each value in mileage. This
array is 1 for the first column, 2 for the second, and 3 for the third.

factory = repmat(1:3,6,1);

2 Create an array indicating the car model for each mileage value. This array
is 1 for the first three rows of mileage, and 2 for the remaining three rows.

carmod = [ones(3,3); 2*ones(3,3)];

3 Turn these matrices into vectors and display them.

mileage = mileage(:);
factory = factory(:);
carmod = carmod(:);
[mileage factory carmod]
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ans =

33.3000 1.0000 1.0000
33.4000 1.0000 1.0000
32.9000 1.0000 1.0000
32.6000 1.0000 2.0000
32.5000 1.0000 2.0000
33.0000 1.0000 2.0000
34.5000 2.0000 1.0000
34.8000 2.0000 1.0000
33.8000 2.0000 1.0000
33.4000 2.0000 2.0000
33.7000 2.0000 2.0000
33.9000 2.0000 2.0000
37.4000 3.0000 1.0000
36.8000 3.0000 1.0000
37.6000 3.0000 1.0000
36.6000 3.0000 2.0000
37.0000 3.0000 2.0000
36.7000 3.0000 2.0000

Fitting a Random Effects Model. Continuing the example from the
preceding section, suppose you are studying a few factories but you want
information about what would happen if you build these same car models in
a different factory—either one that you already have or another that you
might construct. To get this information, fit the analysis of variance model,
specifying a model that includes an interaction term and that the factory
factor is random.

[pvals,tbl,stats] = anovan(mileage, {factory carmod}, ...
'model',2, 'random',1,'varnames',{'Factory' 'Car Model'});
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In the fixed effects version of this fit, which you get by omitting the inputs
'random',1 in the preceding code, the effect of car model is significant, with a
p-value of 0.0039. But in this example, which takes into account the random
variation of the effect of the variable 'Car Model' from one factory to another,
the effect is still significant, but with a higher p-value of 0.0136.

F Statistics for Models with Random Effects. The F statistic in a model
having random effects is defined differently than in a model having all fixed
effects. In the fixed effects model, you compute the F statistic for any term by
taking the ratio of the mean square for that term with the mean square for
error. In a random effects model, however, some F statistics use a different
mean square in the denominator.

In the example described in “Setting Up the Model” on page 7-47, the effect
of the variable 'Factory' could vary across car models. In this case, the
interaction mean square takes the place of the error mean square in the F
statistic. The F statistic for factory is

F = 1.445 / 0.02

F =

72.2500

The degrees of freedom for the statistic are the degrees of freedom for the
numerator (1) and denominator (2) mean squares. Therefore the p-value
for the statistic is

pval = 1 - fcdf(F,1,2)

pval =

0.0136

With random effects, the expected value of each mean square depends not
only on the variance of the error term, but also on the variances contributed
by the random effects. You can see these dependencies by writing the expected
values as linear combinations of contributions from the various model terms.
To find the coefficients of these linear combinations, enter stats.ems, which
returns the ems field of the stats structure.
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stats.ems

ans =

6.0000 0.0000 3.0000 1.0000
0.0000 9.0000 3.0000 1.0000
0.0000 0.0000 3.0000 1.0000

0 0 0 1.0000

To see text representations of the linear combinations, enter

stats.txtems

ans =

'6*V(Factory)+3*V(Factory*Car Model)+V(Error)'
'9*Q(Car Model)+3*V(Factory*Car Model)+V(Error)'
'3*V(Factory*Car Model)+V(Error)'
'V(Error)'

The expected value for the mean square due to car model (second term)
includes contributions from a quadratic function of the car model effects, plus
three times the variance of the interaction term’s effect, plus the variance
of the error term. Notice that if the car model effects were all zero, the
expression would reduce to the expected mean square for the third term (the
interaction term). That is why the F statistic for the car model effect uses the
interaction mean square in the denominator.

In some cases there is no single term whose expected value matches the one
required for the denominator of the F statistic. In that case, the denominator
is a linear combination of mean squares. The stats structure contains fields
giving the definitions of the denominators for each F statistic. The txtdenom
field, stats.txtdenom, gives a text representation, and the denom field gives
a matrix that defines a linear combination of the variances of terms in the
model. For balanced models like this one, the denom matrix, stats.denom,
contains zeros and ones, because the denominator is just a single term’s mean
square.

stats.txtdenom

ans =
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'MS(Factory*Car Model)'
'MS(Factory*Car Model)'
'MS(Error)'

stats.denom

ans =

-0.0000 1.0000 0.0000
0.0000 1.0000 -0.0000
0.0000 0 1.0000

Variance Components. For the model described in “Setting Up the Model”
on page 7-47, consider the mileage for a particular car of a particular model
made at a random factory. The variance of that car is the sum of components,
or contributions, one from each of the random terms.

stats.rtnames

ans =

'Factory'
'Factory*Car Model'
'Error'

You do not know those variances, but you can estimate them from the data.
Recall that the ems field of the stats structure expresses the expected value
of each term’s mean square as a linear combination of unknown variances for
random terms, and unknown quadratic forms for fixed terms. If you take
the expected mean square expressions for the random terms, and equate
those expected values to the computed mean squares, you get a system of
equations that you can solve for the unknown variances. These solutions
are the variance component estimates. The varest field contains a variance
component estimate for each term. The rtnames field contains the names
of the random terms.

stats.varest

ans =

7-51



7 Linear Models

4.4426
-0.0313
0.1139

Under some conditions, the variability attributed to a term is unusually low,
and that term’s variance component estimate is negative. In those cases it
is common to set the estimate to zero, which you might do, for example, to
create a bar graph of the components.

bar(max(0,stats.varest))
set(gca,'xtick',1:3,'xticklabel',stats.rtnames)
bar(max(0,stats.varest))

Factory Factory*Car Model Error
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

You can also compute confidence bounds for the variance estimate. The
anovan function does this by computing confidence bounds for the variance
expected mean squares, and finding lower and upper limits on each variance
component containing all of these bounds. This procedure leads to a set
of bounds that is conservative for balanced data. (That is, 95% confidence
bounds will have a probability of at least 95% of containing the true variances
if the number of observations for each combination of grouping variables
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is the same.) For unbalanced data, these are approximations that are not
guaranteed to be conservative.

[{'Term' 'Estimate' 'Lower' 'Upper'};
stats.rtnames, num2cell([stats.varest stats.varci])]

ans =

'Term' 'Estimate' 'Lower' 'Upper'
'Factory' [ 4.4426] [1.0736] [175.6038]
'Factory*Car Model' [ -0.0313] [ NaN] [ NaN]
'Error' [ 0.1139] [0.0586] [ 0.3103]

Other ANOVA Models
The anovan function also has arguments that enable you to specify two other
types of model terms. First, the 'nested' argument specifies a matrix that
indicates which factors are nested within other factors. A nested factor is one
that takes different values within each level its nested factor.

For example, the mileage data from the previous section assumed that the two
car models produced in each factory were the same. Suppose instead, each
factory produced two distinct car models for a total of six car models, and we
numbered them 1 and 2 for each factory for convenience. Then, the car model
is nested in factory. A more accurate and less ambiguous numbering of car
model would be as follows:

Factory Car Model

1 1

1 2

2 3

2 4

3 5

3 6

However, it is common with nested models to number the nested factor the
same way in each nested factor.
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Second, the 'continuous' argument specifies that some factors are to be
treated as continuous variables. The remaining factors are categorical
variables. Although the anovan function can fit models with multiple
continuous and categorical predictors, the simplest model that combines one
predictor of each type is known as an analysis of covariance model. The next
section describes a specialized tool for fitting this model.

Analysis of Covariance
Analysis of covariance is a technique for analyzing grouped data having a
response (y, the variable to be predicted) and a predictor (x, the variable
used to do the prediction). Using analysis of covariance, you can model y as
a linear function of x, with the coefficients of the line possibly varying from
group to group.

The aoctool Demo
The aoctool demo is an interactive graphical environment for fitting and
prediction with analysis of covariance (ANOCOVA) models. It is similar to
the polytool demo. The aoctool function fits the following models for the
ith group:

Same mean

Separate means

Same line

Parallel lines

Separate lines

In the parallel lines model, for example, the intercept varies from one group
to the next, but the slope is the same for each group. In the same mean
model, there is a common intercept and no slope. In order to make the group
coefficients well determined, the demo imposes the constraints

The following sections provide an illustrative example.
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• “Exploring the aoctool Interface” on page 7-55

• “Confidence Bounds” on page 7-58

• “Multiple Comparisons” on page 7-60

Exploring the aoctool Interface.

1 Load the data. Statistics Toolbox has a small data set with information
about cars from the years 1970, 1976, and 1982. This example studies the
relationship between the weight of a car and its mileage, and whether
this relationship has changed over the years. To start the demonstration,
load the data set.

load carsmall

The Workspace browser shows the variables in the data set.

You can also use aoctool with your own data.

2 Start the tool. The following command calls aoctool to fit a separate line
to the column vectors Weight and MPG for each of the three model group
defined in Model_Year. The initial fit models the y variable, MPG, as a linear
function of the x variable, Weight.

[h,atab,ctab,stats] = aoctool(Weight,MPG,Model_Year);
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Note: 6 observations with missing values have been removed.

See the aoctool function reference page for detailed information about
calling aoctool.

3 Examine the output. The graphical output consists of a main window
with a plot, a table of coefficient estimates, and an analysis of variance
table. In the plot, each Model_Year group has a separate line. The data
points for each group are coded with the same color and symbol, and the fit
for each group has the same color as the data points.

The coefficients of the three lines appear in the figure titled ANOCOVA
Coefficients. You can see that the slopes are roughly -0.0078, with a small
deviation for each group:
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Model year 1970:

Model year 1976:

Model year 1982:

Because the three fitted lines have slopes that are roughly similar, you may
wonder if they really are the same. The Model_Year*Weight interaction
expresses the difference in slopes, and the ANOVA table shows a test for
the significance of this term. With an F statistic of 5.23 and a p-value of
0.0072, the slopes are significantly different.

4 Constrain the slopes to be the same. To examine the fits when the
slopes are constrained to be the same, return to the ANOCOVA Prediction
Plot window and use the Model pop-up menu to select a Parallel Lines
model. The window updates to show the following graph.
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Though this fit looks reasonable, it is significantly worse than the Separate
Lines model. Use the Model pop-up menu again to return to the original
model.

Confidence Bounds. The example in “The aoctool Demo” on page 7-54
provides estimates of the relationship between MPG and Weight for each
Model_Year, but how accurate are these estimates? To find out, you can
superimpose confidence bounds on the fits by examining them one group
at a time.

1 In the Model_Year menu at the lower right of the figure, change the
setting from All Groups to 82. The data and fits for the other groups are
dimmed, and confidence bounds appear around the 82 fit.
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The dashed lines form an envelope around the fitted line for model year 82.
Under the assumption that the true relationship is linear, these bounds
provide a 95% confidence region for the true line. Note that the fits for the
other model years are well outside these confidence bounds for Weight
values between 2000 and 3000.

2 Sometimes it is more valuable to be able to predict the response value for
a new observation, not just estimate the average response value. Use the
aoctool function Bounds menu to change the definition of the confidence
bounds from Line to Observation. The resulting wider intervals reflect
the uncertainty in the parameter estimates as well as the randomness
of a new observation.
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Like the polytool function, the aoctool function has cross hairs that you
can use to manipulate the Weight and watch the estimate and confidence
bounds along the y-axis update. These values appear only when a single
group is selected, not when All Groups is selected.

Multiple Comparisons. You can perform a multiple comparison test by
using the stats output structure from aoctool as input to the multcompare
function. The multcompare function can test either slopes, intercepts, or
population marginal means (the predicted MPG of the mean weight for each
group). The example in “The aoctool Demo” on page 7-54 shows that the
slopes are not all the same, but could it be that two are the same and only the
other one is different? You can test that hypothesis.

multcompare(stats,0.05,'on','','s')

ans =
1.0000 2.0000 -0.0012 0.0008 0.0029
1.0000 3.0000 0.0013 0.0051 0.0088
2.0000 3.0000 0.0005 0.0042 0.0079
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This matrix shows that the estimated difference between the intercepts of
groups 1 and 2 (1970 and 1976) is 0.0008, and a confidence interval for the
difference is [-0.0012, 0.0029]. There is no significant difference between the
two. There are significant differences, however, between the intercept for
1982 and each of the other two. The graph shows the same information.

Note that the stats structure was created in the initial call to the aoctool
function, so it is based on the initial model fit (typically a separate-lines
model). If you change the model interactively and want to base your multiple
comparisons on the new model, you need to run aoctool again to get another
stats structure, this time specifying your new model as the initial model.
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8 Nonlinear Models

Parametric Models
• “Introduction” on page 8-2

• “Nonlinear Regression” on page 8-2

• “Confidence Intervals for Parameter Estimates” on page 8-4

• “Confidence Intervals for Predicted Responses” on page 8-5

• “Interactive Nonlinear Regression” on page 8-5

Introduction
Parametric nonlinear models represent the relationship between a continuous
response variable and one or more predictor variables (either continuous or
categorical) in the form y = f (X, β) + , where

• y is an n by-1 vector of observations of the response variable.

• X is an n-by-p design matrix determined by the predictors.

• β is a p-by-1 vector of unknown parameters to be estimated.

• f is any function of X and β.

• ε is an n-by-1 vector of independent, identically distributed random
disturbances.

Nonlinear Regression
The Hougen-Watson model (Bates and Watts, [2], pp. 271–272) for reaction
kinetics is an example of a parametric nonlinear model. The form of the
model is

where rate is the reaction rate, x1, x2, and x3 are concentrations of hydrogen,
n-pentane, and isopentane, respectively, and β1, β2, ... , β5 are the unknown
parameters.

The file reaction.mat contains simulated data from a reaction appropriate
for this model:
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load reaction

who
Your variables are:
beta rate xn
model reactants yn

The variables are

• rate — A 13-by-1 vector of observed reaction rates

• reactants — A 13-by-3 matrix of reactant concentrations

• beta — A 5-by-1 vector of initial parameter estimates

• model — The name of an M-file function for the model

• xn — The names of the reactants

• yn — The name of the response

The M-file function for the model is hougen, which looks like this:

type hougen

function yhat = hougen(beta,x)
%HOUGEN Hougen-Watson model for reaction kinetics.
% YHAT = HOUGEN(BETA,X) gives the predicted values of the
% reaction rate, YHAT, as a function of the vector of
% parameters, BETA, and the matrix of data, X.
% BETA must have five elements and X must have three
% columns.
%
% The model form is:
% y = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3)

b1 = beta(1);
b2 = beta(2);
b3 = beta(3);
b4 = beta(4);
b5 = beta(5);

x1 = x(:,1);
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x2 = x(:,2);
x3 = x(:,3);

yhat = (b1*x2 - x3/b5)./(1+b2*x1+b3*x2+b4*x3);

The function nlinfit is used to find least-squares parameter estimates
for nonlinear models. It uses the Gauss-Newton algorithm with
Levenberg-Marquardt modifications for global convergence.

nlinfit requires the predictor data, the responses, and an initial guess of the
unknown parameters. It also requires a function handle to a function that
takes the predictor data and parameter estimates and returns the responses
predicted by the model.

To fit the reaction data, call nlinfit using the following syntax:

load reaction
betahat = nlinfit(reactants,rate,@hougen,beta)
betahat =

1.2526
0.0628
0.0400
0.1124
1.1914

The output vector betahat contains the parameter estimates.

Confidence Intervals for Parameter Estimates
To compute confidence intervals for the parameter estimates, use the function
nlparci, together with additional outputs from nlinfit:

[betahat,resid,J] = nlinfit(reactants,rate,@hougen,beta);
betaci = nlparci(betahat,resid,J)
betaci =

-0.7467 3.2519
-0.0377 0.1632
-0.0312 0.1113
-0.0609 0.2857
-0.7381 3.1208
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The columns of the output betaci contain the lower and upper bounds,
respectively, of the (default) 95% confidence intervals for each parameter.

Confidence Intervals for Predicted Responses
The function nlpredci is used to compute confidence intervals for predicted
responses:

[yhat,delta] = nlpredci(@hougen,reactants,betahat,resid,J);
opd = [rate yhat delta]
opd =

8.5500 8.2937 0.9178
3.7900 3.8584 0.7244
4.8200 4.7950 0.8267
0.0200 -0.0725 0.4775
2.7500 2.5687 0.4987

14.3900 14.2227 0.9666
2.5400 2.4393 0.9247
4.3500 3.9360 0.7327

13.0000 12.9440 0.7210
8.5000 8.2670 0.9459
0.0500 -0.1437 0.9537

11.3200 11.3484 0.9228
3.1300 3.3145 0.8418

The output opd contains the observed rates in the first column and the
predicted rates in the second column. The (default) 95% simultaneous
confidence intervals on the predictions are the values in the second column ±
the values in the third column. These are not intervals for new observations
at the predictors, even though most of the confidence intervals do contain the
original observations.

Interactive Nonlinear Regression
Calling nlintool opens a graphical user interface (GUI) for interactive
exploration of multidimensional nonlinear functions, and for fitting
parametric nonlinear models. The GUI calls nlinfit, and requires the same
inputs. The interface is analogous to polytool and rstool for polynomial
models.
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Open nlintool with the reaction data and the hougen model by typing

nlintool(reactants,rate,@hougen,beta,0.01,xn,yn)

You see three plots. The response variable for all plots is the reaction rate,
plotted in green. The red lines show confidence intervals on predicted
responses. The first plot shows hydrogen as the predictor, the second shows
n-pentane, and the third shows isopentane.

Each plot displays the fitted relationship of the reaction rate to one predictor
at a fixed value of the other two predictors. The fixed values are in the text
boxes below each predictor axis. Change the fixed values by typing in a new
value or by dragging the vertical lines in the plots to new positions. When
you change the value of a predictor, all the plots update to display the model
at the new point in predictor space.

While this example uses only three predictors, nlintool can accommodate
any number of predictors.
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Nonparametric Models

Introduction (p. 8-7)

Regression Trees (p. 8-7)

Classification Trees (p. 8-11)

Introduction
Parametric models specify the form of the relationship between predictors and
a response, as in the Hougen-Watson model described in “Parametric Models”
on page 8-2. In many cases, however, the form of the relationship is unknown,
and a parametric model requires assumptions and simplifications. Regression
trees offer a nonparametric alternative. When response data is categorical,
classification trees are a natural modification.

Note This section demonstrates methods for classification and regression
tree objects created with the classregtree constructor. These methods
supersede the functions treefit, treedisp, treeval, treefit, treeprune,
and treetest, which are maintained in Statistics Toolbox only for backwards
compatibility.

Algorithm Reference
The algorithms used by the classification and regression tree functions in
Statistics Toolbox are based on those in Breiman, L., et al., Classification and
Regression Trees, Chapman & Hall, Boca Raton, 1993.

Regression Trees
This example uses the data on cars in carsmall.mat to create a regression
tree for predicting mileage using measurements of weight and the number
of cylinders as predictors. Note that, in this case, one predictor (weight) is
continuous and the other (cylinders) is categorical. The response (mileage) is
continuous.

Load the data and use the classregtree constructor to create the regression
tree:
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load carsmall

t = classregtree([Weight, Cylinders],MPG,...
'cat',2,'splitmin',20,...
'names',{'Weight','Cylinders'})

t =
Decision tree for regression
1 if Weight<3085.5 then node 2 else node 3
2 if Weight<2371 then node 4 else node 5
3 if Cylinders=8 then node 6 else node 7
4 if Weight<2162 then node 8 else node 9
5 if Cylinders=6 then node 10 else node 11
6 if Weight<4381 then node 12 else node 13
7 fit = 19.2778
8 fit = 33.3056
9 fit = 29.6111

10 fit = 23.25
11 if Weight<2827.5 then node 14 else node 15
12 if Weight<3533.5 then node 16 else node 17
13 fit = 11
14 fit = 27.6389
15 fit = 24.6667
16 fit = 16.6
17 fit = 14.3889

t is a classregtree object and can be operated on with any of the methods
of the class.

Use the type method to show the type of the tree:

treetype = type(t)
treetype =
regression

classregtree creates a regression tree because MPG is a numerical vector, and
the response is assumed to be continuous.

To view the tree, use the view method:

view(t)
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The tree predicts the response values at the circular leaf nodes based on a
series of questions about the car at the triangular branching nodes. A true
answer to any question follows the branch to the left; a false follows the
branch to the right.

Use the tree to predict the mileage for a 2000-pound car with either 4, 6, or
8 cylinders:

mileage2K = t([2000 4; 2000 6; 2000 8])
mileage2K =

33.3056
33.3056
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33.3056

Note that the object allows for functional evaluation, of the form t(X). This is
a shorthand way of calling the eval method.

The predicted responses computed above are all the same. This is because they
follow a series of splits in the tree that depend only on weight, terminating
at the left-most leaf node in the view above. A 4000-pound car, following the
right branch from the top of the tree, leads to different predicted responses:

mileage4K = t([4000 4; 4000 6; 4000 8])
mileage4K =

19.2778
19.2778
14.3889

You can use a variety of other methods, such as cutvar, cuttype, and
cutcategories, to get more information about the split at node 3 that
distinguishes the 8-cylinder car:

var3 = cutvar(t,3) % What variable determines the split?
var3 =

'Cylinders'

type3 = cuttype(t,3) % What type of split is it?
type3 =

'categorical'

c = cutcategories(t,3) % Which classes are sent to the left
% child node, and which to the right?

c =
[8] [1x2 double]

c{1}
ans =

8
c{2}
ans =

4 6

Regression trees fit the original (training) data well, but may do a poor job of
predicting new values. Lower branches, especially, may be strongly affected
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by outliers. A simpler tree often avoids over-fitting. To find the best regression
tree, employing the techniques of resubstitution and cross-validation, use
the test method.

Classification Trees
This example uses Fisher’s iris data in fisheriris.mat to create a
classification tree for predicting species using measurements of sepal length,
sepal width, petal length, and petal width as predictors. Note that, in this
case, the predictors are continuous and the response is categorical.

Load the data and use the classregtree constructor to create the
classification tree:

load fisheriris

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

t is a classregtree object and can be operated on with any of the methods
of the class.

Use the type method to show the type of the tree:

treetype = type(t)
treetype =
classification

classregtree creates a classification tree because species is a cell array of
strings, and the response is assumed to be categorical.
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To view the tree, use the view method:

view(t)

The tree predicts the response values at the circular leaf nodes based on a
series of questions about the iris at the triangular branching nodes. A true
answer to any question follows the branch to the left; a false follows the
branch to the right.

The tree does not use sepal measurements for predicting species. These can
go unmeasured in new data, and be entered as NaN values for predictions. For
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example, to use the tree to predict the species of an iris with petal length
4.8 and petal width 1.6, type

predicted = t([NaN NaN 4.8 1.6])
predicted =

'versicolor'

Note that the object allows for functional evaluation, of the form t(X). This
is a shorthand way of calling the eval method. The predicted species is the
left-hand leaf node at the bottom of the tree in the view above.

You can use a variety of other methods, such as cutvar and cuttype, to get
more information about the split at node 6 that makes the final distinction
between versicolor and virginica:

var6 = cutvar(t,6) % What variable determines the split?
var6 =

'PW'

type6 = cuttype(t,6) % What type of split is it?
type6 =

'continuous'

Classification trees fit the original (training) data well, but may do a poor job
of classifying new values. Lower branches, especially, may be strongly affected
by outliers. A simpler tree often avoids over-fitting. The prune method can be
used to find the next largest tree from an optimal pruning sequence:

pruned = prune(t,'level',1)
pruned =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 class = versicolor
7 class = virginica

view(pruned)
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To find the best classification tree, employing the techniques of resubstitution
and cross-validation, use the test method.
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Principal Components Analysis
One of the difficulties inherent in multivariate statistics is the problem of
visualizing data that has many variables. In MATLAB, the plot command
displays a graph of the relationship between two variables. The plot3
and surf commands display different three-dimensional views. But when
there are more than three variables, it is more difficult to visualize their
relationships.

Fortunately, in data sets with many variables, groups of variables often
move together. One reason for this is that more than one variable might be
measuring the same driving principle governing the behavior of the system.
In many systems there are only a few such driving forces. But an abundance
of instrumentation enables you to measure dozens of system variables. When
this happens, you can take advantage of this redundancy of information.
You can simplify the problem by replacing a group of variables with a single
new variable.

Principal components analysis is a quantitatively rigorous method for
achieving this simplification. The method generates a new set of variables,
called principal components. Each principal component is a linear combination
of the original variables. All the principal components are orthogonal to each
other, so there is no redundant information. The principal components as a
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for
several columns of data. What is so special about the principal component
basis?

The first principal component is a single axis in space. When you project
each observation on that axis, the resulting values form a new variable. And
the variance of this variable is the maximum among all possible choices of
the first axis.

The second principal component is another axis in space, perpendicular to
the first. Projecting the observations on this axis generates another new
variable. The variance of this variable is the maximum among all possible
choices of this second axis.
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The full set of principal components is as large as the original set of variables.
But it is commonplace for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By
examining plots of these few new variables, researchers often develop a deeper
understanding of the driving forces that generated the original data.

You can use the function princomp to find the principal components. The
following sections provide an example and explain the four outputs of
princomp:

• “Example: Principal Components Analysis” on page 9-3

• “The Principal Component Coefficients (First Output)” on page 9-6

• “The Component Scores (Second Output)” on page 9-7

• “The Component Variances (Third Output)” on page 9-10

• “Hotelling’s T2 (Fourth Output)” on page 9-12

• “Visualizing the Results of a Principal Components Analysis — The Biplot”
on page 9-12

To use princomp, you need to have the actual measured data you want to
analyze. However, if you lack the actual data, but have the sample covariance
or correlation matrix for the data, you can still use the function pcacov to
perform a principal components analysis. See the reference page for pcacov
for a description of its inputs and outputs.

Example: Principal Components Analysis
Consider a sample application that uses nine different indices of the
quality of life in 329 U.S. cities. These are climate, housing, health, crime,
transportation, education, arts, recreation, and economics. For each index,
higher is better. For example, a higher index for crime means a lower crime
rate.

Start by loading the data in cities.mat.

load cities
whos

Name Size Bytes Class
categories 9x14 252 char array
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names 329x43 28294 char array
ratings 329x9 23688 double array

The whos command generates a table of information about all the variables
in the workspace.

The cities data set contains three variables:

• categories, a string matrix containing the names of the indices

• names, a string matrix containing the 329 city names

• ratings, the data matrix with 329 rows and 9 columns

The categories variable has the following values:

categories
categories =

climate
housing
health
crime
transportation
education
arts
recreation
economics

The first five rows of names are

first5 = names(1:5,:)
first5 =

Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,'orientation','horizontal','labels',categories)
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This command generates the plot below. Note that there is substantially
more variability in the ratings of the arts and housing than in the ratings
of crime and climate.
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Ordinarily you might also graph pairs of the original variables, but there are
36 two-variable plots. Perhaps principal components analysis can reduce the
number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This
is appropriate when all the variables are in the same units. Standardizing the
data is often preferable when the variables are in different units or when the
variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard
deviation.

stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);

Now you are ready to find the principal components.
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[coefs,scores,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp.

The Principal Component Coefficients (First Output)
The first output of the princomp function, coefs, contains the coefficients for
nine principal components. These are the linear combinations of the original
variables that generate the new variables.

The first three principal component coefficient vectors are

c3 = coefs(:,1:3)
c3 =

0.2064 0.2178 -0.6900
0.3565 0.2506 -0.2082
0.4602 -0.2995 -0.0073
0.2813 0.3553 0.1851
0.3512 -0.1796 0.1464
0.2753 -0.4834 0.2297
0.4631 -0.1948 -0.0265
0.3279 0.3845 -0.0509
0.1354 0.4713 0.6073

The largest coefficients in the first column (first principal component) are
the third and seventh elements, corresponding to the variables health and
arts. All the coefficients of the first principal component have the same sign,
making it a weighted average of all the original variables.

Because the principal components are unit length and orthogonal,
premultiplying the matrix c3 by its transpose yields the identity matrix.

I = c3'*c3
I =

1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000
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The Component Scores (Second Output)
The second output, scores, is the original data mapped into the new
coordinate system defined by the principal components. This output is the
same size as the input data matrix.

A plot of the first two columns of scores shows the ratings data projected
onto the first two principal components. princomp computes the scores to
have mean zero.

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');
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Note the outlying points in the right half of the plot.

While it is possible to create a three-dimensional plot using three columns
of scores, the examples in this section create two-dimensional plots, which
are easier to describe.
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The function gname is useful for graphically identifying a few points in a plot
like this. You can call gname with a string matrix containing as many case
labels as points in the plot. The string matrix names works for labeling points
with the city names.

gname(names)

Move your cursor over the plot and click once near each point in the right half.
As you click each point, MATLAB labels it with the proper row from the names
string matrix. When you are finished labeling points, press the Return key.

Here is the resulting plot.
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New York, NY            

Los Angeles, Long Beach, CA                

San Francisco, CA                          

Boston, MA                                 

Washington, DC−MD−VA                       

Chicago, IL                                

The labeled cities are some of the biggest population centers in the United
States. They are definitely different from the remainder of the data, so
perhaps they should be considered separately. To remove the labeled cities
from the data, first identify their corresponding row numbers as follows:

1 Close the plot window.
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2 Redraw the plot by entering

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

3 Enter gname without any arguments.

4 Click near the points you labeled in the preceding figure. This labels the
points by their row numbers, as shown in the following figure.
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Then you can create an index variable containing the row numbers of all
the metropolitan areas you choose.

metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =

Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA

9-9



9 Multivariate Statistics

New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

To remove these rows from the ratings matrix, enter the following.

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
size(rsubset)
ans =

322 9

The Component Variances (Third Output)
The third output, variances, is a vector containing the variance explained by
the corresponding principal component. Each column of scores has a sample
variance equal to the corresponding element of variances.

variances
variances =

3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

You can easily calculate the percent of the total variability explained by each
principal component.

percent_explained = 100*variances/sum(variances)
percent_explained =

37.8699
13.4886
12.6831
10.2324
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8.3698
7.0062
5.4783
3.5338
1.3378

Use the pareto function to make a scree plot of the percent variability
explained by each principal component.

pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')
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The preceding figure shows that the only clear break in the amount of
variance accounted for by each component is between the first and second
components. However, that component by itself explains less than 40% of the
variance, so more components are probably needed. You can see that the first
three principal components explain roughly two-thirds of the total variability
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in the standardized ratings, so that might be a reasonable way to reduce the
dimensions in order to visualize the data.

Hotelling’s T2 (Fourth Output)
The last output of the princomp function, t2, is Hotelling’s T2, a statistical
measure of the multivariate distance of each observation from the center of the
data set. This is an analytical way to find the most extreme points in the data.

[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =

213
names(extreme,:)
ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the
average U.S. town.

Visualizing the Results of a Principal Components
Analysis — The Biplot
You can use the biplot function to help visualize both the principal
component coefficients for each variable and the principal component scores
for each observation in a single plot. For example, the following command
plots the results from the principal components analysis on the cities and
labels each of the variables.

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-.26 1 -.51 .51]);

9-12



Principal Components Analysis

−0.2 0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

climate       
housing       

health        

crime         

transportation

education     

arts          

recreation    

economics     

Component 1

C
om

po
ne

nt
 2

Each of the nine variables is represented in this plot by a vector, and the
direction and length of the vector indicates how each variable contributes to
the two principal components in the plot. For example, you have seen that the
first principal component, represented in this biplot by the horizontal axis, has
positive coefficients for all nine variables. That corresponds to the nine vectors
directed into the right half of the plot. You have also seen that the second
principal component, represented by the vertical axis, has positive coefficients
for the variables education, health, arts, and education, and negative
coefficients for the remaining five variables. That corresponds to vectors
directed into the top and bottom halves of the plot, respectively. This indicates
that this component distinguishes between cities that have high values for the
first set of variables and low for the second, and cities that have the opposite.

The variable labels in this figure are somewhat crowded. You could either
leave out the VarLabels parameter when making the plot, or simply select
and drag some of the labels to better positions using the Edit Plot tool from
the figure window toolbar.

Each of the 329 observations is represented in this plot by a point, and
their locations indicate the score of each observation for the two principal
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components in the plot. For example, points near the left edge of this plot
have the lowest scores for the first principal component. The points are
scaled to fit within the unit square, so only their relative locations may be
determined from the plot.

You can use the Data Cursor, in the Tools menu in the figure window, to
identify the items in this plot. By clicking on a variable (vector), you can read
off that variable’s coefficients for each principal component. By clicking on
an observation (point), you can read off that observation’s scores for each
principal component.

You can also make a biplot in three dimensions. This can be useful if the first
two principal coordinates do not explain enough of the variance in your data.
Selecting Rotate 3D in the Tools menu enables you to rotate the figure to
see it from different angles.

biplot(coefs(:,1:3), 'scores',scores(:,1:3),...
'obslabels',names);
axis([-.26 1 -.51 .51 -.61 .81]);
view([30 40]);
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Factor Analysis
Multivariate data often includes a large number of measured variables, and
sometimes those variables overlap, in the sense that groups of them might be
dependent. For example, in a decathlon, each athlete competes in 10 events,
but several of them can be thought of as speed events, while others can be
thought of as strength events, etc. Thus, you can think of a competitor’s 10
event scores as largely dependent on a smaller set of three or four types of
athletic ability.

Factor analysis is a way to fit a model to multivariate data to estimate just this
sort of interdependence. In a factor analysis model, the measured variables
depend on a smaller number of unobserved (latent) factors. Because each
factor might affect several variables in common, they are known as common
factors. Each variable is assumed to be dependent on a linear combination
of the common factors, and the coefficients are known as loadings. Each
measured variable also includes a component due to independent random
variability, known as “specific variance” because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data
is of the form

where is the matrix of loadings, and the elements of the diagonal matrix
are the specific variances. The function factoran fits the Factor Analysis

model using maximum likelihood.

This section includes these topics:

• “Example: Finding Common Factors Affecting Stock Prices” on page 9-16

• “Factor Rotation” on page 9-18

• “Predicting Factor Scores” on page 9-19

• “Visualizing the Results of a Factor Analysis — The Biplot” on page 9-21

• “Comparison of Factor Analysis and Principal Components Analysis” on
page 9-22
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Example: Finding Common Factors Affecting Stock
Prices
Over the course of 100 weeks, the percent change in stock prices for ten
companies has been recorded. Of the ten companies, the first four can be
classified as primarily technology, the next three as financial, and the last
three as retail. It seems reasonable that the stock prices for companies that
are in the same sector might vary together as economic conditions change.
Factor Analysis can provide quantitative evidence that companies within each
sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a
model fit with three common factors. By default, factoran computes rotated
estimates of the loadings to try and make their interpretation simpler. But in
this example, you specify an unrotated solution.

load stockreturns
[Loadings,specificVar,T,stats] = ...

factoran(stocks,3,'rotate','none');

The first two factoran return arguments are the estimated loadings and the
estimated specific variances. Each row of the loadings matrix represents one
of the ten stocks, and each column corresponds to a common factor. With
unrotated estimates, interpretation of the factors in this fit is difficult because
most of the stocks contain fairly large coefficients for two or more factors.

Loadings
Loadings =

0.8885 0.2367 -0.2354
0.7126 0.3862 0.0034
0.3351 0.2784 -0.0211
0.3088 0.1113 -0.1905
0.6277 -0.6643 0.1478
0.4726 -0.6383 0.0133
0.1133 -0.5416 0.0322
0.6403 0.1669 0.4960
0.2363 0.5293 0.5770
0.1105 0.1680 0.5524
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Note “Factor Rotation” on page 9-18 helps to simplify the structure in the
Loadings matrix, to make it easier to assign meaningful interpretations to
the factors.

From the estimated specific variances, you can see that the model indicates
that a particular stock price varies quite a lot beyond the variation due to
the common factors.

specificVar
specificVar =

0.0991
0.3431
0.8097
0.8559
0.1429
0.3691
0.6928
0.3162
0.3311
0.6544

A specific variance of 1 would indicate that there is no common factor
component in that variable, while a specific variance of 0 would indicate that
the variable is entirely determined by common factors. These data seem to
fall somewhere in between.

The p-value returned in the stats structure fails to reject the null hypothesis
of three common factors, suggesting that this model provides a satisfactory
explanation of the covariation in these data.

stats.p
ans =

0.8144

To determine whether fewer than three factors can provide an acceptable fit,
you can try a model with two common factors. The p-value for this second fit
is highly significant, and rejects the hypothesis of two factors, indicating that
the simpler model is not sufficient to explain the pattern in these data.
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[Loadings2,specificVar2,T2,stats2] = ...
factoran(stocks, 2,'rotate','none');

stats2.p
ans =

3.5610e-006

Factor Rotation
As the results in “Example: Finding Common Factors Affecting Stock Prices”
on page 9-16 illustrate, the estimated loadings from an unrotated factor
analysis fit can have a complicated structure. The goal of factor rotation is
to find a parameterization in which each variable has only a small number
of large loadings. That is, each variable is affected by a small number of
factors, preferably only one. This can often make it easier to interpret what
the factors represent.

If you think of each row of the loadings matrix as coordinates of a point
in M-dimensional space, then each factor corresponds to a coordinate axis.
Factor rotation is equivalent to rotating those axes and computing new
loadings in the rotated coordinate system. There are various ways to do this.
Some methods leave the axes orthogonal, while others are oblique methods
that change the angles between them. For this example, you can rotate the
estimated loadings by using the promax criterion, a common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =

0.9452 0.1214 -0.0617
0.7064 -0.0178 0.2058
0.3885 -0.0994 0.0975
0.4162 -0.0148 -0.1298
0.1021 0.9019 0.0768
0.0873 0.7709 -0.0821

-0.1616 0.5320 -0.0888
0.2169 0.2844 0.6635
0.0016 -0.1881 0.7849

-0.2289 0.0636 0.6475

Promax rotation creates a simpler structure in the loadings, one in which
most of the stocks have a large loading on only one factor. To see this structure

9-18



Factor Analysis

more clearly, you can use the biplot function to plot each stock using its
factor loadings as coordinates.

biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);
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This plot shows that promax has rotated the factor loadings to a simpler
structure. Each stock depends primarily on only one factor, and it is possible
to describe each factor in terms of the stocks that it affects. Based on which
companies are near which axes, you could reasonably conclude that the first
factor axis represents the financial sector, the second retail, and the third
technology. The original conjecture, that stocks vary primarily within sector,
is apparently supported by the data.

Predicting Factor Scores
Sometimes, it is useful to be able to classify an observation based on its
factor scores. For example, if you accepted the three-factor model and the
interpretation of the rotated factors, you might want to categorize each week
in terms of how favorable it was for each of the three stock sectors, based on
the data from the 10 observed stocks.
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Because the data in this example are the raw stock price changes, and not
just their correlation matrix, you can have factoran return estimates of the
value of each of the three rotated common factors for each week. You can
then plot the estimated scores to see how the different stock sectors were
affected during each week.

[LoadingsPM,specVarPM,TPM,stats,F] = ...
factoran(stocks, 3,'rotate','promax');

subplot(1,1,1);
plot3(F(:,1),F(:,2),F(:,3),'b.');
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],...

[0 0 NaN 0 0 NaN -4 4], 'Color','black');
xlabel('Financial Sector');
ylabel('Retail Sector');
zlabel('Technology Sector');
grid on;
axis square;
view(-22.5, 8);
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Oblique rotation often creates factors that are correlated. This plot shows
some evidence of correlation between the first and third factors, and you can
investigate further by computing the estimated factor correlation matrix.

inv(TPM'*TPM)
ans =

1.0000 0.1559 0.4082
0.1559 1.0000 -0.0559
0.4082 -0.0559 1.0000

Visualizing the Results of a Factor Analysis — The
Biplot
You can use the biplot function to help visualize both the factor loadings for
each variable and the factor scores for each observation in a single plot. For
example, the following command plots the results from the factor analysis on
the stock data and labels each of the 10 stocks.

biplot(LoadingsPM, 'scores',F, 'varlabels',num2str((1:10)'));
xlabel('Financial Sector'); ylabel('Retail Sector');
zlabel('Technology Sector');
axis square
view(155,27);
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In this case, the factor analysis includes three factors, and so the biplot is
three-dimensional. Each of the 10 stocks is represented in this plot by a vector,
and the direction and length of the vector indicates how each stock depends
on the underlying factors. For example, you have seen that after promax
rotation, the first four stocks have positive loadings on the first factor, and
unimportant loadings on the other two factors. That first factor, interpreted
as a financial sector effect, is represented in this biplot as one of the horizontal
axes. The dependence of those four stocks on that factor corresponds to the
four vectors directed approximately along that axis. Similarly, the dependence
of stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail
sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and
their locations indicate the score of each observation for the three factors.
For example, points near the top of this plot have the highest scores for the
technology sector factor. The points are scaled to fit within the unit square, so
only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window
to identify the items in this plot. By clicking a stock (vector), you can read off
that stock’s loadings for each factor. By clicking an observation (point), you
can read off that observation’s scores for each factor.

Comparison of Factor Analysis and Principal
Components Analysis
There is a good deal of overlap in terminology and goals between principal
components analysis (PCA) and factor analysis (FA). Much of the literature on
the two methods does not distinguish between them, and some algorithms for
fitting the FA model involve PCA. Both are dimension-reduction techniques,
in the sense that they can be used to replace a large set of observed variables
with a smaller set of new variables. However, the two methods are different
in their goals and in their underlying models. Roughly speaking, you should
use PCA when you simply need to summarize or approximate your data using
fewer dimensions (to visualize it, for example), and you should use FA when
you need an explanatory model for the correlations among your data.
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Multivariate Analysis of Variance
The analysis of variance technique in “Example: One-Way ANOVA” on
page 7-33 takes a set of grouped data and determine whether the mean
of a variable differs significantly between groups. Often there are multiple
variables, and you are interested in determining whether the entire set of
means is different from one group to the next. There is a multivariate version
of analysis of variance that can address that problem, as illustrated in the
“Example: Multivariate Analysis of Variance” on page 9-23.

Example: Multivariate Analysis of Variance
The carsmall data set has measurements on a variety of car models from
the years 1970, 1976, and 1982. Suppose you are interested in whether the
characteristics of the cars have changed over time.

First, load the data.

load carsmall
whos

Name Size Bytes Class
Acceleration 100x1 800 double array
Cylinders 100x1 800 double array
Displacement 100x1 800 double array
Horsepower 100x1 800 double array
MPG 100x1 800 double array
Model 100x36 7200 char array
Model_Year 100x1 800 double array
Origin 100x7 1400 char array
Weight 100x1 800 double array

Four of these variables (Acceleration, Displacement, Horsepower, and
MPG) are continuous measurements on individual car models. The variable
Model_Year indicates the year in which the car was made. You can create a
grouped plot matrix of these variables using the gplotmatrix function.

x = [MPG Horsepower Displacement Weight];
gplotmatrix(x,[],Model_Year,[],'+xo')
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(When the second argument of gplotmatrix is empty, the function graphs
the columns of the x argument against each other, and places histograms
along the diagonals. The empty fourth argument produces a graph with the
default colors. The fifth argument controls the symbols used to distinguish
between groups.)

It appears the cars do differ from year to year. The upper right plot, for
example, is a graph of MPG versus Weight. The 1982 cars appear to have
higher mileage than the older cars, and they appear to weigh less on average.
But as a group, are the three years significantly different from one another?
The manova1 function can answer that question.

[d,p,stats] = manova1(x,Model_Year)
d =

2
p =

1.0e-006 *
0

0.1141
stats =

W: [4x4 double]
B: [4x4 double]
T: [4x4 double]

dfW: 90
dfB: 2
dfT: 92

lambda: [2x1 double]
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chisq: [2x1 double]
chisqdf: [2x1 double]

eigenval: [4x1 double]
eigenvec: [4x4 double]

canon: [100x4 double]
mdist: [100x1 double]

gmdist: [3x3 double]

The manova1 function produces three outputs:

• The first output, d, is an estimate of the dimension of the group means. If
the means were all the same, the dimension would be 0, indicating that the
means are at the same point. If the means differed but fell along a line,
the dimension would be 1. In the example the dimension is 2, indicating
that the group means fall in a plane but not along a line. This is the largest
possible dimension for the means of three groups.

• The second output, p, is a vector of p-values for a sequence of tests. The
first p-value tests whether the dimension is 0, the next whether the
dimension is 1, and so on. In this case both p-values are small. That’s
why the estimated dimension is 2.

• The third output, stats, is a structure containing several fields, described
in the following section.

The Fields of the stats Structure
The W, B, and T fields are matrix analogs to the within, between, and total sums
of squares in ordinary one-way analysis of variance. The next three fields are
the degrees of freedom for these matrices. Fields lambda, chisq, and chisqdf
are the ingredients of the test for the dimensionality of the group means. (The
p-values for these tests are the first output argument of manova1.)

The next three fields are used to do a canonical analysis. Recall that in
principal components analysis (“Principal Components Analysis” on page 9-2)
you look for the combination of the original variables that has the largest
possible variation. In multivariate analysis of variance, you instead look
for the linear combination of the original variables that has the largest
separation between groups. It is the single variable that would give the most
significant result in a univariate one-way analysis of variance. Having found
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that combination, you next look for the combination with the second highest
separation, and so on.

The eigenvec field is a matrix that defines the coefficients of the linear
combinations of the original variables. The eigenval field is a vector
measuring the ratio of the between-group variance to the within-group
variance for the corresponding linear combination. The canon field is a matrix
of the canonical variable values. Each column is a linear combination of the
mean-centered original variables, using coefficients from the eigenvec matrix.

A grouped scatter plot of the first two canonical variables shows more
separation between groups then a grouped scatter plot of any pair of original
variables. In this example it shows three clouds of points, overlapping but
with distinct centers. One point in the bottom right sits apart from the others.
By using the gname function, you can see that this is the 20th point.

c1 = stats.canon(:,1);
c2 = stats.canon(:,2);
gscatter(c2,c1,Model_Year,[],'oxs')
gname
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Roughly speaking, the first canonical variable, c1, separates the 1982 cars
(which have high values of c1) from the older cars. The second canonical
variable, c2, reveals some separation between the 1970 and 1976 cars.

The final two fields of the stats structure are Mahalanobis distances. The
mdist field measures the distance from each point to its group mean. Points
with large values may be outliers. In this data set, the largest outlier is the
one in the scatter plot, the Buick Estate station wagon. (Note that you could
have supplied the model name to the gname function above if you wanted to
label the point with its model name rather than its row number.)

max(stats.mdist)
ans =

31.5273
find(stats.mdist == ans)
ans =

20
Model(20,:)
ans =

buick_estate_wagon_(sw)

The gmdist field measures the distances between each pair of group means.
The following commands examine the group means and their distances:

grpstats(x, Model_Year)
ans =

1.0e+003 *
0.0177 0.1489 0.2869 3.4413
0.0216 0.1011 0.1978 3.0787
0.0317 0.0815 0.1289 2.4535

stats.gmdist
ans =

0 3.8277 11.1106
3.8277 0 6.1374

11.1106 6.1374 0

As might be expected, the multivariate distance between the extreme years
1970 and 1982 (11.1) is larger than the difference between more closely
spaced years (3.8 and 6.1). This is consistent with the scatter plots, where the
points seem to follow a progression as the year changes from 1970 through

9-27



9 Multivariate Statistics

1976 to 1982. If you had more groups, you might find it instructive to use
the manovacluster function to draw a diagram that presents clusters of the
groups, formed using the distances between their means.
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Cluster Analysis
Cluster analysis, also called segmentation analysis or taxonomy analysis, is
a way to create groups of objects, or clusters, in such a way that the profiles
of objects in the same cluster are very similar and the profiles of objects in
different clusters are quite distinct.

Cluster analysis can be performed on many different types of data sets. For
example, a data set might contain a number of observations of subjects in a
study where each observation contains a set of variables.

Many different fields of study, such as engineering, zoology, medicine,
linguistics, anthropology, psychology, and marketing, have contributed to the
development of clustering techniques and the application of such techniques.
For example, cluster analysis can help in creating “balanced” treatment and
control groups for a designed study. If you find that each cluster contains
roughly equal numbers of treatment and control subjects, then statistical
differences found between the groups can be attributed to the experiment and
not to any initial difference between the groups.

This section explores two kinds of clustering:

• “Hierarchical Clustering” on page 9-29

• “K-Means Clustering” on page 9-46

Hierarchical Clustering
Hierarchical clustering is a way to investigate grouping in your data,
simultaneously over a variety of scales, by creating a cluster tree. The tree is
not a single set of clusters, but rather a multilevel hierarchy, where clusters
at one level are joined as clusters at the next higher level. This allows you to
decide what level or scale of clustering is most appropriate in your application.

The following sections explore the hierarchical clustering features in Statistics
Toolbox:

• “Terminology and Basic Procedure” on page 9-30

• “Finding the Similarities Between Objects” on page 9-30

• “Defining the Links Between Objects” on page 9-33
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• “Evaluating Cluster Formation” on page 9-35

Terminology and Basic Procedure
To perform hierarchical cluster analysis on a data set using Statistics Toolbox
functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects
in the data set. In this step, you calculate the distance between objects
using the pdist function. The pdist function supports many different
ways to compute this measurement. See “Finding the Similarities Between
Objects” on page 9-30 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this
step, you link pairs of objects that are in close proximity using the linkage
function. The linkage function uses the distance information generated in
step 1 to determine the proximity of objects to each other. As objects are
paired into binary clusters, the newly formed clusters are grouped into
larger clusters until a hierarchical tree is formed. See “Defining the Links
Between Objects” on page 9-33 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this
step, you use the cluster function to prune branches off the bottom of
the hierarchical tree, and assign all the objects below each cut to a single
cluster. This creates a partition of the data. The cluster function can
create these clusters by detecting natural groupings in the hierarchical
tree or by cutting off the hierarchical tree at an arbitrary point. See [23]
for more information.

The following sections provide more information about each of these steps.

Note Statistics Toolbox includes a convenience function, clusterdata, which
performs all these steps for you. You do not need to execute the pdist,
linkage, or cluster functions separately.

Finding the Similarities Between Objects
You use the pdist function to calculate the distance between every pair
of objects in a data set. For a data set made up of m objects, there are
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pairs in the data set. The result of this computation is commonly
known as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the
pdist function calculates the Euclidean distance between objects; however,
you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before
calculating the distance information. In a real world data set, variables can
be measured against different scales. For example, one variable can measure
Intelligence Quotient (IQ) test scores and another variable can measure head
circumference. These discrepancies can distort the proximity calculations.
Using the zscore function, you can convert all the values in the data set to
use the same proportional scale. See zscore for more information.

For example, consider a data set, X, made up of five objects where each object
is a set of x,y coordinates.

• Object 1: 1, 2

• Object 2: 2.5, 4.5

• Object 3: 2, 2

• Object 4: 4, 1.5

• Object 5: 4, 2.5

You can define this data set as a matrix

X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]

and pass it to pdist. The pdist function calculates the distance between
object 1 and object 2, object 1 and object 3, and so on until the distances
between all the pairs have been calculated. The following figure plots these
objects in a graph. The Euclidean distance between object 2 and object 3 is
shown to illustrate one interpretation of distance.
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Returning Distance Information. The pdist function returns this distance
information in a vector, Y, where each element contains the distance between
a pair of objects.

Y = pdist(X)

Y =

Columns 1 through 5

2.9155 1.0000 3.0414 3.0414 2.5495

Columns 6 through 10

3.3541 2.5000 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information
generated by pdist and the objects in the original data set, you can reformat
the distance vector into a matrix using the squareform function. In this
matrix, element i,j corresponds to the distance between object i and object j in
the original data set. In the following example, element 1,1 represents the
distance between object 1 and itself (which is zero). Element 1,2 represents
the distance between object 1 and object 2, and so on.

squareform(Y)
ans =

0 2.9155 1.0000 3.0414 3.0414
2.9155 0 2.5495 3.3541 2.5000
1.0000 2.5495 0 2.0616 2.0616
3.0414 3.3541 2.0616 0 1.0000
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3.0414 2.5000 2.0616 1.0000 0

Defining the Links Between Objects
Once the proximity between objects in the data set has been computed, you
can determine how objects in the data set should be grouped into clusters,
using the linkage function. The linkage function takes the distance
information generated by pdist and links pairs of objects that are close
together into binary clusters (clusters made up of two objects). The linkage
function then links these newly formed clusters to each other and to other
objects to create bigger clusters until all the objects in the original data set
are linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample
data set of x- and y-coordinates, the linkage function generates a hierarchical
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =

4.0000 5.0000 1.0000
1.0000 3.0000 1.0000
6.0000 7.0000 2.0616
2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The
first two columns identify the objects that have been linked, that is, object 1,
object 2, and so on. The third column contains the distance between these
objects. For the sample data set of x- and y-coordinates, the linkage function
begins by grouping objects 1 and 3, which have the closest proximity (distance
value = 1.0000). The linkage function continues by grouping objects 4 and 5,
which also have a distance value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If
the original sample data set contained only five objects, what are objects 6
and 7? Object 6 is the newly formed binary cluster created by the grouping
of objects 1 and 3. When the linkage function groups two objects into a
new cluster, it must assign the cluster a unique index value, starting with
the value m+1, where m is the number of objects in the original data set.
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(Values 1 through m are already used by the original data set.) Similarly,
object 7 is the cluster formed by grouping objects 4 and 5.

linkage uses distances to determine the order in which it clusters objects.
The distance vector Y contains the distances between the original objects 1
through 5. But linkage must also be able to determine distances involving
clusters that it creates, such as objects 6 and 7. By default, linkage uses a
method known as single linkage. However, there are a number of different
methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed
cluster made up of objects 6 and 7, with object 2 from the original data set.
The following figure graphically illustrates the way linkage groups the
objects into a hierarchy of clusters.

Plotting the Cluster Tree
The hierarchical, binary cluster tree created by the linkage function is most
easily understood when viewed graphically. Statistics Toolbox includes the
dendrogram function that plots this hierarchical tree information as a graph,
as in the following example.

dendrogram(Z)
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In the figure, the numbers along the horizontal axis represent the indices of
the objects in the original data set. The links between objects are represented
as upside-down U-shaped lines. The height of the U indicates the distance
between the objects. For example, the link representing the cluster containing
objects 1 and 3 has a height of 1. The link representing the cluster that groups
object 2 together with objects 1, 3, 4, and 5, (which are already clustered as
object 8) has a height of 2.5. The height represents the distance linkage
computes between objects 2 and 8. For more information about creating a
dendrogram diagram, see the dendrogram reference page.

Evaluating Cluster Formation
After linking the objects in a data set into a hierarchical cluster tree, you
might want to verify that the distances (that is, heights) in the tree reflect
the original distances accurately. In addition, you might want to investigate
natural divisions that exist among links between objects. Statistics Toolbox
provides functions to perform both these tasks, as described in the following
sections:

• “Verifying the Cluster Tree” on page 9-36
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• “Getting More Information About Cluster Links” on page 9-37

Verifying the Cluster Tree. In a hierarchical cluster tree, any two objects in
the original data set are eventually linked together at some level. The height
of the link represents the distance between the two clusters that contain
those two objects. This height is known as the cophenetic distance between
the two objects. One way to measure how well the cluster tree generated by
the linkage function reflects your data is to compare the cophenetic distances
with the original distance data generated by the pdist function. If the
clustering is valid, the linking of objects in the cluster tree should have a
strong correlation with the distances between objects in the distance vector.
The cophenet function compares these two sets of values and computes their
correlation, returning a value called the cophenetic correlation coefficient.
The closer the value of the cophenetic correlation coefficient is to 1, the more
accurately the clustering solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of
clustering the same data set using different distance calculation methods or
clustering algorithms. For example, you can use the cophenet function to
evaluate the clusters created for the sample data set

c = cophenet(Z,Y)
c =

0.8615

where Z is the matrix output by the linkage function and Y is the distance
vector output by the pdist function.

Execute pdist again on the same data set, this time specifying the city block
metric. After running the linkage function on this new pdist output using
the average linkage method, call cophenet to evaluate the clustering solution.

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
c =

0.9044
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The cophenetic correlation coefficient shows that using a different distance
and linkage method creates a tree that represents the original distances
slightly better.

Getting More Information About Cluster Links. One way to determine
the natural cluster divisions in a data set is to compare the height of each link
in a cluster tree with the heights of neighboring links below it in the tree.

A link that is approximately the same height as the links below it indicates
that there are no distinct divisions between the objects joined at this level
of the hierarchy. These links are said to exhibit a high level of consistency,
because the distance between the objects being joined is approximately the
same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of
the links below it indicates that the objects joined at this level in the cluster
tree are much farther apart from each other than their components were when
they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural
division in a data set. The cluster function uses a quantitative measure of
inconsistency to determine where to partition your data set into clusters. (See
[23] for more information.)

The following dendrogram illustrates inconsistent links. Note how the objects
in the dendrogram fall into two groups that are connected by links at a much
higher level in the tree. These links are inconsistent when compared with the
links below them in the hierarchy.
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The relative consistency of each link in a hierarchical cluster tree can be
quantified and expressed as the inconsistency coefficient. This value compares
the height of a link in a cluster hierarchy with the average height of links
below it. Links that join distinct clusters have a low inconsistency coefficient;
links that join indistinct clusters have a high inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the cluster
tree, use the inconsistent function. By default, the inconsistent function
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compares each link in the cluster hierarchy with adjacent links that are less
than two levels below it in the cluster hierarchy. This is called the depth of
the comparison. You can also specify other depths. The objects at the bottom
of the cluster tree, called leaf nodes, that have no further objects below them,
have an inconsistency coefficient of zero. Clusters that join two leaves also
have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the
inconsistency values for the links created by the linkage function in “Defining
the Links Between Objects” on page 9-33.

I = inconsistent(Z)
I =

1.0000 0 1.0000 0
1.0000 0 1.0000 0
1.3539 0.6129 3.0000 1.1547
2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4
matrix, whose columns are described in the following table.

Column Description

1 Mean of the heights of all the links included in the calculation

2 Standard deviation of all the links included in the calculation

3 Number of links included in the calculation

4 Inconsistency coefficient

In the sample output, the first row represents the link between objects 4
and 5. This cluster is assigned the index 6 by the linkage function. Because
both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero.
The second row represents the link between objects 1 and 3, both of which are
also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6
and 7. (This new cluster is assigned index 8 in the linkage output). Column 3
indicates that three links are considered in the calculation: the link itself and
the two links directly below it in the hierarchy. Column 1 represents the mean
of the heights of these links. The inconsistent function uses the height
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information output by the linkage function to calculate the mean. Column 2
represents the standard deviation between the links. The last column contains
the inconsistency value for these links, 1.1547. It is the difference between
the current link height and the mean, normalized by the standard deviation:

(2.0616 - 1.3539) / .6129
ans =

1.1547

The following figure illustrates the links and heights included in this
calculation.
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Note In the preceding figure, the lower limit on the y-axis is set to 0 to show
the heights of the links. To set the lower limit to 0, select Axes Properties
from the Edit menu, click the Y Axis tab, and enter 0 in the field immediately
to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2.
Column 3 indicates that two links are included in this calculation: the link
itself and the link directly below it in the hierarchy. The inconsistency
coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this
calculation.
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Creating Clusters
After you create the hierarchical tree of binary clusters, you can prune the
tree to partition your data into clusters using the cluster function. The
cluster function lets you create clusters in two ways, as discussed in the
following sections:

• “Finding Natural Divisions in Data” on page 9-43

• “Specifying Arbitrary Clusters” on page 9-44
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Finding Natural Divisions in Data. The hierarchical cluster tree may
naturally divide the data into distinct, well-separated clusters. This can
be particularly evident in a dendrogram diagram created from data where
groups of objects are densely packed in certain areas and not in others.
The inconsistency coefficient of the links in the cluster tree can identify
these divisions where the similarities between objects change abruptly. (See
“Evaluating Cluster Formation” on page 9-35 for more information about the
inconsistency coefficient.) You can use this value to determine where the
cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set
into clusters, specifying an inconsistency coefficient threshold of 1.2 as the
value of the cutoff argument, the cluster function groups all the objects
in the sample data set into one cluster. In this case, none of the links in the
cluster hierarchy had an inconsistency coefficient greater than 1.2.

T = cluster(Z,'cutoff',1.2)
T =

1
1
1
1
1

The cluster function outputs a vector, T, that is the same size as the original
data set. Each element in this vector contains the number of the cluster into
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster
function divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)
T =

1
3
1
2
2
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This output indicates that objects 1 and 3 were placed in cluster 1, objects 4
and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the
inconsistency coefficient. These clusters may, but do not necessarily,
correspond to a horizontal slice across the dendrogram at a certain height.
If you want clusters corresponding to a horizontal slice of the dendrogram,
you can either use the criterion option to specify that the cutoff should be
based on distance rather than inconsistency, or you can specify the number of
clusters directly as described in the following section.

Specifying Arbitrary Clusters. Instead of letting the cluster function
create clusters determined by the natural divisions in the data set, you can
specify the number of clusters you want created.

For example, you can specify that you want the cluster function to partition
the sample data set into two clusters. In this case, the cluster function
creates one cluster containing objects 1, 3, 4, and 5 and another cluster
containing object 2.

T = cluster(Z,'maxclust',2)
T =

2
1
2
2
2

To help you visualize how the cluster function determines these clusters, the
following figure shows the dendrogram of the hierarchical cluster tree. The
horizontal dashed line intersects two lines of the dendrogram, corresponding
to setting 'maxclust' to 2. These two lines partition the objects into two
clusters: the objects below the left-hand line, namely 1, 3, 4, and 5, belong to
one cluster, while the object below the right-hand line, namely 2, belongs to
the other cluster.
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On the other hand, if you set 'maxclust' to 3, the cluster function groups
objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2
in a third cluster. The following command illustrates this.

T = cluster(Z,'maxclust',3)
T =

1
3
1
2
2
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This time, the cluster function cuts off the hierarchy at a lower point,
corresponding to the horizontal line that intersects three lines of the
dendrogram in the following figure.
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K-Means Clustering
This section gives a description and an example of using the MATLAB
function for K-means clustering, kmeans.

• “Overview of K-Means Clustering” on page 9-47
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• “Example: Clustering Data in Four Dimensions” on page 9-47

Overview of K-Means Clustering
K-means clustering can best be described as a partitioning method. That is,
the function kmeans partitions the observations in your data into K mutually
exclusive clusters, and returns a vector of indices indicating to which of the k
clusters it has assigned each observation. Unlike the hierarchical clustering
methods used in linkage (see “Hierarchical Clustering” on page 9-29), kmeans
does not create a tree structure to describe the groupings in your data, but
rather creates a single level of clusters. Another difference is that K-means
clustering uses the actual observations of objects or individuals in your data,
and not just their proximities. These differences often mean that kmeans is
more suitable for clustering large amounts of data.

kmeans treats each observation in your data as an object having a location in
space. It finds a partition in which objects within each cluster are as close to
each other as possible, and as far from objects in other clusters as possible.
You can choose from five different distance measures, depending on the kind
of data you are clustering.

Each cluster in the partition is defined by its member objects and by its
centroid, or center. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimized. kmeans computes
cluster centroids differently for each distance measure, to minimize the sum
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from
each object to its cluster centroid, over all clusters. This algorithm moves
objects between clusters until the sum cannot be decreased further. The
result is a set of clusters that are as compact and well-separated as possible.
You can control the details of the minimization using several optional input
parameters to kmeans, including ones for the initial values of the cluster
centroids, and for the maximum number of iterations.

Example: Clustering Data in Four Dimensions
This example explores possible clustering in four-dimensional data by
analyzing the results of partitioning the points into three, four, and five
clusters.
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Note Because each part of this example generates random numbers
sequentially, i.e., without setting a new state, you must perform all steps
in sequence to duplicate the results shown. If you perform the steps out of
sequence, the answers will be essentially the same, but the intermediate
results, number of iterations, or ordering of the silhouette plots may differ.

Creating Clusters and Determining Separation. First, load some data.

load kmeansdata;
size(X)
ans =

560 4

Even though these data are four-dimensional, and cannot be easily visualized,
kmeans enables you to investigate whether a group structure exists in them.
Call kmeans with k, the desired number of clusters, equal to 3. For this
example, specify the city block distance measure, and use the default starting
method of initializing centroids from randomly selected data points.

idx3 = kmeans(X,3,'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make
a silhouette plot using the cluster indices output from kmeans. The silhouette
plot displays a measure of how close each point in one cluster is to points in
the neighboring clusters. This measure ranges from +1, indicating points that
are very distant from neighboring clusters, through 0, indicating points that
are not distinctly in one cluster or another, to -1, indicating points that are
probably assigned to the wrong cluster. silhouette returns these values in
its first output.

[silh3,h] = silhouette(X,idx3,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
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From the silhouette plot, you can see that most points in the third cluster
have a large silhouette value, greater than 0.6, indicating that the cluster is
somewhat separated from neighboring clusters. However, the second cluster
contains many points with low silhouette values, and the first contains a few
points with negative values, indicating that those two clusters are not well
separated.

Determining the Correct Number of Clusters. Increase the number of
clusters to see if kmeans can find a better grouping of the data. This time, use
the optional 'display' parameter to print information about each iteration.

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
iter phase num sum

1 1 560 2897.56
2 1 53 2736.67
3 1 50 2476.78
4 1 102 1779.68
5 1 5 1771.1
6 2 0 1771.1

6 iterations, total sum of distances = 1771.1
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Notice that the total sum of distances decreases at each iteration as kmeans
reassigns points between clusters and recomputes cluster centroids. In this
case, the second phase of the algorithm did not make any reassignments,
indicating that the first phase reached a minimum after five iterations. In
some problems, the first phase might not reach a minimum, but the second
phase always will.

A silhouette plot for this solution indicates that these four clusters are better
separated than the three in the previous solution.

[silh4,h] = silhouette(X,idx4,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
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A more quantitative way to compare the two solutions is to look at the average
silhouette values for the two cases.

mean(silh3)
ans =

0.52594
mean(silh4)
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ans =
0.63997

Finally, try clustering the data using five clusters.

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
xlabel('Silhouette Value')
ylabel('Cluster')
mean(silh5)
ans =

0.52657
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This silhouette plot indicates that this is probably not the right number of
clusters, since two of the clusters contain points with mostly low silhouette
values. Without some knowledge of how many clusters are really in the data,
it is a good idea to experiment with a range of values for k.
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Avoiding Local Minima. Like many other types of numerical minimizations,
the solution that kmeans reaches often depends on the starting points. It
is possible for kmeans to reach a local minimum, where reassigning any
one point to a new cluster would increase the total sum of point-to-centroid
distances, but where a better solution does exist. However, you can use the
optional 'replicates' parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to
print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
'display','final','replicates',5);

17 iterations, total sum of distances = 2303.36
5 iterations, total sum of distances = 1771.1
6 iterations, total sum of distances = 1771.1
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, non-global
minima do exist. Each of these five replicates began from a different randomly
selected set of initial centroids, and kmeans found two different local minima.
However, the final solution that kmeans returns is the one with the lowest
total sum of distances, over all replicates.

sum(sumdist)
ans =

1771.1
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Multidimensional Scaling
The following sections explain how to perform multidimensional scaling,
using the functions cmdscale and mdscale:

• “Overview” on page 9-53

• “Classical Multidimensional Scaling” on page 9-54

• “Nonclassical Metric Multidimensional Scaling” on page 9-56

• “Nonmetric Multidimensional Scaling” on page 9-58

• “Example: Reconstructing a Map from Intercity Distances” on page 9-60

Overview
One of the most important goals in visualizing data is to get a sense of how
near or far points are from each other. Often, you can do this with a scatter
plot. However, for some analyses, the data that you have might not be in
the form of points at all, but rather in the form of pairwise similarities or
dissimilarities between cases, observations, or subjects. Without any points,
you cannot make a scatter plot.

Even if your data are in the form of points rather than pairwise distances,
a scatter plot of those data might not be useful. For some kinds of data,
the relevant way to measure how “near” two points are might not be their
Euclidean distance. While scatter plots of the raw data make it easy to
compare Euclidean distances, they are not always useful when comparing
other kinds of inter-point distances, city block distance for example, or even
more general dissimilarities. Also, with a large number of variables, it is very
difficult to visualize distances unless the data can be represented in a small
number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these
problems. MDS allows you to visualize how near points are to each other
for many kinds of distance or dissimilarity measures and can produce a
representation of your data in a small number of dimensions. MDS does not
require raw data, but only a matrix of pairwise distances or dissimilarities.
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Classical Multidimensional Scaling
The function cmdscale performs classical (metric) multidimensional scaling,
also known as principal coordinates analysis. cmdscale takes as an input a
matrix of inter-point distances and creates a configuration of points. Ideally,
those points are in two or three dimensions, and the Euclidean distances
between them reproduce the original distance matrix. Thus, a scatter plot
of the points created by cmdscale provides a visual representation of the
original distances.

A Simple Example
As a very simple example, you can reconstruct a set of points from only their
inter-point distances. First, create some four dimensional points with a small
component in their fourth coordinate, and reduce them to distances.

X = [ normrnd(0,1,10,3), normrnd(0,.1,10,1) ];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those inter-point distances.
cmdscale accepts distances as either a square matrix, or, as in this example,
in the vector upper-triangular form produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the
reconstructed points. The second output, eigvals, is a vector containing the
sorted eigenvalues of what is often referred to as the “scalar product matrix,”
which, in the simplest case, is equal to Y*Y'. The relative magnitudes of those
eigenvalues indicate the relative contribution of the corresponding columns of
Y in reproducing the original distance matrix D with the reconstructed points.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

12.623 1
4.3699 0.34618
1.9307 0.15295

0.025884 0.0020505
1.7192e-015 1.3619e-016
6.8727e-016 5.4445e-017
4.4367e-017 3.5147e-018
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-9.2731e-016 -7.3461e-017
-1.327e-015 -1.0513e-016

-1.9232e-015 -1.5236e-016

If eigvals contains only positive and zero (within round-off error) eigenvalues,
the columns of Y corresponding to the positive eigenvalues provide an exact
reconstruction of D, in the sense that their inter-point Euclidean distances,
computed using pdist, for example, are identical (within round-off) to the
values in D.

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =

2.6645e-015

If two or three of the eigenvalues in eigvals are much larger than the rest,
then the distance matrix based on the corresponding columns of Y nearly
reproduces the original distance matrix D. In this sense, those columns
form a lower-dimensional representation that adequately describes the
data. However it is not always possible to find a good low-dimensional
reconstruction.

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =

0.029728

% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =

0.91641

The reconstruction in three dimensions reproduces D very well, but the
reconstruction in two dimensions has errors that are of the same order of
magnitude as the largest values in D.

max(max(D))
ans =

3.4686

Often, eigvals contains some negative eigenvalues, indicating that the
distances in D cannot be reproduced exactly. That is, there might not be any
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configuration of points whose inter-point Euclidean distances are given by D.
If the largest negative eigenvalue is small in magnitude relative to the largest
positive eigenvalues, then the configuration returned by cmdscale might still
reproduce D well. “Example: Reconstructing a Map from Intercity Distances”
on page 9-60 demonstrates this.

Nonclassical Metric Multidimensional Scaling
The function cmdscale performs classical multidimensional scaling (MDS).
Statistics Toolbox also includes the function mdscale to perform nonclassical
MDS. As with cmdcale, you can use mdscale either to visualize dissimilarity
data for which no “locations” exist, or to visualize high-dimensional data by
reducing its dimensionality. Both functions take a matrix of dissimilarities as
an input and produce a configuration of points. However, mdscale offers a
choice of different criteria to construct the configuration, and allows missing
data and weights.

For example, the cereal data include measurements on 10 variables describing
breakfast cereals. You can use mdscale to visualize these data in two
dimensions. First, load the data. For clarity, this example code selects a
subset of 22 of the observations.

load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...

Carbo Sugars Shelf Potass Vitamins];
X = X(strmatch('G',Mfg),:); % take a subset from a

% single manufacturer
size(X)
ans =

22 10

Then use pdist to transform the 10-dimensional data into dissimilarities.
The output from pdist is a symmetric dissimilarity matrix, stored as a vector
containing only the (23*22/2) elements in its upper triangle.

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =

1 231
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This example code first standardizes the cereal data, and then uses city block
distance as a dissimilarity. The choice of transformation to dissimilarities is
application-dependent, and the choice here is only for simplicity. In some
applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must
specify the desired number of dimensions, and the method to use to construct
the output configuration. For this example, use two dimensions. The metric
STRESS criterion is a common method for computing the output; for other
choices, see the mdscale reference page in the online documentation. The
second output from mdscale is the value of that criterion evaluated for the
output configuration. It measures the how well the inter-point distances of
the output configuration approximate the original input dissimilarities.

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =

0.1856

A scatterplot of the output from mdscale represents the original
10-dimensional data in two dimensions, and you can use the gname function to
label selected points.

plot(Y(:,1),Y(:,2),'o');
gname(Name(strmatch('G',Mfg)))
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Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose
inter-point distances approximate the given dissimilarities. This is sometimes
too strict a requirement, and non-metric scaling is designed to relax it a bit.
Instead of trying to approximate the dissimilarities themselves, non-metric
scaling approximates a nonlinear, but monotonic, transformation of them.
Because of the monotonicity, larger or smaller distances on a plot of the output
will correspond to larger or smaller dissimilarities, respectively. However, the
nonlinearity implies that mdscale only attempts to preserve the ordering of
dissimilarities. Thus, there may be contractions or expansions of distances at
different scales.

You use mdscale to perform nonmetric MDS in much the same way as for
metric scaling. The nonmetric STRESS criterion is a common method for
computing the output; for more choices, see the mdscale reference page in
the online documentation. As with metric scaling, the second output from
mdscale is the value of that criterion evaluated for the output configuration.
For nonmetric scaling, however, it measures the how well the inter-point
distances of the output configuration approximate the disparities. The
disparities are returned in the third output. They are the transformed values
of the original dissimilarities.
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[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =

0.1562

To check the fit of the output configuration to the dissimilarities, and to
understand the disparities, it helps to make a Shepard plot.

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...

dissimilarities(ord),disparities(ord),'r.-', ...
[0 25],[0 25],'k-');

xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...
'Location','NorthWest');
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This plot shows that mdscale has found a configuration of points in two
dimensions whose inter-point distances approximates the disparities, which
in turn are a nonlinear transformation of the original dissimilarities. The
concave shape of the disparities as a function of the dissimilarities indicates
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that fit tends to contract small distances relative to the corresponding
dissimilarities. This may be perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and
the results can often depend on the starting point. By default, mdscale
uses cmdscale to construct an initial configuration, and this choice often
leads to a globally best solution. However, it is possible for mdscale to stop
at a configuration that is a local minimum of the criterion. Such cases can
be diagnosed and often overcome by running mdscale multiple times with
different starting points. You can do this using the 'start' and 'replicates'
parameters. The following code runs five replicates of MDS, each starting at a
different randomly-chosen initial configuration. The criterion value is printed
out for each replication; mdscale returns the configuration with the best fit.

opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);
90 iterations, Final stress criterion = 0.156209
100 iterations, Final stress criterion = 0.195546
116 iterations, Final stress criterion = 0.156209
85 iterations, Final stress criterion = 0.156209
106 iterations, Final stress criterion = 0.17121

Notice that mdscale finds several different local solutions, some of which
do not have as low a stress value as the solution found with the cmdscale
starting point.

Example: Reconstructing a Map from Intercity
Distances
Given only the distances between 10 US cities, cmdscale can construct a map
of those cities. First, create the distance matrix and pass it to cmdscale. In
this example, D is a full distance matrix: it is square and symmetric, has
positive entries off the diagonal, and has zeros on the diagonal.

cities =
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [ 0 587 1212 701 1936 604 748 2139 2182 543;

587 0 920 940 1745 1188 713 1858 1737 597;
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1212 920 0 879 831 1726 1631 949 1021 1494;
701 940 879 0 1374 968 1420 1645 1891 1220;

1936 1745 831 1374 0 2339 2451 347 959 2300;
604 1188 1726 968 2339 0 1092 2594 2734 923;
748 713 1631 1420 2451 1092 0 2571 2408 205;

2139 1858 949 1645 347 2594 2571 0 678 2442;
2182 1737 1021 1891 959 2734 2408 678 0 2329;
543 597 1494 1220 2300 923 205 2442 2329 0];

[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are
negative, indicating that the original distances are not Euclidean. This is
because of the curvature of the earth.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

9.5821e+006 1
1.6868e+006 0.17604

8157.3 0.0008513
1432.9 0.00014954
508.67 5.3085e-005
25.143 2.624e-006

5.3394e-010 5.5722e-017
-897.7 -9.3685e-005

-5467.6 -0.0005706
-35479 -0.0037026

However, in this case, the two largest positive eigenvalues are much larger
in magnitude than the remaining eigenvalues. So, despite the negative
eigenvalues, the first two coordinates of Y are sufficient for a reasonable
reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu - pdist(Y(:,1:2)))) ./ max(Dtriu)
maxrelerr =

0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of
the reconstruction is arbitrary. In this case, it happens to be close to, although
not exactly, the correct orientation.
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plot(Y(:,1),Y(:,2),'.');
text(Y(:,1)+25,Y(:,2),cities);
xlabel('Miles'); ylabel('Miles');
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10

Statistical Process Control

Statistical process control (SPC) refers to a number of different methods for
monitoring and assessing the quality of manufactured goods. Combined
with methods from the Chapter 11, “Design of Experiments”, SPC is used in
programs that define, measure, analyze, improve, and control development
and production processes. These programs are often implemented using
“Design for Six Sigma” methodologies.

The following sections describe the SPC functions available in Statistics
Toolbox:

Control Charts (p. 10-2) Creating control charts

Capability Studies (p. 10-4) Performing a capability study
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Control Charts
A control chart displays measurements of process samples over time. The
measurements are plotted together with user-defined specification limits and
process-defined control limits. The process can then be compared with its
specifications—to see if it is in control or out of control.

The chart is just a monitoring tool. Control activity might occur if the chart
indicates an undesirable, systematic change in the process. The control chart
is used to discover the variation, so that the process can be adjusted to reduce
it.

Control charts are created with the controlchart function. Any of the
following chart types may be specified:

• Xbar or mean

• Standard deviation

• Range

• Exponentially weighted moving average

• Individual observation

• Moving range of individual observations

• Moving average of individual observations

• Proportion defective

• Number of defectives

• Defects per unit

• Count of defects

Control rules are specified with the controlrules function.

For example, the following commands create an xbar chart, using the
“Western Electric 2” rule (2 of 3 points at least 2 standard errors above the
center line) to mark out of control measurements:

load parts;
st = controlchart(runout,'rules','we2');

10-2



Control Charts

x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')

Measurements that violate the control rule can then be identified:

R = controlrules('we2',x,cl,se);
I = find(R)
I =

21
23
24
25
26
27
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Capability Studies
Before going into production, many manufacturers run a capability study to
determine if their process will run within specifications enough of the time.
Capability indices produced by such a study are used to estimate expected
percentages of defective parts.

Capability studies are conducted with the capability function. The following
capability indices are produced:

• mu — Sample mean

• sigma — Sample standard deviation

• P — Estimated probability of being within the lower (L) and upper (U)
specification limits

• Pl — Estimated probability of being below L

• Pu — Estimated probability of being above U

• Cp — (U-L)/(6*sigma)

• Cpl — (mu-L)./(3.*sigma)

• Cpu — (U-mu)./(3.*sigma)

• Cpk — min(Cpl,Cpu)

As an example, simulate a sample from a process with a mean of 3 and a
standard deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification limit of
3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
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Cp: 0.7156
Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
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Design of Experiments

Introduction (p. 11-2) Introduction to the design of
experiments

Full Factorial Designs (p. 11-3) Creating full factorial designs

Fractional Factorial Designs (p. 11-5) Creating fractional factorial designs

Response Surface Designs (p. 11-8) Creating response surface designs

D-Optimal Designs (p. 11-19) Creating D-optimal designs



11 Design of Experiments

Introduction
There is a world of difference between data and information. To extract
information from data you have to make assumptions about the system that
generated the data. Using these assumptions and physical theory you may be
able to develop a mathematical model of the system.

Generally, even rigorously formulated models have some unknown constants.
The goal of experimentation is to acquire data that enable you to estimate
these constants.

But why do you need to experiment at all? You could instrument the system
you want to study and just let it run. Sooner or later you would have all
the data you could use.

In fact, this is a fairly common approach. There are three characteristics of
historical data that pose problems for statistical modeling:

• Suppose you observe a change in the operating variables of a system
followed by a change in the outputs of the system. That does not necessarily
mean that the change in the system caused the change in the outputs.

• A common assumption in statistical modeling is that the observations
are independent of each other. This is not the way a system in normal
operation works.

• Controlling a system in operation often means changing system variables
in tandem. But if two variables change together, it is impossible to separate
their effects mathematically.

Designed experiments directly address these problems. The overwhelming
advantage of a designed experiment is that you actively manipulate the
system you are studying. With Design of Experiments (DOE) you may
generate fewer data points than by using passive instrumentation, but the
quality of the information you get will be higher.
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Full Factorial Designs
Suppose you want to determine whether the variability of a machining process
is due to the difference in the lathes that cut the parts or the operators who
run the lathes.

If the same operator always runs a given lathe then you cannot tell whether
the machine or the operator is the cause of the variation in the output. By
allowing every operator to run every lathe, you can separate their effects.

This is a factorial approach. fullfact is the function that generates the
design. Suppose you have four operators and three machines. What is the
factorial design?

d = fullfact([4 3])

d =
1 1
2 1
3 1
4 1
1 2
2 2
3 2
4 2
1 3
2 3
3 3
4 3

Each row of d represents one operator/machine combination. Note that there
are 4*3 = 12 rows.

One special subclass of factorial designs is when all the variables take only
two values. Suppose you want to quickly determine the sensitivity of a process
to high and low values of three variables.

d2 = ff2n(3)

d2 =
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0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

There are 23 = 8 combinations to check.
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Fractional Factorial Designs
One difficulty with factorial designs is that the number of combinations
increases exponentially with the number of variables you want to manipulate.

For example, the sensitivity study discussed above might be impractical
if there were seven variables to study instead of just three. A full factorial
design would require 27 = 128 runs!

If you assume that the variables do not act synergistically in the system, you
can assess the sensitivity with far fewer runs. The theoretical minimum
number is eight. A design known as the Plackett-Burman design uses a
Hadamard matrix to define this minimal number of runs. To see the design
(X) matrix for the Plackett-Burman design, use the hadamard function.

X = hadamard(8)

X =
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

The last seven columns are the actual variable settings (-1 for low, 1 for high.)
The first column (all ones) enables you to measure the mean effect in the
linear equation, .

The Plackett-Burman design enables you to study the main (linear) effects of
each variable with a small number of runs. It does this by using a fraction, in
this case 8/128, of the runs required for a full factorial design. A drawback
of this design is that if the effect of one variable does vary with the value of
another variable, the estimated effects are biased (that is, they tend to be
off by a systematic amount).

At a cost of a somewhat larger design, you can find a fractional factorial that
is much smaller than a full factorial, but that allows estimation of main
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effects independent of interactions between pairs of variables. You can do this
by specifying generators that control the confounding between variables.

For example, suppose you create a design with the first four variables varying
independently as in a full factorial, but with the other three variables formed
by multiplying different triplets of the first four. With this design, the effects
of the last three variables are confounded with three-way interactions among
the first four variables. The estimated effect of any single variable, however,
is not confounded with (is independent of) interaction effects between any pair
of variables. Interaction effects are confounded with each other. A design like
this is known as a resolution 4 design.

Box, Hunter, and Hunter [4] present the properties of fractional factorial
designs, and provide a catalog of generators for producing designs for various
numbers of factors and various resolutions.

For example, the following design uses the generators strings in this catalog
to produce a resolution 4 design for 7 factors using 16 runs.

The fracfact function can produce this fractional factorial design using the
generator strings that Box, Hunter, and Hunter provide.

X = fracfact('a b c d abc bcd acd')

X =
-1 -1 -1 -1 -1 -1 -1
-1 -1 -1 1 -1 1 1
-1 -1 1 -1 1 1 1
-1 -1 1 1 1 -1 -1
-1 1 -1 -1 1 1 -1
-1 1 -1 1 1 -1 1
-1 1 1 -1 -1 -1 1
-1 1 1 1 -1 1 -1
1 -1 -1 -1 1 -1 1
1 -1 -1 1 1 1 -1
1 -1 1 -1 -1 1 -1
1 -1 1 1 -1 -1 1
1 1 -1 -1 -1 1 1
1 1 -1 1 -1 -1 -1
1 1 1 -1 1 -1 -1
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1 1 1 1 1 1 1

The fracfactgen function can find the appropriate generators to fit a model
that you specify. For example, you want the generators for a design that
can fit the main effectors of 7 factors (a-g), using 2^4=16 runs, and having
resolution 4:

fracfactgen('a b c d e f g',4,4)
ans =

'a'
'b'
'c'
'd'
'bcd'
'acd'
'abd'

These generators are not the same as the ones from the catalog in Box,
Hunter, and Hunter, but they produce a design with equivalent properties.
The fracfactgen uses an efficient search algorithm to find generators
that meet the requirements that you specify. This search can still be time
consuming, though, if the number of factors or model terms is large.
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Response Surface Designs
Sometimes simple linear and interaction models are not adequate. For
example, suppose that the outputs are defects or yield, and the goal is to
minimize defects and maximize yield. If these optimal points are in the
interior of the region in which the experiment is to be conducted, you need
a mathematical model that can represent curvature so that it has a local
optimum. The simplest such model has the quadratic form

containing linear terms for all factors, squared terms for all factors, and
products of all pairs of factors.

Designs for fitting these types of models are known as response surface
designs. One such design is the full factorial design having three values for
each input. Although Statistics Toolbox is capable of generating this design,
it is not really a satisfactory design in most cases because it has many more
runs than are necessary to fit the model.

The two most common designs generally used in response surface modeling
are central composite designs and Box-Behnken designs. In these designs the
inputs take on three or five distinct values (levels), but not all combinations of
these values appear in the design.

The functions described here produce specific response surface designs:

• “Central Composite Designs” on page 11-8

• “Box-Behnken Designs” on page 11-11

If these do not serve your purposes, consider creating a D-optimal design.
“Design of Experiments Demo” on page 11-11 uses a D-optimal design to fit
data that conforms to a response surface model. For more information see
“D-Optimal Designs” on page 11-19.

Central Composite Designs
Central composite designs are response surface designs that can fit a full
quadratic model. To picture a central composite design, imagine you have
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several factors that can vary between low and high values. For convenience,
suppose each factor varies from -1 to +1.

One central composite design consists of cube points at the corners of a unit
cube that is the product of the intervals [-1,1], star points along the axes at or
outside the cube, and center points at the origin.

Central composite designs are of three types. Circumscribed (CCC) designs
are as described above. Inscribed (CCI) designs are as described above, but
scaled so the star points take the values -1 and +1, and the cube points lie
in the interior of the cube. Faced (CCF) designs have the star points on the
faces of the cube. Faced designs have three levels per factor, in contrast with
the other types, which have five levels per factor. The following figure shows
these three types of designs for three factors.
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Box-Behnken Designs
Like central composite designs, Box-Behnken designs are response surface
designs that can fit a full quadratic model. Unlike most central composite
designs, Box-Behnken designs use just three levels of each factor. This makes
them appealing when the factors are quantitative but the set of achievable
values is small.

Central composite faced (CCF) designs also use just three factor levels.
However, they are not rotatable as Box-Behnken designs are. On the other
hand, Box-Behnken designs can be expected to have poorer prediction ability
in the corners of the cube that encloses the design, because unlike CCF
designs they do not include points at the corners of that cube.

The following figure shows a Box-Behnken design for three factors, with the
circled point appearing at the origin and possibly repeated for several runs. A
repeated center point makes it possible to compute an estimate of the error
term that does not depend on the fitted model. For this design all points
except the center point appear at a distance from the origin. That does not
hold true for Box-Behnken designs with different numbers of factors.

Design of Experiments Demo
The rsmdemo utility is an interactive graphic environment that demonstrates
the design of experiments and surface fitting through the simulation of a
chemical reaction. The goal of the demo is to find the levels of the reactants
needed to maximize the reaction rate.
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Suitable designs for this experiment include the central composite designs
and Box-Behnken designs, described in the previous two sections, and the
D-optimal designs, described in “D-Optimal Designs” on page 11-19. This
demo uses D-optimal designs.

There are two parts to the demo:

• “Comparing Results from Trial-and-Error Data and a Designed
Experiment” on page 11-12

• “Comparing Results Using a Polynomial Model and a Nonlinear Model” on
page 11-16

Comparing Results from Trial-and-Error Data and a Designed
Experiment
This part of the experiment compares the results obtained using data
gathered through trial and error and using data from a designed experiment:

1 To begin, run the rsmdemo function.

rsmdemo

2 Click Run in the Reaction Simulator window to generate a test reaction for
the trial and error phase of the demo.
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To perform the experiment, you can click Run as many as 13 times. For
each run, based on the results of previous runs, you can move the sliders
in the Reaction Simulator window to change the levels of the reactants to
increase or decrease the reaction rate. Each time you click the Run button,
the levels for the reactants and results of the run are displayed in the Trial
and Error Data window, as shown in the following figure after 13 trials.

Note The results are determined using an underlying model that takes
into account the noise in the process, so even if you keep all of the levels
the same, the results will vary from run to run. In this case however, the
Analyze function will not be able to generate a fit for the results.

3 When you have completed 13 runs, select Hydrogen vs. Rate, in the
field next to Analyze, to plot the relationships between the reactants and
the reaction rate.

For this set of 13 runs, rsmdemo produces the following plot.
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4 Click the Analyze button to call the rstool function, which you can
then use to try to optimize the results. See “Exploring Graphs of
Multidimensional Polynomials” on page 7-13 for more information about
using the rstool demo.

5 Next, perform another set of 13 runs, this time from a designed experiment.
In the Experimental Data window, click the Do Experiment button.
rsmdemo calls the cordexch function to generate a D-optimal design, and
then, for each run, computes the reaction rate.
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6 Select Hydrogen vs. Rate in the field next to Nonlinear Model in the
Experimental Data window. This displays the following plot.
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7 You can also click the Response Surface button to call rstool to find
the optimal levels of the reactants.

8 Compare the analysis results for the two sets of data. It is likely (though
not certain) that you’ll find some or all of these differences:
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• You can fit a full quadratic model with the data from the designed
experiment, but the trial and error data may be insufficient for fitting a
quadratic model or interactions model.

• Using the data from the designed experiment, you are more likely to be
able to find levels for the reactants that result in the maximum reaction
rate. Even if you find the best settings using the trial and error data, the
confidence bounds are likely to be wider than those from the designed
experiment.

Comparing Results Using a Polynomial Model and a Nonlinear
Model
This part of the experiment analyzes the experimental design data with a
polynomial (response surface) model and a nonlinear model, and compare
the results. The true model for the process, which is used to generate the
data, is actually a nonlinear model. However, within the range of the data, a
quadratic model approximates the true model quite well:

1 Using the results generated in the designed experiment part of “Comparing
Results from Trial-and-Error Data and a Designed Experiment” on page
11-12, click the Response Surface button on the Experimental Data
window. rsmdemo calls rstool, which fits a full quadratic model to the data.
Drag the reference lines to change the levels of the reactants, and find the
optimal reaction rate. Observe the width of the confidence intervals.
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2 Now click the Nonlinear Model button on the Experimental Data window.
rsmdemo calls nlintool, which fits a Hougen-Watson model to the data. As
with the quadratic model, you can drag the reference lines to change the
reactant levels. Observe the reaction rate and the confidence intervals.
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3 Compare the analysis results for the two models. Even though the true
model is nonlinear, you may find that the polynomial model provides a
good fit. Because polynomial models are much easier to fit and work with
than nonlinear models, a polynomial model is often preferable even when
modeling a nonlinear process. Keep in mind, however, that such models are
unlikely to be reliable for extrapolating outside the range of the data.
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D-Optimal Designs
The designs above pre-date the computer age, and some were in use by early
in the 20th century. In the 1970s statisticians started to use the computer in
experimental design by recasting the design of experiments (DOE) in terms of
optimization. A D-optimal design is one that maximizes the determinant of
Fisher’s information matrix, XTX. This matrix is proportional to the inverse
of the covariance matrix of the parameters. So maximizing det(XTX) is
equivalent to minimizing the determinant of the covariance of the parameters.

A D-optimal design minimizes the volume of the confidence ellipsoid of the
regression estimates of the linear model parameters, β.

There are several functions in Statistics Toolbox that generate D-optimal
designs. These are cordexch, daugment, dcovary, and rowexch. The following
sections explore D-optimal design in greater detail:

• “Generating D-Optimal Designs” on page 11-19

• “Augmenting D-Optimal Designs” on page 11-22

• “Designing Experiments with Uncontrolled Inputs” on page 11-24

• “Controlling Candidate Points” on page 11-25

• “Including Categorical Factors” on page 11-26

Generating D-Optimal Designs
The cordexch and rowexch functions provide two competing optimization
algorithms for computing a D-optimal design given a model specification.

Both cordexch and rowexch are iterative algorithms. They operate by
improving a starting design by making incremental changes to its elements.
In the coordinate exchange algorithm, the increments are the individual
elements of the design matrix. In row exchange, the elements are the rows of
the design matrix. Atkinson and Donev [1] is a reference. The row exchange
algorithm uses a candidate set of all possible design points, so this can require
much more memory than the coordinate exchange algorithm. However, since
the row exchange algorithm can change the coordinates of multiple factors in
a single exchange, it can sometimes find better designs.
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In both functions, there is randomness built into the selection of the starting
design and into the choice of incremental changes. You can use this to your
advantage by running the algorithm multiple times and selecting the best
result as your final design. Each function has a 'tries' argument that can
automate this search for you.

To generate a D-optimal design you must specify the number of inputs, the
number of runs, and the order of the model you want to fit.

Both cordexch and rowexch take the following strings to specify the model:

• 'linear' or 'l' — The default model with constant and first order terms

• 'interaction' or 'i' — Includes constant, linear, and cross product terms

• 'quadratic' or 'q' — Interactions plus squared terms

• 'purequadratic' or 'p' — Includes constant, linear, and squared terms

Alternatively, you can use a matrix of integers to specify the terms. Details
are in the help for the utility function x2fx.

For a simple example using the coordinate-exchange algorithm, consider the
problem of quadratic modeling with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with nine runs.

settings = cordexch(2,9,'q')
settings =

-1 1
1 1
0 1
1 -1

-1 -1
0 -1
1 0
0 0

-1 0
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You can plot the columns of settings against each other to get a better picture
of the design.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

For a simple example using the row-exchange algorithm, consider the
interaction model with two inputs. The model form is

Suppose you want the D-optimal design for fitting this model with four runs.

[settings, X] = rowexch(2,4,'i')
settings =

-1 1
-1 -1
1 -1
1 1

X =
1 -1 1 -1
1 -1 -1 1
1 1 -1 -1
1 1 1 1

The settings matrix shows how to vary the inputs from run to run. The
X matrix is the design matrix for fitting the above regression model. The
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first column of X is for fitting the constant term. The last column is the
element-wise product of the second and third columns.

The associated plot is simple but elegant.

h = plot(settings(:,1),settings(:,2),'.');
set(gca,'Xtick',[-1 0 1])
set(gca,'Ytick',[-1 0 1])
set(h,'Markersize',20)

Augmenting D-Optimal Designs
In practice, experimentation is an iterative process. You often want to add
runs to a completed experiment to learn more about the system. The function
daugment allows you choose these extra runs optimally.

Suppose you execute the eight-run design below for fitting a linear model to
four input variables.

settings = cordexch(4,8)
settings =

1 -1 1 1
-1 -1 1 -1
-1 1 1 1
1 1 1 -1

-1 1 -1 1
1 -1 -1 1

-1 -1 -1 -1
1 1 -1 -1
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This design is adequate to fit the linear model for four inputs, but cannot fit
the six cross-product (interaction) terms. Suppose you are willing to do eight
more runs to fit these extra terms. The following code show how to do so.

[augmented, X] = daugment(settings,8,'i');

augmented
augmented =

1 -1 1 1
-1 -1 1 -1
-1 1 1 1
1 1 1 -1

-1 1 -1 1
1 -1 -1 1

-1 -1 -1 -1
1 1 -1 -1

-1 -1 -1 1
1 1 1 1

-1 -1 1 1
-1 1 1 -1
1 -1 1 -1
1 -1 -1 -1

-1 1 -1 -1
1 1 -1 1

info = X'*X
info =

16 0 0 0 0 0 0 0 0 0 0
0 16 0 0 0 0 0 0 0 0 0
0 0 16 0 0 0 0 0 0 0 0
0 0 0 16 0 0 0 0 0 0 0
0 0 0 0 16 0 0 0 0 0 0
0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 16 0 0 0 0
0 0 0 0 0 0 0 16 0 0 0
0 0 0 0 0 0 0 0 16 0 0
0 0 0 0 0 0 0 0 0 16 0
0 0 0 0 0 0 0 0 0 0 16
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The augmented design is orthogonal, since X'*X is a multiple of the identity
matrix. In fact, this design is the same as a 24 factorial design.

Designing Experiments with Uncontrolled Inputs
Sometimes it is impossible to control every experimental input. But you might
know the values of some inputs in advance. An example is the time each run
takes place. If a process is experiencing linear drift, you might want to include
the time of each test run as a variable in the model.

The function dcovary enables you to choose the settings for each run in order
to maximize your information despite a linear drift in the process.

Suppose you want to execute an eight-run experiment with three factors that
is optimal with respect to a linear drift in the response over time. First you
create the drift input variable. Note that drift is normalized to have mean
zero. Its minimum is -1 and its maximum is 1.

drift = (linspace(-1,1,8))'
drift =

-1.0000
-0.7143
-0.4286
-0.1429
0.1429
0.4286
0.7143
1.0000

settings = dcovary(3,drift,'linear')
settings =

1.0000 1.0000 -1.0000 -1.0000
-1.0000 -1.0000 -1.0000 -0.7143
-1.0000 1.0000 1.0000 -0.4286
1.0000 -1.0000 1.0000 -0.1429

-1.0000 1.0000 -1.0000 0.1429
1.0000 1.0000 1.0000 0.4286

-1.0000 -1.0000 1.0000 0.7143
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1.0000 -1.0000 -1.0000 1.0000

Controlling Candidate Points
The rowexch function generates a candidate set of possible design points, and
then uses a D-optimal algorithm to select a design from those points. It does
this by invoking the candgen and candexch functions. If you need to supply
your own candidate set, or if you need to modify the one that the candgen
function provides, you might prefer to call these functions separately.

This example creates a design that represents proportions of a mixture, so the
sum of the proportions cannot exceed 1. A third factor is a filler factor that is
not used here but that makes up the remaining proportion of the mixture.

% Generate a matrix of (x,y) values with x+y<=1
[x,y]=meshgrid(0:.1:1);
xy = [x(:) y(:)];
xy = xy(sum(xy,2)<=1,:);

% Compute quadratic model terms for these points.
f = x2fx(xy,'q');

% Generate a 10-point design and display it
r=candexch(f,10);
xy(r,:)
ans =

0 0
0 1.0000

1.0000 0
0 0.5000

0.5000 0
0 1.0000

1.0000 0
0.5000 0.5000
0.5000 0
0.5000 0.5000

However, both the cordexch and rowexch functions have a number of options
that give you some measure of control over the points that will be considered
for inclusion in the design. The following generates a design using rowexch
with the same constraints as above:
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• factors bounded between 0 and 1,

• 11 possible values for each factor,

• and factor sums must not exceed 1.

bnds = [0 0;1 1];
nlev = [11 11];
fn = @(x) sum(x,2)>1;
rowexch(2,10,'q','bounds',bnds,'levels',nlev,'excludefun',fn)
ans =

0.5000 0
0 1.0000
0 0.5000
0 0

1.0000 0
1.0000 0

0 0.5000
0.5000 0.5000

0 0
0.5000 0

Including Categorical Factors
So far the designs in this section have been for continuous factors. It is also
possible to produce designs for categorical factors. The following produces a
design for 3 factors and 9 runs, where all three are categorical and take 3
levels each:

x = rowexch(3,9,'l','categ',1:3,'levels',[3 3 3]);
sortrows(x)
ans =

1 1 2
1 2 1
1 3 3
2 1 1
2 2 3
2 3 2
3 1 3
3 2 2
3 3 1
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The resulting design has the nice property that for each pair of factors, each of
the 9 possible combinations of levels appears exactly once. This property is
not shared by all D-optimal designs, but it happens to be the optimal design
for this problem. Also, because of some randomness built into the rowexch
function, repeated runs of this example might give different designs.

To understand how this design is created behind the scenes, you may find it
instructive to call the candexch function directly using a candidate set that
you set up. First create a matrix F containing all 27 combinations of the factor
levels. Create a matrix C containing the dummy variables for these categorical
factors. Make C have full rank by removing one column for each factor except
the first. Finally, use the candexch function to generate a 9-run design.

F = fullfact([3 3 3]);
C = dummyvar(F);
C(:,[4 7]) = [];
rows = candexch(C,9);
sortrows(F(rows,:))
ans =

1 1 3
1 2 1
1 3 2
2 1 2
2 2 3
2 3 1
3 1 1
3 2 2
3 3 3
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12 Hidden Markov Models

Introduction
Markov models are mathematical models of stochastic processes—processes
that generate random sequences of outcomes according to certain probabilities.
A simple example of a stochastic process is a sequence of coin tosses, the
outcomes being heads or tails. People use Markov models to analyze a wide
variety of stochastic processes, from daily stock prices to the positions of genes
in a chromosome.

You can construct Markov models very easily using state diagrams, such as
the one shown in this figure.

A State Diagram for a Markov Model

The rectangles in the diagram represent the possible states of the process you
are trying to model, and the arrows represent transitions between states.
The label on each arrow represents the probability of that transition, which
depends on the process you are modeling. At each step of the process, the
model generates an output, or emission, depending on which state it is in, and
then makes a transition to another state.

For example, if you are modeling a sequence of coin tosses, the two states are
heads and tails. The most recent coin toss determines the current state of the
model and each subsequent toss determines the transition to the next state. If
the coin is fair, the transition probabilities are all 1/2. In this simple example,
the emission at any moment in time is simply the current state. However, in
more complicated models, the states themselves can contain random processes

12-2



Introduction

that affect their emissions. For example, after each flip of the coin, you could
roll a die to determine the emission at that step.

A hidden Markov model is one in which you observe a sequence of emissions,
but you do not know the sequence of states the model went through to
generate the emissions. In this case, your goal is to recover the state
information from the observed data. The next section, “Example: States and
Emissions” on page 12-4, provides an example.

Statistics Toolbox includes five functions for analyzing hidden Markov models:

• hmmdecode — Calculates the posterior state probabilities of a sequence

• hmmgenerate — Generates a sequence for a hidden Markov model

• hmmestimate — Estimates the parameters for a Markov model

• hmmtrain — Calculates the maximum likelihood estimate of hidden
Markov model parameters

• hmmviterbi — Calculates the most likely state path for a hidden Markov
model sequence

“Analyzing a Hidden Markov Model” on page 12-8 explains how to use these
functions in detail.
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Example: States and Emissions
This section describes a simple example of a Markov model in which there are
two states and six possible emissions. The example uses the following objects:

• A red die, having six sides, labeled 1 through 6.

• A green die, having twelve sides, five of which are labeled 2 through 6,
while the remaining seven sides are labeled 1.

• A weighted red coin, for which the probability of heads is .9 and the
probability of tails is .1.

• A weighted green coin, for which the probability of heads is .95 and the
probability of tails is .05.

You create a sequence of numbers from the set {1, 2, 3, 4, 5, 6} using the
following rules:

• Begin by rolling the red die and writing down the number that comes up,
which is the emission.

• Toss the red coin and do one of the following:

- If the result is heads, roll the red die and write down the result.

- If the result is tails, roll the green die and write down the result.

• At each subsequent step, you flip the coin that has the same color as the die
you rolled in the previous step. If the coin comes up heads, roll the same die
as in the previous step. If the coin comes up tails, switch to the other die.

You can model this example with a state diagram that has two states, red and
green, as shown in the following figure.
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You determine the emission from a state by rolling the die with the same color
as the state, and the transition to the next state by flipping the coin with
the same color as the state.

So far, the model is not hidden, because you know the sequence of states from
the colors of the coins and dice. But, suppose that someone else is generating
the emissions without showing you the dice or coins. All you can see is the
sequence of numbers. If you start seeing more 1s than other numbers, you
might suspect that the model is in the green state, but you cannot be sure
because you cannot see the color of the die being rolled. This is an example
of a hidden Markov model: you can observe the sequence of emissions, but
you do not know what state the model is in—that is, what color die is being
rolled—when the emission occurs.

Not knowing the state the model is in raises the following problems:

• Given a sequence, what is the most likely state path?

• How can you estimate the parameters of the model given the state path?

• How can you estimate the parameters of the model without knowing the
state path?

• What is the probability that the model generates a given sequence? This is
known as the forward probability.

• What is the probability that the model is in a particular state at any point
in the sequence? This is the posterior probability.
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Markov Chains
This section defines Markov chains, which are the mathematical descriptions
of Markov models. A Markov chain contains the following elements:

• A set of states {1, 2, ..., M}

• An M-by-M transition matrix T whose i, j entry is the probability of a
transition from state i to state j. The matrix corresponds to a state diagram
like the one shown in the State Diagram for a Markov Model figure. The
sum of the entries in each row of T must be 1, because this is the sum of
the probabilities of making a transition from a given state to each of the
other states.

• A set of possible outputs, or emissions, {s1, s2, ... , sN}. By default, the set of
emissions is {1, 2, ... , N}, where N is the number of possible emissions, but
you can choose a different set of numbers or symbols.

• An M-by-N emission matrix E whose i,k entry gives the probability of
emitting symbol sk given that the model is in state i.

When the model is in state i1, it emits an output with probability .
The model then makes a transition to state i2 with probability , and emits
another symbol.

You can represent the example in “Example: States and Emissions” on page
12-4 by a Markov chain with two states, red and green. You determine
transitions between states by flipping the coins. The transition matrix is

You determine emissions by rolling the dice. The emissions matrix is
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“Analyzing a Hidden Markov Model” on page 12-8 shows how to analyze this
model using functions in Statistics Toolbox.

How the Toolbox Generates Random Sequences
The hidden Markov model functions in Statistics Toolbox generate random
sequences using the transition matrix, T, and the emission matrix, E, as
described in the preceding section. The functions always begin with the model
in the initial state, i0 = 1, at step 0. The model then makes a transition to
state i1 with probability , and emits an output with probability .
Consequently, the probability of observing the sequence of states and
the sequence of emissions in the first r steps, is

Note that if the function returns a generated sequence of states, the first state
in the sequence is i1: the initial state, i0, is not included.

In this implementation, the initial state is 1 with probability 1, and all other
states have probability 0 of being the initial state. At times, you might want
to change the probabilities of the initial states. You can do so by adding a new
artificial state 1 that has transitions to the other states with any probabilities
you want, but that never occurs after step 0. See “Changing the Probabilities
of the Initial States” on page 12-13 to learn how to do this.
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Analyzing a Hidden Markov Model
This section explains how to use functions in Statistics Toolbox to analyze
hidden Markov models. For illustration, the section uses the example
described in “Example: States and Emissions” on page 12-4. The section
shows how to recover information about the model, assuming that you do not
know some of the model’s parameters. The section covers the following topics:

• “Setting Up the Model and Generating Data” on page 12-8

• “Computing the Most Likely Sequence of States” on page 12-9

• “Estimating the Transition and Emission Matrices” on page 12-9

• “Calculating Posterior State Probabilities” on page 12-12

• “Changing the Probabilities of the Initial States” on page 12-13

• “Example: Changing the Initial Probabilities” on page 12-14

• “Reference” on page 12-17

Setting Up the Model and Generating Data
This section shows how to set up a hidden Markov model and use it to
generate data. First, create the transition and emission matrices by entering
the following commands.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

Next, generate a random sequence of emissions from the model, seq, of length
1000, using the function hmmgenerate. You can also return the corresponding
random sequence of states in the model as the second output, states.

[seq, states] = hmmgenerate(1000, TRANS, EMIS);

Note In generating the sequences seq and states, hmmgenerate begins with
the model in state i0 = 1 at step 0. The model then makes a transition to state
i1 at step 1, and returns i1 as the first entry in states.
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Computing the Most Likely Sequence of States
Suppose you know the transition and emission matrices, TRANS and EMIS.
If you observe a sequence, seq, of emissions, how can you compute the
most likely sequence of states that generated the sequence? The function
hmmviterbi uses the Viterbi algorithm to compute the most likely sequence
of states that the model would go through to generate the given sequence
of emissions.

likelystates = hmmviterbi(seq, TRANS, EMIS);

likelystates is a sequence of the same length as seq.

To test the accuracy of hmmviterbi, you can compute the percentage of the
time that the actual sequence states agrees with the sequence likelystates.

sum(states==likelystates)/1000

ans =

0.8200

This shows that the most likely sequence of states agrees with the actual
sequence 82% of the time. Note that your results might differ if you run the
same commands, because the sequence seq is random.

Note The states at the beginning of the sequence returned by hmmviterbi
are less reliable because of the computational delay in the Viterbi algorithm.

Estimating the Transition and Emission Matrices
Suppose you do not know the transition and emission matrices in the model,
and you observe a sequence of emissions, seq. There are two functions that
you can use to estimate the matrices:

• hmmestimate

• hmmtrain
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Using hmmestimate
To use hmmestimate, you also need to know the corresponding sequence of
states that the model went through to generate seq. The following command
takes the emission and state sequences, seq and states, and returns
estimates of the transition and emission matrices, TRANS_EST and EMIS_EST.

[TRANS_EST, EMIS_EST] = hmmestimate(seq, states)

TRANS_EST =

0.8989 0.1011
0.0585 0.9415

EMIS_EST =

0.1721 0.1721 0.1749 0.1612 0.1803 0.1393
0.5836 0.0741 0.0804 0.0789 0.0726 0.1104

You can compare these outputs with the original transition and emission
matrices, TRANS and EMIS, to see how well hmmestimate estimates them.

TRANS

TRANS =

0.9000 0.1000
0.0500 0.9500

EMIS

EMIS =

0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833

Using hmmtrain
If you do not know the sequence of states, but you have an initial guess as to
the values of TRANS and EMIS, you can estimate the transition and emission
matrices using the function hmmtrain. For example, suppose you have the
following initial guesses for TRANS and EMIS.
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TRANS_GUESS = [.85 .15; .1 .9];
EMIS_GUESS = [.17 .16 .17 .16 .17 .17;.6 .08 .08 .08 .08 08];

You can estimate TRANS and EMIS with the following command.

[TRANS_EST2, EMIS_EST2] = hmmtrain(seq, TRANS_GUESS, EMIS_GUESS)

TRANS_EST2 =

0.2286 0.7714
0.0032 0.9968

EMIS_EST2 =

0.1436 0.2348 0.1837 0.1963 0.2350 0.0066
0.4355 0.1089 0.1144 0.1082 0.1109 0.1220

hmmtrain uses an iterative algorithm that alters the matrices TRANS_GUESS
and EMIS_GUESS so that at each step the adjusted matrices are more likely to
generate the observed sequence, seq. The algorithm halts when the matrices
in two successive iterations are within a small tolerance of each other. See the
reference page for hmmtrain for more information about the tolerance.

If the algorithm fails to reach this tolerance within a maximum number of
iterations, whose default value is 100, the algorithm halts. In this case,
hmmtrain returns the last values of TRANS_EST and EMIS_EST and issues a
warning that the tolerance was not reached.

If the algorithm fails to reach the desired tolerance, you can increase the
default value of the maximum number of iterations with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'maxiterations', maxiter)

where maxiter is the maximum number of steps the algorithm executes.

You can also change default value of the tolerance with the command

hmmtrain(seq, TRANS_GUESS, EMIS_GUESS, 'tolerance', tol)

where tol is the desired value of the tolerance. Increasing the value of tol
makes the algorithm halt sooner, but the results are less accurate.
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Note If the sequence seq is long, the hmmtrain algorithm might take a long
time to run. If so, you might want to lower the maximum number of iterations
temporarily at first to find out how much time the algorithm requires.

There are two factors that can make the output matrices of hmmtrain less
reliable:

• The algorithm might converge to a local maximum that does not represent
the true transition and emission matrices. If you suspect that this is the
case, try different initial guesses for the matrices TRANS_EST and EMIS_EST.

• The sequence seq might be too short to properly train the matrices. If you
suspect this is the case, try using a longer sequence for seq.

Calculating Posterior State Probabilities
The posterior state probabilities of an emission sequence seq are the
conditional probabilities that the model is in a particular state when it
generates a symbol in seq, given that seq is emitted. You can compute the
posterior state probabilities with the following command:

PSTATES = hmmdecode(seq, TRANS, EMIS)

The output PSTATES is an M-by-L matrix, where M is the number of states
and L is the length of seq. PSTATES(i,j) is the conditional probability that
the model is in state i when it generates the jth symbol of seq, given that
seq is emitted.

Note The function hmmdecode begins with the model in state 1 at step 0,
prior to the first emission. PSTATES(i,1) is the probability that the model
is in state i at the following step 1.

You can also return the logarithm of the probability of the sequence seq as
the second output argument.

[PSTATES, logpseq] = hmmdecode(seq, TRANS, EMIS)
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The actual probability of a sequence tends to 0 rapidly as the length of
the sequence increases, so the probability of a sufficiently long sequence
is less than the smallest positive number your computer can represent.
Consequently, hmmdecode returns the logarithm of the probability instead.

For example, the following code returns the logarithm probability of the
one-element sequence [3].

[PSTATES, logpseq] = hmmdecode([3], TRANS, EMIS);
exp(logpseq)

ans =

0.1583

Note that you can compute this answer directly as

by the commands

TRANS(1,:)*EMIS(:,3)

ans =

0.1583

Changing the Probabilities of the Initial States
By default, the hidden Markov model functions begin with the model in state
1 at step 0. In other words, with probability 1, the initial state is 1, and all
other states have probability 0 of being the initial state. See “How the Toolbox
Generates Random Sequences” on page 12-7.

For some models, you might want to assign different probabilities to the
initial states. For example, you might want to choose initial state probabilities
from a probability vector p satisfying pT = p. This assignment makes the
Markov chain time independent: the probability of observing a given output
at a specified step of the sequence is independent of the step number. This
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section explains how to assign any vector of probabilities for the initial states
in your model.

To assign a vector of probabilities, p = [p1, p2, ..., pM], to the initial states,
do the following:

1 Create an M+1-by-M+1 augmented transition matrix, , that has the
following form:

where T is the true transition matrix. The first column of contains
M+1 zeros.

2 Create an M+1-by-N augmented emission matrix, , that has the following
form:

If the transition and emission matrices are TRANS and EMIS, respectively, you
can create the augmented matrices with the following commands:

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS];

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS];

Example: Changing the Initial Probabilities
For example, suppose that you have the following transition and emission
matrices.

TRANS = [.9 .1; .05 .95;];

EMIS = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;...
7/12, 1/12, 1/12, 1/12, 1/12, 1/12];

You want to assign the states initial probabilities that are given by a left
eigenvector, p, for TRANS, corresponding to the maximum eigenvalue 1.
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These initial probabilities make the Markov model time independent. The
probability of observing a given emission is the same at each step of the
output sequence.

To find the vector p, enter the following commands.

[V,D] = eigs(TRANS')

V =

-0.4472 -0.7071
-0.8944 0.7071

D =

1.0000 0
0 0.8500

The first column of V is the right eigenvector for TRANS' corresponding to
eigenvalue 1. So the transpose of this vector is a left eigenvector for TRANS.
You can create this vector as follows.

p = V(:, 1)'

p =

-0.4472 -0.8944

p*TRANS

ans =

-0.4472 -0.8944

This is not yet a probability vector, so divide p by its sum.

p = p/sum(p)

p =

0.3333 0.6667
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Next, create the augmented matrices TRANS_HAT and EMIS_HAT.

TRANS_HAT = [0 p; zeros(size(TRANS,1),1) TRANS]

TRANS_HAT =

0 0.3333 0.6667
0 0.9000 0.1000
0 0.0500 0.9500

EMIS_HAT = [zeros(1,size(EMIS,2)); EMIS]

EMIS_HAT =

0 0 0 0 0 0
0.1667 0.1667 0.1667 0.1667 0.1667 0.1667
0.5833 0.0833 0.0833 0.0833 0.0833 0.0833

This assignment of probabilities makes the Markov model time independent.
For example, you can calculate the probability of seeing symbol 3 at step 1 of
an emission sequence using the function hmmdecode as follows.

[pStates, logp]=hmmdecode([3],TRANS_HAT,EMIS_HAT);

exp(logp)

ans =
0.1111

Note that the second output argument, logp, is the logarithm of the
probability of the sequence [3].

On the other hand, the probability of seeing symbol 3 at step 2 is the sum of
the probabilities of the sequences [1 3], [2 3]. [3 3], [4 3], [5 3], and [6 3].

sum = 0;
for n = 1:6
[pStates, logp] = hmmdecode([n 3],TRANS_HAT,EMIS_HAT);
sum = sum + exp(logp);

end;
sum
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sum =
0.1111

Reference
To learn more about hidden Markov models and their applications, see the
following reference.

Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis,
Cambridge Univ. Press, 1998.
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Functions — By Category

File I/O (p. 13-2) Read and write data from/to external
files

Data Organization (p. 13-3) Organize statistical data in arrays

Descriptive Statistics (p. 13-5) Descriptive statistics for data
samples

Statistical Visualization (p. 13-7) Create data visualizations

Probability Distributions (p. 13-9) Distributions for data modeling

Hypothesis Tests (p. 13-22) Draw inferences from data

Linear Models (p. 13-24) Linear regression and analysis of
variance

Nonlinear Models (p. 13-26) Nonlinear regression and
classification

Multivariate Statistics (p. 13-28) Analysis of multidimensional data

Statistical Process Control (p. 13-30) Process capability and control

Design of Experiments (p. 13-31) Designs for data collection

Hidden Markov Models (p. 13-32) Parameter estimation for Markov
models

Nonparametric Methods (p. 13-33) Nonparametric methods

Graphical User Interfaces (p. 13-34) Interactive data analysis

Utility Functions (p. 13-35) Manipulate statistics options
structure
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File I/O
caseread Read case names from file

casewrite Write case names to file

tblread Read tabular data from file

tblwrite Write tabular data to file

tdfread Read file containing tab-delimited
numeric and text values
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Data Organization

Categorical Arrays (p. 13-3) Store and manipulate categorical
data

Dataset Arrays (p. 13-4) Store and manipulate heterogeneous
data

Categorical Arrays

addlevels Add levels to categorical array

droplevels Drop levels from categorical array

getlabels Access labels of levels in categorical
array

islevel Test for categorical array levels

ismember Test for categorical array
membership

isundefined Test for undefined elements of
categorical array

levelcounts Element counts by level for
categorical array

mergelevels Merge levels of categorical array

nominal Create nominal array

ordinal Create ordinal array

reorderlevels Reorder levels of categorical array

setlabels Define labels of levels in categorical
array

sort Sort ordinal array

sortrows (ordinal) Sort rows of ordinal array

summary (categorical) Summary statistics for categorical
array
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Dataset Arrays

dataset Create dataset array

datasetfun Apply function to variables of dataset
array

get Access dataset array properties

grpstats (dataset) Summary statistics by group for
dataset arrays

join Merge observations from two dataset
arrays

replacedata Convert array to dataset variables

set Display and define dataset array
properties

sortrows (dataset) Sort rows of dataset array

summary (dataset) Summary statistics for dataset array
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Descriptive Statistics
bootci Bootstrap confidence interval

bootstrp Bootstrap statistics through
resampling of data

copulaparam Copula parameters as function of
rank correlation

corrcoef Correlation coefficients

cov Covariance matrix

crosstab Cross-tabulation of vectors

geomean Geometric mean of sample

grp2idx Create index vector from grouping
variable

grpstats Summary statistics by group

grpstats (dataset) Summary statistics by group for
dataset arrays

harmmean Harmonic mean of sample

iqr Interquartile range of sample

jackknife Jackknife statistics

kurtosis Sample kurtosis

mad Mean or median absolute deviation
of sample

mean Mean values of vectors and matrices

median Median values of vectors and
matrices

moment Central moment of all orders

nanmax Maximum, ignoring NaNs

nanmean Mean, ignoring NaNs

nanmedian Median, ignoring NaNs

nanmin Minimum, ignoring NaNs
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nanstd Standard deviation, ignoring NaNs

nansum Sum, ignoring NaNs

partialcorr Linear or rank partial correlation
coefficients

prctile Percentiles of sample

range Sample range

skewness Sample skewness

std Standard deviation of sample

summary (categorical) Summary statistics for categorical
array

summary (dataset) Summary statistics for dataset array

tabulate Frequency table

tiedrank Compute ranks of sample, adjusting
for ties

trimmean Mean of sample, excluding extreme
values

var Variance of sample

zscore Standardized z-scores
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Statistical Visualization
addedvarplot Create added-variable plot for

stepwise regression

aoctool Interactive fitting of analysis of
covariance models

boxplot Box plot of data sample

cdfplot Plot of empirical cumulative
distribution function

dfittool Interactive fitting of distributions to
data

disttool Interactive pdf and cdf plots

ecdfhist Create histogram from output of
ecdf

errorbar Plot error bars along curve

fsurfht Interactive contour plot

gline Interactive line plot

glmdemo Demo of generalized linear models

gname Label plotted points with their case
names or case number

gplotmatrix Plot matrix of scatter plots, by group

gscatter Scatter plot, by group

interactionplot Interaction plot for grouped data

lsline Plot least squares lines

maineffectsplot Main effects plot for grouped data

multivarichart Multivari chart for grouped data

normplot Normal probability plot

pareto Pareto chart

polytool Interactive plot of fitted polynomials
and prediction intervals
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probplot Probability plots

qqplot Quantile-quantile plot of two
samples

randtool Interactive random number
generation

rcoplot Residual case order plot

refcurve Add polynomial to current plot

refline Add reference line to current axes

robustdemo Interactive robust regression

rsmdemo Demo of design of experiments and
surface fitting

scatterhist 2-D scatter plot with marginal
histograms

surfht Interactive contour plot

wblplot Weibull probability plot
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Probability Distributions

Probability Density Functions
(p. 13-9)

Probability density functions for
supported distributions

Cumulative Distribution Functions
(p. 13-11)

Cumulative distribution functions
for supported distributions

Inverse Cumulative Distribution
Functions (p. 13-13)

Inverse cumulative distribution
functions for supported distributions

Distribution Statistics Functions
(p. 13-14)

Statistics for supported distributions

Distribution Fitting Functions
(p. 13-16)

Fitting supported distributions to
data

Piecewise Distribution Fitting
(p. 13-17)

Fitting piecewise distributions to
data

Negative Log-Likelihood Functions
(p. 13-18)

Negative log-likelihood functions for
supported distributions

Random Number Generators
(p. 13-19)

Random number generators for
supported distributions

Probability Density Functions

betapdf Beta probability density function

binopdf Binomial probability density
function

chi2pdf Chi-square probability density
function

copulapdf Copula probability density function

disttool Interactive pdf and cdf plots

evpdf Extreme value probability density
function

exppdf Exponential probability density
function
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fpdf F probability density function

gampdf Gamma probability density function

geopdf Geometric probability density
function

gevpdf Generalized extreme value
probability density function

gppdf Generalized Pareto probability
density function

hygepdf Hypergeometric probability density
function

lognpdf Lognormal probability density
function

mnpdf Multinomial probability density
function

mvnpdf Multivariate normal probability
density function

mvtpdf Multivariate t probability density
function

nbinpdf Negative binomial probability
density function

ncfpdf Noncentral F probability density
function

nctpdf Noncentral t probability density
function

ncx2pdf Noncentral chi-square probability
density function

normpdf Normal probability density function

pdf Probability density function for
specified distribution

poisspdf Poisson probability density function

raylpdf Rayleigh probability density function
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tpdf Student’s t probability density
function

unidpdf Discrete uniform probability density
function

unifpdf Continuous uniform probability
density function

wblpdf Weibull probability density function

Cumulative Distribution Functions

betacdf Beta cumulative distribution
function

binocdf Binomial cumulative distribution
function

cdf Cumulative distribution function for
specified distribution

chi2cdf Chi-square cumulative distribution
function

copulacdf Copula cumulative distribution
function

disttool Interactive pdf and cdf plots

ecdf Empirical cumulative distribution
function

evcdf Extreme value cumulative
distribution function

expcdf Exponential cumulative distribution
function

fcdf F cumulative distribution function

gamcdf Gamma cumulative distribution
function

geocdf Geometric cumulative distribution
function
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gevcdf Generalized extreme value
cumulative distribution function

gpcdf Generalized Pareto cumulative
distribution function

hygecdf Hypergeometric cumulative
distribution function

logncdf Lognormal cumulative distribution
function

mvncdf Multivariate normal cumulative
distribution function

mvtcdf Multivariate t cumulative
distribution function

ncfcdf Noncentral F cumulative
distribution function

nctcdf Noncentral t cumulative distribution
function

ncx2cdf Noncentral chi-square cumulative
distribution function

normcdf Normal cumulative distribution
function

poisscdf Poisson cumulative distribution
function

raylcdf Rayleigh cumulative distribution
function

tcdf Student’s t cumulative distribution
function

unidcdf Discrete uniform cumulative
distribution function

unifcdf Continuous uniform cumulative
distribution function

wblcdf Weibull cumulative distribution
function
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Inverse Cumulative Distribution Functions

betainv Inverse of beta cumulative
distribution function

binoinv Inverse of binomial cumulative
distribution function

chi2inv Inverse of chi-square cumulative
distribution function

evinv Inverse of extreme value cumulative
distribution function

expinv Inverse of exponential cumulative
distribution function

finv Inverse of F cumulative distribution
function

gaminv Inverse of gamma cumulative
distribution function

geoinv Inverse of geometric cumulative
distribution function

gevinv Inverse of generalized extreme value
cumulative distribution function

gpinv Inverse of generalized Pareto
cumulative distribution function

hygeinv Inverse of hypergeometric
cumulative distribution function

icdf Inverse cumulative distribution
function for specified distribution

logninv Inverse of lognormal cumulative
distribution function

nbininv Inverse of negative binomial
cumulative distribution function

ncfinv Inverse of noncentral F cumulative
distribution function
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nctinv Inverse of noncentral t cumulative
distribution

ncx2inv Inverse of noncentral chi-square
cumulative distribution function

norminv Inverse of normal cumulative
distribution function

poissinv Inverse of Poisson cumulative
distribution function

raylinv Inverse of Rayleigh cumulative
distribution function

tinv Inverse of Student’s t cumulative
distribution function

unidinv Inverse of discrete uniform
cumulative distribution function

unifinv Inverse of continuous uniform
cumulative distribution function

wblinv Inverse of Weibull cumulative
distribution function

Distribution Statistics Functions

betastat Mean and variance of beta
distribution

binostat Mean and variance of binomial
distribution

chi2stat Mean and variance of chi-square
distribution

copulastat Rank correlation for copula

evstat Mean and variance of extreme value
distribution

expstat Mean and variance of exponential
distribution
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fstat Mean and variance of F distribution

gamstat Mean and variance of gamma
distribution

geostat Mean and variance of geometric
distribution

gevstat Mean and variance of generalized
extreme value distribution

gpstat Mean and variance of generalized
Pareto distribution

hygestat Mean and variance of
hypergeometric distribution

lognstat Mean and variance of lognormal
distribution

nbinstat Mean and variance of negative
binomial distribution

ncfstat Mean and variance of noncentral F
distribution

nctstat Mean and variance of noncentral t
distribution

ncx2stat Mean and variance of noncentral
chi-square distribution

normstat Mean and variance of normal
distribution

poisstat Mean and variance of Poisson
distribution

raylstat Mean and variance of Rayleigh
distribution

tstat Mean and variance of Student’s t
distribution
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unifstat Mean and variance of continuous
uniform distribution

wblstat Mean and variance of Weibull
distribution

Distribution Fitting Functions

betafit Parameter estimates and confidence
intervals for beta distributed data

binofit Parameter estimates and confidence
intervals for binomial distributed
data

dfittool Interactive fitting of distributions to
data

evfit Parameter estimates and confidence
intervals for extreme value
distributed data

expfit Parameter estimates and confidence
intervals for exponentially
distributed data

gamfit Parameter estimates and confidence
intervals for gamma distributed data

gevfit Parameter estimates and confidence
intervals for generalized extreme
value distributed data

gpfit Parameter estimates and confidence
intervals for generalized Pareto
distributed data

lognfit Parameter estimates and confidence
intervals for lognormally distributed
data

mle Maximum likelihood estimation
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mlecov Asymptotic covariance matrix of
maximum likelihood estimators

nbinfit Parameter estimates and confidence
intervals for negative binomial
distributed data

normfit Parameter estimates and confidence
intervals for normally distributed
data

poissfit Parameter estimates and confidence
intervals for Poisson distributed data

raylfit Parameter estimates and confidence
intervals for Rayleigh distributed
data

unifit Parameter estimates for uniformly
distributed data

wblfit Parameter estimates and confidence
intervals for Weibull distributed
data

Piecewise Distribution Fitting

boundary Boundary points of piecewise
distribution segments

cdf (piecewisedistribution) Cumulative distribution function for
piecewise distribution

icdf (piecewisedistribution) Inverse cumulative distribution
function for piecewise distribution

lowerparams Parameters of generalized Pareto
distribution lower tail

nsegments Number of segments of piecewise
distribution

paretotails Construct Pareto tails object
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pdf (piecewisedistribution) Probability density function for
piecewise distribution

random (piecewisedistribution) Random numbers from piecewise
distribution

segment Segment of piecewise distribution
containing input values

upperparams Parameters of generalized Pareto
distribution upper tail

Negative Log-Likelihood Functions

betalike Negative log-likelihood for beta
distribution

evlike Negative log-likelihood for extreme
value distribution

explike Negative log-likelihood for
exponential distribution

gamlike Negative log-likelihood for gamma
distribution

gevlike Negative log-likelihood for
generalized extreme value
distribution

gplike Negative log-likelihood for
generalized Pareto distribution

lognlike Negative log-likelihood for lognormal
distribution

mvregresslike Negative log-likelihood for
multivariate regression

normlike Negative log-likelihood for normal
distribution

wbllike Negative log-likelihood for Weibull
distribution
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Random Number Generators

betarnd Random numbers from beta
distribution

binornd Random numbers from binomial
distribution

chi2rnd Random numbers from chi-square
distribution

copularnd Random numbers from copula

evrnd Random numbers from extreme
value distribution

exprnd Random numbers from exponential
distribution

frnd Random numbers from F distribution

gamrnd Random numbers from gamma
distribution

geornd Random numbers from geometric
distribution

gevrnd Random numbers from generalized
extreme value distribution

gprnd Random numbers from generalized
Pareto distribution

hygernd Random numbers from
hypergeometric distribution

iwishrnd Random numbers from inverse
Wishart distribution

johnsrnd Random numbers from Johnson
system of distributions

lhsdesign Generate latin hypercube sample

lhsnorm Generate latin hypercube sample
with normal distribution

13-19



13 Functions — By Category

lognrnd Random numbers from lognormal
distribution

mhsample Markov chain Metropolis-Hastings
sampler

mnrnd Random numbers from multinomial
distribution

mvnrnd Random numbers from multivariate
normal distribution

mvtrnd Random numbers from multivariate
t distribution

nbinrnd Random numbers from negative
binomial distribution

ncfrnd Random numbers from noncentral
F distribution

nctrnd Random numbers from noncentral
t distribution

ncx2rnd Random numbers from noncentral
chi-square distribution

normrnd Random numbers from normal
distribution

pearsrnd Random numbers from Pearson
system of distributions

poissrnd Random numbers from Poisson
distribution

randg Gamma distributed random
numbers and arrays (unit scale)

random Random numbers from specified
distribution

randsample Random sample, with or without
replacement

randtool Interactive random number
generation
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raylrnd Random numbers from Rayleigh
distribution

slicesample Markov chain slice sampler

trnd Random numbers from Student’s t
distribution

unidrnd Random numbers from discrete
uniform distribution

unifrnd Random numbers from continuous
uniform distribution

wblrnd Random numbers from Weibull
distribution

wishrnd Random numbers from Wishart
distribution
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Hypothesis Tests

Statistics Tests (p. 13-22) Tests of sample statistics

Distribution Tests (p. 13-22) Tests of sample distributions

Statistics Tests

ansaribradley Ansari-Bradley test

dwtest Durbin-Watson test

linhyptest Linear hypothesis test on parameter
estimates

ranksum Wilcoxon rank sum test

runstest Runs test for randomness

signrank One-sample or paired-sample
Wilcoxon signed rank test

signtest One-sample or paired-sample sign
test

ttest One-sample or paired-sample t-test

ttest2 Two-sample t-test

vartest One-sample chi-square variance test

vartest2 Two-sample F-test for equal
variances

vartestn Bartlett multiple-sample test for
equal variances

ztest One-sample z-test

Distribution Tests

chi2gof Chi-square goodness-of-fit test

jbtest Jarque-Bera test
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kstest One-sample Kolmogorov-Smirnov
test

kstest2 Two-sample Kolmogorov-Smirnov
test

lillietest Lilliefors test
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Linear Models

Linear Regression (p. 13-24) Linear regression models

Analysis of Variance (p. 13-25) Analysis of variance models

Linear Regression

dummyvar {0,1}-valued matrix of dummy
variables

glmfit Generalized linear model fit

glmval Values and prediction intervals for
generalized linear models

invpred Inverse prediction for simple linear
regression

leverage Leverage values for regression

mnrfit Multinomial logistic regression

mnrval Values and prediction intervals for
multinomial logistic regression

mvregress Multivariate linear regression

mvregresslike Negative log-likelihood for
multivariate regression

polyconf Polynomial confidence intervals

polyfit Polynomial fitting

polytool Interactive plot of fitted polynomials
and prediction intervals

polyval Polynomial values and prediction
intervals

rcoplot Residual case order plot

regress Multiple linear regression

regstats Regression diagnostics for linear
models
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ridge Ridge regression

robustfit Robust linear regression

rstool Interactive multidimensional
response surface modeling

stepwise Interactive stepwise regression

stepwisefit Stepwise regression

x2fx Convert predictor matrix to design
matrix

Analysis of Variance

anova1 One-way analysis of variance

anova2 Two-way analysis of variance

anovan N-way analysis of variance

aoctool Interactive fitting of analysis of
covariance models

friedman Friedman’s nonparametric two-way
analysis of variance

kruskalwallis Kruskal-Wallis nonparametric
one-way analysis of variance

manova1 One-way multivariate analysis of
variance

manovacluster Dendrogram of group mean clusters
following MANOVA

multcompare Multiple comparison test
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Nonlinear Models

Nonlinear Regression (p. 13-26) Parametric models

Classification and Regression Trees
(p. 13-26)

Nonparametric models

Nonlinear Regression

coxphfit Cox proportional hazards regression

nlinfit Nonlinear least-squares regression

nlintool Interactive nonlinear fitting

nlparci Confidence intervals for parameters
in nonlinear regression

nlpredci Confidence intervals for predictions
in nonlinear regression

Classification and Regression Trees

children Child nodes of tree node

classcount Class counts at tree nodes

classprob Class probabilities at tree nodes

classregtree Construct classification and
regression tree object

cutcategories Categories for tree branches

cutpoint Cutpoints for tree branches

cuttype Cut types for tree branches

cutvar Variable names for tree branches

eval Predicted responses for tree

isbranch Test tree node for branch

nodeerr Node errors of tree
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nodeprob Node probabilities of tree

nodesize Size of tree node

numnodes Number of tree nodes

parent Parent node of tree node

prune Produce subtrees by pruning

risk Node risks of tree

test Error rate of tree

treedisp Plot classification and regression
trees

treefit Fit tree-based model for classification
or regression

treeprune Produce sequence of subtrees by
pruning

treetest Compute error rate for tree

treeval Compute fitted value for decision
tree applied to data

type Type of tree

view View tree

13-27



13 Functions — By Category

Multivariate Statistics

Cluster Analysis (p. 13-28) Cluster analysis

Dimension Reduction (p. 13-28) Dimension reduction

Additional Multivariate Methods
(p. 13-29)

Additional multivariate methods

Cluster Analysis

cluster Construct clusters from linkage
output

clusterdata Construct clusters from data

cophenet Cophenetic correlation coefficient

dendrogram Plot dendrogram

inconsistent Inconsistency coefficient of cluster
tree

kmeans K-means clustering

linkage Create hierarchical cluster tree

pdist Pairwise distance between
observations

silhouette Silhouette plot for clustered data

squareform Reformat distance matrix

Dimension Reduction

factoran Maximum likelihood common factor
analysis

pcacov Principal component analysis using
covariance matrix
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pcares Residuals from principal component
analysis

princomp Principal component analysis

Additional Multivariate Methods

barttest Bartlett’s test for dimensionality

canoncorr Canonical correlation analysis

cholcov Cholesky-like decomposition for
covariance matrix

classify Discriminant analysis

cmdscale Classical multidimensional scaling

mahal Mahalanobis distance

manova1 One-way multivariate analysis of
variance

manovacluster Dendrogram of group mean clusters
following MANOVA

procrustes Procrustes analysis

rstool Interactive multidimensional
response surface modeling

zscore Standardized z-scores
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Statistical Process Control
capability Process capability indices

capaplot Process capability plot

controlchart Shewhart control charts

controlrules Western Electric and Nelson control
rules

gagerr Gage repeatability and
reproducibility study

histfit Histogram with superimposed
normal density

normspec Plot normal density between
specification limits

13-30



Design of Experiments

Design of Experiments
bbdesign Generate Box-Behnken design

candexch D-optimal design from candidate set
using row exchanges

candgen Generate candidate set for D-optimal
design

ccdesign Generate central composite design

cordexch D-optimal design of experiments
coordinate exchange algorithm

daugment D-optimal augmentation of
experimental design

dcovary D-optimal design with specified fixed
covariates

ff2n Two-level full-factorial designs

fracfact Generate fractional factorial design
from generators

fracfactgen Fractional factorial design
generators

fullfact Full-factorial experimental design

interactionplot Interaction plot for grouped data

maineffectsplot Main effects plot for grouped data

multivarichart Multivari chart for grouped data

rowexch D-optimal design of experiments row
exchange algorithm
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Hidden Markov Models
hmmdecode Posterior state probabilities of

sequence

hmmestimate Estimate parameters for hidden
Markov model

hmmgenerate Generate random sequences from
Markov model

hmmtrain Maximum likelihood estimate of
model parameters for hidden Markov
model

hmmviterbi Most probable state path for hidden
Markov model sequence
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Nonparametric Methods
friedman Friedman’s nonparametric two-way

analysis of variance

kruskalwallis Kruskal-Wallis nonparametric
one-way analysis of variance

ksdensity Compute density estimate using
kernel-smoothing method

ranksum Wilcoxon rank sum test

signrank One-sample or paired-sample
Wilcoxon signed rank test

signtest One-sample or paired-sample sign
test
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Graphical User Interfaces
aoctool Interactive fitting of analysis of

covariance models

dfittool Interactive fitting of distributions to
data

disttool Interactive pdf and cdf plots

glmdemo Demo of generalized linear models

polytool Interactive plot of fitted polynomials
and prediction intervals

randtool Interactive random number
generation

regstats Regression diagnostics for linear
models

robustdemo Interactive robust regression

rsmdemo Demo of design of experiments and
surface fitting

rstool Interactive multidimensional
response surface modeling
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Utility Functions
statget Parameter values from statistics

options structure

statset Create or edit statistics options
structure
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addedvarplot

Purpose Create added-variable plot for stepwise regression

Syntax addedvarplot(X,y,num,inmodel)
addedvarplot(X,y,num,inmodel,stats)

Description addedvarplot(X,y,num,inmodel) produces an added variable plot for
the response y and the predictor in column num of X. The plot illustrates
the incremental effect of a predictor in a regression model in which the
columns specified by inmodel are used as predictors. X is an n-by-p
matrix of n observations of p predictors. y is vector of n response
values. num is a scalar index specifying the column of X to use in the
plot. inmodel is a logical vector of p elements specifying the columns
of X to use in the base model. By default, all elements of inmodel are
false, which means that the model has no predictors. addedvarplot
automatically includes a constant term in the model. Use the function
stepwisefit to fit a regression model using stepwise regression and
create the vector inmodel.

addedvarplot(X,y,num,inmodel,stats) uses the structure stats,
which contains fitted model results created by the stepwisefit
function. If you create the structure stats by calling stepwisefit prior
to calling addedvarplot, you save computing time by including the
stats argument in addedvarplot.

Added variable plots display data and fitted lines. If X1 is column num of
X, the data plotted are y versus X1 after removing the effects of the other
predictors specified by inmodel. The solid red line is a least squares
fit of the data, and its slope is the coefficient that X1 would have if it
were included in the model. The dotted red lines are 95% confidence
bounds for the fitted line, which are used to judge the significance of
X1. If inmodel(num) is true, the plot is sometimes known as a partial
regression leverage plot.

Example Perform a stepwise regression on the data in hald.mat, and create an
added-variable plot for the predictor in column 2:

load hald
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[b,se,p,inmodel,stats] = stepwisefit(ingredients,heat);
Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Final columns included: 1 4

'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4400] [ 0.1384] 'In' [1.1053e-006]
[ 0.4161] [ 0.1856] 'Out' [ 0.0517]
[-0.4100] [ 0.1992] 'Out' [ 0.0697]
[-0.6140] [ 0.0486] 'In' [1.8149e-007]

addedvarplot(ingredients,heat,2,inmodel,stats)
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See Also stepwisefit
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Purpose Add levels to categorical array

Syntax B = addlevels(A,newlevels)

Description B = addlevels(A,newlevels) adds new levels to the categorical array
A. newlevels is a cell array of strings or a two-dimensional character
matrix that specifies the levels to be added. addlevels adds the new
levels at the end of the list of possible categorical levels in A, but does
not modify the value of any element. B does not contain elements at
the new levels.

Examples Example 1

Add levels for additional species in Fisher’s iris data:

load fisheriris
species = nominal(species,...

{'Species1','Species2','Species3'},...
{'setosa','versicolor','virginica'});

species = addlevels(species,{'Species4','Species5'});
getlabels(species)
ans =
'Species1' 'Species2' 'Species3' 'Species4' 'Species5'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
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3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also droplevels, islevel, mergelevels, reorderlevels, getlabels

14-6



andrewsplot

Purpose Andrews plot for multivariate data

Syntax andrewsplot(X)
andrewsplot(X,...,'Standardize','on')
andrewsplot(X,...,'Standardize','PCA')
andrewsplot(X,...,'Standardize','PCAStd')
andrewsplot(X,...,'Quantile',alpha)
andrewsplot(X,...,'Group',group)
andrewsplot(X,...,PropName,PropVal,...)
h = andrewsplot(X,...)

Description andrewsplot(X) creates an Andrews plot of the multivariate data in
the matrix X. The rows of X correspond to observations, the columns to
variables. Andrews plots represent each observation by a function f(t) of
a continuous dummy variable t over the interval [0,1]. f(t) is defined for
the i th observation in X as

andrewsplot treats NaN values in X as missing values and ignores the
corresponding rows.

andrewsplot(X,...,'Standardize','on') scales each column of X
to have

mean 0 and standard deviation 1 before making the plot.

andrewsplot(X,...,'Standardize','PCA') creates an Andrews
plot from the principal component scores of X, in order of decreasing
eigenvalue. (See princomp.)

andrewsplot(X,...,'Standardize','PCAStd') creates an Andrews
plot using the standardized principal component scores. (See princomp.)

andrewsplot(X,...,'Quantile',alpha) plots only the median and
the alpha and (1 – alpha) quantiles of f(t) at each value of t. This is
useful if X contains many observations.

andrewsplot(X,...,'Group',group) plots the data in different groups
with different colors. Groups are defined by group, a numeric array
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containing a group index for each observation. group can also be a
categorical array, character matrix, or cell array of strings containing a
group name for each observation. (See “Grouped Data” on page 2-41.)

andrewsplot(X,...,PropName,PropVal,...) sets lineseries object
properties to the specified values for all lineseries objects created by
andrewsplot. (See Lineseries Properties.)

h = andrewsplot(X,...) returns a column vector of handles to the
lineseries objects created by andrewsplot, one handle per row of X. If
you use the 'Quantile' input parameter, h contains one handle for each
of the three lineseries objects created. If you use both the 'Quantile'
and the 'Group' input parameters, h contains three handles for each
group.

Examples Make a grouped plot of the Fisher iris data:

load fisheriris
andrewsplot(meas,'group',species);
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Plot only the median and quartiles of each group:

andrewsplot(meas,'group',species,'quantile',.25);
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See Also parallelcoords, glyphplot
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anova1

Purpose One-way analysis of variance

Syntax p = anova1(X)
p = anova1(X,group)
p = anova1(X,group,displayopt)
[p,table] = anova1(...)
[p,table,stats] = anova1(...)

Description p = anova1(X) performs balanced one-way ANOVA for comparing
the means of two or more columns of data in the matrix X, where
each column represents an independent sample containing mutually
independent observations. The function returns the p-value under the
null hypothesis that all samples in X are drawn from populations with
the same mean.

If p is near zero, it casts doubt on the null hypothesis and suggests
that at least one sample mean is significantly different than the other
sample means. Common significance levels are 0.05 or 0.01.

The anova1 function displays two figures, the standard ANOVA table
and a box plot of the columns of X.

The standard ANOVA table divides the variability of the data into two
parts:

• Variability due to the differences among the column means
(variability between groups)

• Variability due to the differences between the data in each column
and the column mean (variability within groups)

The standard ANOVA table has six columns:

1 The source of the variability.

2 The sum of squares (SS) due to each source.

3 The degrees of freedom (df) associated with each source.
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4 The mean squares (MS) for each source, which is the ratio SS/df.

5 The F-statistic, which is the ratio of the mean squares.

6 The p-value, which is derived from the cdf of F.

The box plot of the columns of X suggests the size of the F-statistic and
the p-value. Large differences in the center lines of the boxes correspond
to large values of F and correspondingly small values of p.

Columns of X with NaN values are disregarded.

p = anova1(X,group) performs ANOVA by group.

If X is a matrix, anova1 treats each column as a separate group, and
evaluates whether the population means of the columns are equal. This
form of anova1 is appropriate when each group has the same number of
elements (balanced ANOVA). group can be a character array or a cell
array of strings, with one row per column of X, containing group names.
Enter an empty array ([]) or omit this argument if you do not want to
specify group names.

If X is a vector, group must be a categorical variable, vector, string array,
or cell array of strings with one name for each element of X. X values
corresponding to the same value of group are placed in the same group.
This form of anova1 is appropriate when groups have different numbers
of elements (unbalanced ANOVA).

If group contains empty or NaN-valued cells or strings, the corresponding
observations in X are disregarded.

p = anova1(X,group,displayopt) enables the ANOVA table and box
plot displays when displayopt is 'on' (default) and suppresses the
displays when displayopt is 'off'. Notches in the boxplot provide a
test of group medians (see boxplot) different from the F test for means
in the ANOVA table.

[p,table] = anova1(...) returns the ANOVA table (including
column and row labels) in the cell array table. Copy a text version of
the ANOVA table to the clipboard using the Copy Text item on the
Edit menu.
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[p,table,stats] = anova1(...) returns a structure stats used
to perform a follow-up multiple comparison test. anova1 evaluates
the hypothesis that the samples all have the same mean against the
alternative that the means are not all the same. Sometimes it is
preferable to perform a test to determine which pairs of means are
significantly different, and which are not. Use the multcompare function
to perform such tests by supplying the stats structure as input.

Assumptions

The ANOVA test makes the following assumptions about the data in X:

• All sample populations are normally distributed.

• All sample populations have equal variance.

• All observations are mutually independent.

The ANOVA test is known to be robust with respect to modest violations
of the first two assumptions.

Examples Example 1

Create X with columns that are constants plus random normal
disturbances with mean zero and standard deviation one:

X = meshgrid(1:5)
X =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

X = X + normrnd(0,1,5,5)
X =

0.5674 3.1909 2.8133 4.1139 5.2944
-0.6656 3.1892 3.7258 5.0668 3.6638
1.1253 1.9624 2.4117 4.0593 5.7143
1.2877 2.3273 5.1832 3.9044 6.6236
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-0.1465 2.1746 2.8636 3.1677 4.3082
p = anova1(X)
p =
4.0889e-007

Perform one-way ANOVA:

p = anova1(X)
p =

1.2765e-006
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The very small p-value indicates that differences between column
means are highly significant. The probability of this outcome under the
null hypothesis (that samples drawn from the same population would
have means differing by the amounts seen in X) is less than the p-value.

Example 2

The following example is from a study of the strength of structural
beams in Hogg. The vector strength measures deflections of beams in
thousandths of an inch under 3,000 pounds of force. The vector alloy
identifies each beam as steel ('st'), alloy 1 ('al1'), or alloy 2 ('al2').
(Although alloy is sorted in this example, grouping variables do not
need to be sorted.) The null hypothesis is that steel beams are equal in
strength to beams made of the two more expensive alloys.
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strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

p = anova1(strength,alloy)
p =

1.5264e-004
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The p-value suggests rejection of the null hypothesis. The box plot
shows that steel beams deflect more than beams made of the more
expensive alloys.

References [1] Hogg, R. V., J. Ledolter, Engineering Statistics, MacMillan, 1987.

See Also anova2, anovan, boxplot, manova1, multcompare
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Purpose Two-way analysis of variance

Syntax p = anova2(X,reps)
p = anova2(X,reps,displayopt)
[p,table] = anova2(...)
[p,table,stats] = anova2(...)

Description p = anova2(X,reps) performs a balanced two-way ANOVA for
comparing the means of two or more columns and two or more rows of
the observations in X. The data in different columns represent changes
in factor A. The data in different rows represent changes in factor B.
If there is more than one observation for each combination of factors,
input reps indicates the number of replicates in each position, which
much be constant. (For unbalanced designs, use anovan.)

The matrix below shows the format for a set-up where column factor
A has two levels, row factor B has three levels, and there are two
replications (reps = 2). The subscripts indicate row, column, and
replicate, respectively.

When reps is 1 (default), anova2 returns two p-values in vector p:

1 The p-value for the null hypothesis, H0A, that all samples from
factor A (i.e., all column-samples in X) are drawn from the same
population
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2 The p-value for the null hypothesis, H0B, that all samples from
factor B (i.e., all row-samples in X) are drawn from the same
population

When reps is greater than 1, anova2 returns a third p-value in
vector p:

3 The p-value for the null hypothesis, H0AB, that the effects due to
factors A and B are additive (i.e., that there is no interaction between
factors A and B)

If any p-value is near zero, this casts doubt on the associated null
hypothesis. A sufficiently small p-value for H0A suggests that at least
one column-sample mean is significantly different that the other
column-sample means; i.e., there is a main effect due to factor A. A
sufficiently small p-value for H0B suggests that at least one row-sample
mean is significantly different than the other row-sample means;
i.e., there is a main effect due to factor B. A sufficiently small p-value
for H0AB suggests that there is an interaction between factors A and
B. The choice of a limit for the p-value to determine whether a result
is “statistically significant” is left to the researcher. It is common to
declare a result significant if the p-value is less than 0.05 or 0.01.

anova2 also displays a figure showing the standard ANOVA table,
which divides the variability of the data in X into three or four parts
depending on the value of reps:

• The variability due to the differences among the column means

• The variability due to the differences among the row means

• The variability due to the interaction between rows and columns (if
reps is greater than its default value of one)

• The remaining variability not explained by any systematic source

The ANOVA table has five columns:

• The first shows the source of the variability.
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• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which is the ratio of the mean
squares.

p = anova2(X,reps,displayopt) enables the ANOVA table display
when displayopt is 'on' (default) and suppresses the display when
displayopt is 'off'.

[p,table] = anova2(...) returns the ANOVA table (including
column and row labels) in cell array table. (Copy a text version of the
ANOVA table to the clipboard by using the Copy Text item on the Edit
menu.)

[p,table,stats] = anova2(...) returns a stats structure that you
can use to perform a follow-up multiple comparison test.

The anova2 test evaluates the hypothesis that the row, column, and
interaction effects are all the same, against the alternative that they
are not all the same. Sometimes it is preferable to perform a test
to determine which pairs of effects are significantly different, and
which are not. Use the multcompare function to perform such tests by
supplying the stats structure as input.

Examples The data below come from a study of popcorn brands and popper type
(Hogg 1987). The columns of the matrix popcorn are brands (Gourmet,
National, and Generic). The rows are popper type (Oil and Air.) The
study popped a batch of each brand three times with each popper. The
values are the yield in cups of popped popcorn.

load popcorn

popcorn
popcorn =

5.5000 4.5000 3.5000
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5.5000 4.5000 4.0000
6.0000 4.0000 3.0000
6.5000 5.0000 4.0000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000

p = anova2(popcorn,3)
p =

0.0000 0.0001 0.7462

The vector p shows the p-values for the three brands of popcorn, 0.0000,
the two popper types, 0.0001, and the interaction between brand and
popper type, 0.7462. These values indicate that both popcorn brand and
popper type affect the yield of popcorn, but there is no evidence of a
synergistic (interaction) effect of the two.

The conclusion is that you can get the greatest yield using the Gourmet
brand and an Air popper (the three values popcorn(4:6,1)).

Reference [1] Hogg, R. V. and J. Ledolter, Engineering Statistics. MacMillan, 1987.

See Also anova1, anovan
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Purpose N-way analysis of variance

Syntax p = anovan(x,group)
p = anovan(x,group,param1,val1,param2,val2,...)
[p,table] = anovan(...)
[p,table,stats] = anovan(...)
[p,table,stats,terms] = anovan(...)

Description p = anovan(x,group) performs multiway (n-way) analysis of variance
(ANOVA) for testing the effects of multiple factors (grouping variables)
on the mean of the vector x. This test compares the variance explained
by factors to the left over variance that cannot be explained. The factors
and factor levels of the observations in Y are assigned by the cell array
group. Each of the cells in the cell array group contains a list of factor
levels identifying the observations in Y with respect to one of the factors.
The list within each cell can be a categorical array, numeric vector,
character matrix, or single-column cell array of strings, and must have
the same number of elements as Y. The fitted ANOVA model includes
the main effects of each grouping variable. All grouping variables are
treated as fixed effects by default. The result p is a vector of p-values,
one per term. For an example, see “Example of Three-Way ANOVA”
on page 14-26.

p = anovan(x,group,param1,val1,param2,val2,...) specifies one
or more of the parameter name/value pairs described in the following
table.

Parameter
Name Parameter Value

'alpha' A number between 0 and 1 requesting 100(1 -
alpha)% confidence bounds (default 0.05 for 95%
confidence)

'continuous' A vector of indices indicating which grouping
variables should be treated as continuous predictors
rather than as categorical predictors.
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Parameter
Name Parameter Value

'display' 'on' displays an ANOVA table (the default)
'off' omits the display

'model' The type of model used. See “Model Type” on page
14-24 for a description of this parameter.

'nested' A matrix M of 0’s and 1’s specifying the nesting
relationships among the grouping variables. M(i,j) is
1 if variable i is nested in variable j.

'random' A vector of indices indicating which grouping
variables are random effects (all are fixed by default).
See “Example: ANOVA with Random Effects” on
page 7-46 for an example of how to use 'random'.

'sstype' 1, 2, or 3, to specify the type of sum of squares
(default is 3). See “Sum of Squares” on page 14-25 for
a description of this parameter.

'varnames' A character matrix or a cell array of strings specifying
names of grouping variables, one per grouping
variable. When you do not specify 'varnames', the
default labels 'X1', 'X2', 'X3', ..., 'XN' are used.
See “Example: ANOVA with Random Effects” on
page 7-46 for an example of how to use 'varnames'.

[p,table] = anovan(...) returns the ANOVA table (including factor
labels) in cell array table. (Copy a text version of the ANOVA table to
the clipboard by using the Copy Text item on the Edit menu.)

[p,table,stats] = anovan(...) returns a stats structure that
you can use to perform a follow-up multiple comparison test with the
multcompare function. See “The stats Structure” on page 14-29 for
more information.

[p,table,stats,terms] = anovan(...) returns the main and
interaction terms used in the ANOVA computations. The terms are
encoded in the output matrix terms using the same format described
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above for input 'model'. When you specify 'model' itself in this matrix
format, the matrix returned in terms is identical.

Model Type

This section explains how to use the argument 'model' with the syntax:

[...] = anovan(x,group,'model',modeltype)

The argument modeltype, which specifies the type of model the function
uses, can be any one of the following:

• 'linear' — The default 'linear' model computes only the p-values
for the null hypotheses on the N main effects.

• 'interaction' — The 'interaction' model computes the p-values

for null hypotheses on the N main effects and the two-factor
interactions.

• 'full' — The 'full' model computes the p-values for null
hypotheses on the N main effects and interactions at all levels.

• An integer — For an integer value of modeltype, k (k ≤ N),
anovan computes all interaction levels through the kth level. For
example, the value 3 means main effects plus two- and three-factor
interactions. The values k=1 and k=2 are equivalent to the 'linear'
and 'interaction' specifications, respectively, while the value k=N
is equivalent to the 'full' specification.

• A matrix of term definitions having the same form as the input to the
x2fx function. All entries must be 0 or 1 (no higher powers).

For more precise control over the main and interaction terms that
anovan computes, modeltype can specify a matrix containing one row
for each main or interaction term to include in the ANOVA model. Each
row defines one term using a vector of N zeros and ones. The table
below illustrates the coding for a 3-factor ANOVA.
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Row of
Matrix Corresponding ANOVA Term

[1 0 0] Main term A

[0 1 0] Main term B

[0 0 1] Main term C

[1 1 0] Interaction term AB

[0 1 1] Interaction term BC

[1 0 1] Interaction term AC

[1 1 1] Interaction term ABC

For example, if modeltype is the matrix [0 1 0;0 0 1;0 1 1], the
output vector p contains the p-values for the null hypotheses on the
main effects B and C and the interaction effect BC, in that order. A
simple way to generate the modeltype matrix is to modify the terms
output, which codes the terms in the current model using the format
described above. If anovan returns [0 1 0;0 0 1;0 1 1] for terms, for
example, and there is no significant result for interaction BC, you can
recompute the ANOVA on just the main effects B and C by specifying [0
1 0;0 0 1] for modeltype.

Sum of Squares

This section explains how to use the argument 'sstype' with the
syntax:

[...] = anovan(x,group,'sstype',type)

This syntax computes the ANOVA using the type of sum-of-squares
specified by type, which can be 1, 2, or 3 to designate Type 1, Type 2, or
Type 3 sum-of-squares, respectively. The default is 3. The value of type
only influences computations on unbalanced data.

The sum of squares for any term is determined by comparing two
models. The Type 1 sum of squares for a term is the reduction in
residual sum of squares obtained by adding that term to a fit that
already includes the terms listed before it. The Type 2 sum of squares is
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the reduction in residual sum of squares obtained by adding that term
to a model consisting of all other terms that do not contain the term
in question. The Type 3 sum of squares is the reduction in residual
sum of squares obtained by adding that term to a model containing all
other terms, but with their effects constrained to obey the usual “sigma
restrictions” that make models estimable.

Suppose you are fitting a model with two factors and their interaction,
and that the terms appear in the order A, B, AB. Let R(·) represent the
residual sum of squares for a model, so for example R(A,B,AB) is the
residual sum of squares fitting the whole model, R(A) is the residual
sum of squares fitting just the main effect of A, and R(1) is the residual
sum of squares fitting just the mean. The three types of sums of squares
are as follows:

Term Type 1 SS Type 2 SS Type 3 SS

A R(1)-R(A) R(B)-R(A,B) R(B,AB)-R(A,B,AB)

B R(A)-R(A,B) R(A)-R(A,B) R(A,AB)-R(A,B,AB)

AB R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB) R(A,B)-R(A,B,AB)

The models for Type 3 sum of squares have sigma restrictions imposed.
This means, for example, that in fitting R(B,AB), the array of AB effects
is constrained to sum to 0 over A for each value of B, and over B for
each value of A.

Example of Three-Way ANOVA

As an example of three-way ANOVA, consider the vector y and group
inputs below.

y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';

g1 = [1 2 1 2 1 2 1 2];

g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};

g3 = {'may';'may';'may';'may';'june';'june';'june';'june'};
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This defines a three-way ANOVA with two levels of each factor. Every
observation in y is identified by a combination of factor levels. If the
factors are A, B, and C, then observation y(1) is associated with

• Level 1 of factor A

• Level 'hi' of factor B

• Level 'may' of factor C

Similarly, observation y(6) is associated with

• Level 2 of factor A

• Level 'hi' of factor B

• Level 'june' of factor C

To compute the ANOVA, enter

p = anovan(y, {g1 g2 g3})
p =

0.4174
0.0028
0.9140

Output vector p contains p-values for the null hypotheses on the N main
effects. Element p(1) contains the p-value for the null hypotheses,
H0A, that samples at all levels of factor A are drawn from the same
population; element p(2) contains the p-value for the null hypotheses,
H0B, that samples at all levels of factor B are drawn from the same
population; and so on.

If any p-value is near zero, this casts doubt on the associated null
hypothesis. For example, a sufficiently small p-value for H0A suggests
that at least one A-sample mean is significantly different from the other
A-sample means; that is, there is a main effect due to factor A. You
need to choose a bound for the p-value to determine whether a result is
statistically significant. It is common to declare a result significant if
the p-value is less than 0.05 or 0.01.
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anovan also displays a figure showing the standard ANOVA table,
which by default divides the variability of the data in x into

• The variability due to differences between the levels of each factor
accounted for in the model (one row for each factor)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the sum of squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the mean squares (MS), which is the ratio SS/df.

• The fifth shows the F statistics, which are the ratios of the mean
squares.

• The sixth shows the p-values for the F statistics.

The table is shown in the following figure:

Two-Factor Interactions

By default, anovan computes p-values just for the three main effects.
To also compute p-values for the two-factor interactions, X1*X2, X1*X3,
and X2*X3, add the name/value pair 'model', 'interaction' as input
arguments.
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p = anovan(y, {g1 g2 g3}, 'model', 'interaction')
p =

0.0347
0.0048
0.2578
0.0158
0.1444
0.5000

The first three entries of p are the p-values for the main effects. The
last three entries are the p-values for the two-factor interactions. You
can determine the order in which the two-factor interactions occur from
the ANOVAN table shown in the following figure.

The stats Structure

The anovan test evaluates the hypothesis that the different levels of
a factor (or more generally, a term) have the same effect, against the
alternative that they do not all have the same effect. Sometimes it is
preferable to perform a test to determine which pairs of levels are
significantly different, and which are not. Use the multcompare function
to perform such tests by supplying the stats structure as input.

The stats structure contains the fields listed below, in addition to a
number of other fields required for doing multiple comparisons using
the multcompare function:
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Stats Field Meaning

coeffs Estimated coefficients

coeffnames Name of term for each coefficient

vars Matrix of grouping variable values for each term

resid Residuals from the fitted model

The stats structure also contains the following fields if there are
random effects:

Stats Field Meaning

ems Expected mean squares

denom Denominator definition

rtnames Names of random terms

varest Variance component estimates (one per random term)

varci Confidence intervals for variance components

Examples “Example: Two-Way ANOVA” on page 7-38 shows how to use anova2 to
analyze the effects of two factors on a response in a balanced design.
For a design that is not balanced, use anovan instead.

In this example, the data set carbig contains a number of
measurements on 406 cars. You can use anonvan to study how the
mileage depends on where and when the cars were made.

load carbig

anovan(MPG,{org when},2,3,{'Origin';'Mfg date'})
ans =

0
0

0.3059
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The p-value for the interaction term is not small, indicating little
evidence that the effect of the car’s year or manufacture (when) depends
on where the car was made (org). The linear effects of those two factors,
though, are significant.

Reference [1] Hogg, R. V., and J. Ledolter, Engineering Statistics, MacMillan, 1987.

See Also anova1, anova2, multcompare
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Purpose Ansari-Bradley test

Syntax h = ansaribradley(x,y)
h = ansaribradley(x,y,alpha)
h = ansaribradley(x,y,alpha,tail)
[h,p] = ansaribradley(...)
[h,p,stats] = ansaribradley(...)
[...] = ansaribradley(x,y,alpha,tail,exact)
[...] = ansaribradley(x,y,alpha,tail,exact,dim)

Description h = ansaribradley(x,y) performs an Ansari-Bradley test of the
hypothesis that two independent samples, in the vectors x and y, come
from the same distribution, against the alternative that they come
from distributions that have the same median and shape but different
dispersions (e.g. variances). The result is h = 0 if the null hypothesis of
identical distributions cannot be rejected at the 5% significance level,
or h = 1 if the null hypothesis can be rejected at the 5% level. x and y
can have different lengths.

x and y can also be matrices or N-dimensional arrays. For matrices,
ansaribradley performs separate tests along each column, and returns
a vector of results. x and y must have the same number of columns.
For N-dimensional arrays, ansaribradley works along the first
nonsingleton dimension. x and y must have the same size along all
the remaining dimensions.

h = ansaribradley(x,y,alpha) performs the test at the significance
level (100*alpha), where alpha is a scalar.

h = ansaribradley(x,y,alpha,tail) performs the test against the
alternative hypothesis specified by the string tail. tail is one of:

• 'both' — Two-tailed test (dispersion parameters are not equal)

• 'right' — Right-tailed test (dispersion of X is greater than
dispersion of Y)

• 'left' — Left-tailed test (dispersion of X is less than dispersion of Y)
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[h,p] = ansaribradley(...) returns the p-value, i.e., the probability
of observing the given result, or one more extreme, by chance if the
null hypothesis is true. Small values of p cast doubt on the validity of
the null hypothesis.

[h,p,stats] = ansaribradley(...) returns a structure stats with
the following fields:

• 'W' — Value of the test statistic W, which is the sum of the
Ansari-Bradley ranks for the X sample

• 'Wstar' — Approximate normal statistic W*

[...] = ansaribradley(x,y,alpha,tail,exact) computes p using
an exact calculation of the distribution of W with exact = 'on'. This
can be time-consuming for large samples. exact = 'off' computes p
using a normal approximation for the distribution of W*. The default if
exact is empty is to use the exact calculation if N, the total number of
rows in x and y, is 25 or less, and to use the normal approximation if N
> 25. Pass in [] for alpha and tail to use their default values while
specifying a value for exact. Note that N is computed before any NaN
values (representing missing data) are removed.

[...] = ansaribradley(x,y,alpha,tail,exact,dim) works along
dimension dim of x and y.

The Ansari-Bradley test is a nonparametric alternative to the
two-sample F test of equal variances. It does not require the assumption
that x and y come from normal distributions. The dispersion of a
distribution is generally measured by its variance or standard deviation,
but the Ansari-Bradley test can be used with samples from distributions
that do not have finite variances.

The theory behind the Ansari-Bradley test requires that the groups
have equal medians. Under that assumption and if the distributions
in each group are continuous and identical, the test does not depend
on the distributions in each group. If the groups do not have the
same medians, the results may be misleading. Ansari and Bradley
recommend subtracting the median in that case, but the distribution of
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the resulting test, under the null hypothesis, is no longer independent
of the common distribution of x and y. If you want to perform the tests
with medians subtracted, you should subtract the medians from x and
y before calling ansaribradley.

Example Is the dispersion significantly different for two model years?

load carsmall

[h,p,stats] = ansaribradley(MPG(Model_Year==82),MPG(Model_Year==76))

h =

0

p =

0.8426

stats =

W: 526.9000

Wstar: 0.1986

See Also vartest, vartestn, ttest2
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Purpose Interactive fitting of analysis of covariance models

Syntax aoctool(x,y,group)
aoctool(x,y,group,alpha)
aoctool(x,y,group,alpha,xname,yname,gname)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt)
aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
h = aoctool(...)
[h,atab,ctab] = aoctool(...)
[h,atab,ctab,stats] = aoctool(...)

Description aoctool(x,y,group) fits a separate line to the column vectors, x and y,
for each group defined by the values in the array group. group may be
a categorical variable, vector, character array, or cell array of strings.
(See “Grouped Data” on page 2-41.) These types of models are known
as one-way analysis of covariance (ANOCOVA) models. The output
consists of three figures:

• An interactive graph of the data and prediction curves

• An ANOVA table

• A table of parameter estimates

You can use the figures to change models and to test different parts
of the model. More information about interactive use of the aoctool
function appears in “The aoctool Demo” on page 7-54.

aoctool(x,y,group,alpha) determines the confidence levels of the
prediction intervals. The confidence level is 100(1-alpha)%. The
default value of alpha is 0.05.

aoctool(x,y,group,alpha,xname,yname,gname) specifies the name
to use for the x, y, and g variables in the graph and tables. If you
enter simple variable names for the x, y, and g arguments, the aoctool
function uses those names. If you enter an expression for one of these
arguments, you can specify a name to use in place of that expression by
supplying these arguments. For example, if you enter m(:,2) as the x
argument, you might choose to enter 'Col 2' as the xname argument.
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aoctool(x,y,group,alpha,xname,yname,gname,displayopt) enables
the graph and table displays when displayopt is 'on' (default) and
suppresses those displays when displayopt is 'off'.

aoctool(x,y,group,alpha,xname,yname,gname,displayopt,model)
specifies the initial model to fit. The value of model can be any of the
following:

• 'same mean' — Fit a single mean, ignoring grouping

• 'separate means' — Fit a separate mean to each group

• 'same line' — Fit a single line, ignoring grouping

• 'parallel lines' — Fit a separate line to each group, but constrain
the lines to be parallel

• 'separate lines' — Fit a separate line to each group, with no
constraints

h = aoctool(...) returns a vector of handles to the line objects in
the plot.

[h,atab,ctab] = aoctool(...) returns cell arrays containing the
entries in ANOVA table (atab) and the table of coefficient estimates
(ctab). (You can copy a text version of either table to the clipboard by
using the Copy Text item on the Edit menu.)

[h,atab,ctab,stats] = aoctool(...) returns a stats structure
that you can use to perform a follow-up multiple comparison test. The
ANOVA table output includes tests of the hypotheses that the slopes
or intercepts are all the same, against a general alternative that they
are not all the same. Sometimes it is preferable to perform a test to
determine which pairs of values are significantly different, and which
are not. You can use the multcompare function to perform such tests by
supplying the stats structure as input. You can test either the slopes,
the intercepts, or population marginal means (the heights of the curves
at the mean x value).
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Example This example illustrates how to fit different models non-interactively.
After loading the smaller car data set and fitting a separate-slopes
model, you can examine the coefficient estimates.

load carsmall
[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...

'','','','off','separate lines');
c(:,1:2)
ans =

'Term' 'Estimate'
'Intercept' [45.97983716833132]
' 70' [-8.58050531454973]
' 76' [-3.89017396094922]
' 82' [12.47067927549897]
'Slope' [-0.00780212907455]
' 70' [ 0.00195840368824]
' 76' [ 0.00113831038418]
' 82' [-0.00309671407243]

Roughly speaking, the lines relating MPG to Weight have an intercept
close to 45.98 and a slope close to -0.0078. Each group’s coefficients are
offset from these values somewhat. For instance, the intercept for the
cars made in 1970 is 45.98-8.58 = 37.40.

Next, try a fit using parallel lines. (The ANOVA table shows that the
parallel-lines fit is significantly worse than the separate-lines fit.)

[h,a,c,s] = aoctool(Weight,MPG,Model_Year,0.05,...
'','','','off','parallel lines');

c(:,1:2)

ans =

'Term' 'Estimate'
'Intercept' [43.38984085130596]
' 70' [-3.27948192983761]
' 76' [-1.35036234809006]
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' 82' [ 4.62984427792768]
'Slope' [-0.00664751826198]

Again, there are different intercepts for each group, but this time the
slopes are constrained to be the same.

See Also anova1, multcompare, polytool
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Purpose Bartlett’s test for dimensionality

Syntax ndim = barttest(x,alpha)
[ndim,prob,chisquare] = barttest(x,alpha)

Description ndim = barttest(x,alpha) returns the number of dimensions
necessary to explain the nonrandom variation in the data matrix x,
using the significance probability alpha. The dimension is determined
by a series of hypothesis tests. The test for ndim=1 tests the hypothesis
that the variances of the data values along each principal component
are equal, the test for ndim=2 tests the hypothesis that the variances
along the second through last components are equal, and so on.

[ndim,prob,chisquare] = barttest(x,alpha) returns the number of
dimensions, the significance values for the hypothesis tests, and the χ2

values associated with the tests.

Example x = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,3:4) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
x(:,5:6) = mvnrnd([0 0],[1 0.99; 0.99 1],20);
[ndim, prob] = barttest(x,0.05)
ndim =

3
prob =

0
0
0

0.5081
0.6618

See Also princomp, pcacov, pcares
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Purpose Generate Box-Behnken design

Syntax D = bbdesign(nfactors)
[D,blk] = bbdesign(nfactors)
[...] = bbdesign(nfactors,param1,val1,param2,val2,...)

Description D = bbdesign(nfactors) generates a Box-Behnken design for
nfactors factors. The output matrix D is n-by-nfactors, where n is
the number of points in the design. Each row lists the settings for all
factors, scaled between -1 and 1.

[D,blk] = bbdesign(nfactors) requests a blocked design. The output
vector blk is a vector of block numbers. Blocks are groups of runs that
are to be measured under similar conditions (for example, on the same
day). Blocked designs minimize the effect of between-block differences
on the parameter estimates.

[...] = bbdesign(nfactors,param1,val1,param2,val2,...)
allows you to specify additional parameters and their values. Valid
parameters are:

'center' Number of center points to include

'blocksize' Maximum number of points allowed in a block

Remarks Box and Behnken proposed designs when the number of factors was
equal to 3-7, 9-12, or 16. This function produces those designs. For other
values of nfactors, this function produces designs that are constructed
in a similar way, even though they were not tabulated by Box and
Behnken, and they may be too large to be practical.

See Also ccdesign, cordexch, rowexch
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Purpose Beta cumulative distribution function

Syntax p = betacdf(X,A,B)

Description p = betacdf(X,A,B) computes the beta cdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in A and B must all be
positive, and the values in X must lie on the interval [0,1].

The beta cdf for a given value x and given pair of parameters a and b is

where B( · ) is the Beta function.

Examples x = 0.1:0.2:0.9;
a = 2;
b = 2;
p = betacdf(x,a,b)
p =

0.0280 0.2160 0.5000 0.7840 0.9720

a = [1 2 3];
p = betacdf(0.5,a,a)
p =

0.5000 0.5000 0.5000

See Also betafit, betainv, betalike, betapdf, betarnd, betastat, cdf
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Purpose Parameter estimates and confidence intervals for beta distributed data

Syntax phat = betafit(data)
[phat,pci] = betafit(data,alpha)

Description phat = betafit(data) computes the maximum likelihood estimates
of the beta distribution parameters a and b from the data in the
vector data and returns a column vector containing the a and b
estimates, where the beta cdf is given by

and B( · ) is the Beta function. The elements of data must lie in the
interval (0 1).

[phat,pci] = betafit(data,alpha) returns confidence intervals on
the a and b parameters in the 2-by-2 matrix pci. The first column of the
matrix contains the lower and upper confidence bounds for parameter a,
and the second column contains the confidence bounds for parameter b.
The optional input argument alpha is a value in the range [0 1]
specifying the width of the confidence intervals. By default, alpha is
0.05, which corresponds to 95% confidence intervals.

Example This example generates 100 beta distributed observations. The true
a and b parameters are 4 and 3, respectively. Compare these to the
values returned in p by the beta fit. Note that the columns of ci both
bracket the true parameters.

data = betarnd(4,3,100,1);
[p,ci] = betafit(data,0.01)
p =

3.9010 2.6193
ci =

2.5244 1.7488
5.2776 3.4898

14-42



betafit

Reference [1] Hahn, Gerald J., and Shapiro, Samuel S., Statistical Models in
Engineering. John Wiley & Sons, 1994. p. 95.

See Also betalike, mle
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Purpose Inverse of beta cumulative distribution function

Syntax X = betainv(P,A,B)

Description X = betainv(P,A,B) computes the inverse of the beta cdf with
parameters specified by A and B for the corresponding probabilities in P.
P, A, and B can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array with
the same dimensions as the other inputs. The parameters in A and B
must all be positive, and the values in P must lie on the interval [0, 1].

The inverse beta cdf for a given probability p and a given pair of
parameters a and b is

where

and B( · ) is the Beta function. Each element of output X is the value
whose cumulative probability under the beta cdf defined by the
corresponding parameters in A and B is specified by the corresponding
value in P.

Algorithm The betainv function uses Newton’s method with modifications to
constrain steps to the allowable range for x, i.e., [0 1].

Examples p = [0.01 0.5 0.99];
x = betainv(p,10,5)
x =

0.3726 0.6742 0.8981

According to this result, for a beta cdf with a=10 and b=5, a value
less than or equal to 0.3726 occurs with probability 0.01. Similarly,
values less than or equal to 0.6742 and 0.8981 occur with respective
probabilities 0.5 and 0.99.
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See Also betacdf, betafit, betapdf, betarnd, betastat, betalike,icdf
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Purpose Negative log-likelihood for beta distribution

Syntax nlogL = betalike(params,data)
[nlogL,AVAR] = betalike(params,data)

Description nlogL = betalike(params,data) returns the negative of the beta
log-likelihood function for the beta parameters a and b specified in
vector params and the observations specified in the column vector data.
The length of nlogL is the length of data.

[nlogL,AVAR] = betalike(params,data) also returns AVAR, which is
the asymptotic variance-covariance matrix of the parameter estimates
if the values in params are the maximum likelihood estimates. AVAR is
the inverse of Fisher’s information matrix. The diagonal elements of
AVAR are the asymptotic variances of their respective parameters.

betalike is a utility function for maximum likelihood estimation of
the beta distribution. The likelihood assumes that all the elements in
the data sample are mutually independent. Since betalike returns
the negative beta log-likelihood function, minimizing betalike using
fminsearch is the same as maximizing the likelihood.

Example This example continues the betafit example, which calculates
estimates of the beta parameters for some randomly generated beta
distributed data.

r = betarnd(4,3,100,1);
[nlogl,AVAR] = betalike(betafit(r),r)
nlogl =
-39.1615

AVAR =
0.3717 0.2644
0.2644 0.2414

See Also betafit, fminsearch, gamlike, mle, normlike, wbllike
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Purpose Beta probability density function

Syntax Y = betapdf(X,A,B)

Description Y = betapdf(X,A,B) computes the beta pdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions of the other inputs. The parameters in A and B must all be
positive, and the values in X must lie on the interval [0, 1].

The beta probability density function for a given value x and given pair
of parameters a and b is

where B( · ) is the Beta function. The indicator function
ensures that only values of x in the range (0 1) have nonzero probability.
The uniform distribution on (0 1) is a degenerate case of the beta pdf
where a = 1 and b = 1.

A likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the
parameters that maximize the likelihood function for a fixed value of x.

Examples a = [0.5 1; 2 4]
a =

0.5000 1.0000
2.0000 4.0000

y = betapdf(0.5,a,a)
y =

0.6366 1.0000
1.5000 2.1875

See Also betacdf, betafit, betainv, betalike, betarnd, betastat, betapdf
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Purpose Random numbers from beta distribution

Syntax R = betarnd(A,B)
R = betarnd(A,B,v)
R = betarnd(A,B,m,n)
R = betarnd(A,B,m,n,o,...)

Description R = betarnd(A,B) generates random numbers from the beta
distribution with parameters specified by A and B. A and B can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of R. A scalar input for A or B is expanded to a
constant array with the same dimensions as the other input.

R = betarnd(A,B,v) generates an array R of size v containing random
numbers from the beta distribution with parameters A and B, where v is
a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = betarnd(A,B,m,n) generates an m-by-n matrix containing random
numbers from the beta distribution with parameters A and B.

R = betarnd(A,B,m,n,o,...) generates an m-by-n-by-o-by-...
multidimensional array containing random numbers from the beta
distribution with parameters A and B.

Example a = [1 1;2 2];
b = [1 2;1 2];

r = betarnd(a,b)
r =

0.6987 0.6139
0.9102 0.8067

r = betarnd(10,10,[1 5])
r =

0.5974 0.4777 0.5538 0.5465 0.6327

r = betarnd(4,2,2,3)
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r =
0.3943 0.6101 0.5768
0.5990 0.2760 0.5474

See Also betacdf, betafit, betainv, betalike, betapdf, betastat, rand,
randn, randtool
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Purpose Mean and variance of beta distribution

Syntax [M,V] = betastat(A,B)

Description [M,V] = betastat(A,B), with A>0 and B>0, returns the mean of and
variance for the beta distribution with parameters specified by A and B.
A and B can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of M and V. A scalar input for A or B
is expanded to a constant array with the same dimensions as the other
input.

The mean of the beta distribution with parameters a and b is
and the variance is

Examples If parameters a and b are equal, the mean is 1/2.

a = 1:6;
[m,v] = betastat(a,a)
m =

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
v =

0.0833 0.0500 0.0357 0.0278 0.0227 0.0192

See Also betacdf, betafit, betainv, betalike, betapdf, betarnd
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Purpose Binomial cumulative distribution function

Syntax Y = binocdf(X,N,P)

Description Y = binocdf(X,N,P) computes a binomial cdf at each of the values
in X using the corresponding parameters in N and P. X, N, and P can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions of the other inputs. The values in N must all be positive
integers, the values in X must lie on the interval [0,N], and the values
in P must lie on the interval [0 1].

The binomial cdf for a given value and given pair of parameters
and is

The result, , is the probability of observing up to successes in
independent trials, where the probability of success in any given trial
is . The indicator function ensures that only adopts
values of .

Examples If a baseball team plays 162 games in a season and has a 50-50 chance
of winning any game, then the probability of that team winning more
than 100 games in a season is:

1 - binocdf(100,162,0.5)

The result is 0.001 (i.e., 1-0.999). If a team wins 100 or more games
in a season, this result suggests that it is likely that the team’s true
probability of winning any game is greater than 0.5.

See Also binofit, binoinv, binopdf, binornd, binostat, cdf
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Purpose Parameter estimates and confidence intervals for binomial distributed
data

Syntax phat = binofit(x,n)
[phat,pci] = binofit(x,n)
[phat,pci] = binofit(x,n,alpha)

Description phat = binofit(x,n) returns a maximum likelihood estimate
of the probability of success in a given binomial trial based on
the number of successes, x, observed in n independent trials. If
x = (x(1), x(2), ... x(k)) is a vector, binofit returns a
vector of the same size as x whose ith entry is the parameter
estimate for x(i). All k estimates are independent of each other. If
n = (n(1), n(2), ..., n(k)) is a vector of the same size as x, the
binomial fit, binofit, returns a vector whose ith entry is the parameter
estimate based on the number of successes x(i) in n(i) independent
trials. A scalar value for x or n is expanded to the same size as the
other input.

[phat,pci] = binofit(x,n) returns the probability estimate, phat,
and the 95% confidence intervals, pci.

[phat,pci] = binofit(x,n,alpha) returns the 100(1 - alpha)%
confidence intervals. For example, alpha = 0.01 yields 99% confidence
intervals.

Note binofit behaves differently than other functions in Statistics
Toolbox that compute parameter estimates, in that it returns
independent estimates for each entry of x. By comparison, expfit
returns a single parameter estimate based on all the entries of x.

Unlike most other distribution fitting functions, the binofit function
treats its input x vector as a collection of measurements from separate
samples. If you want to treat x as a single sample and compute a single
parameter estimate for it, you can use binofit(sum(x),sum(n)) when
n is a vector, and binofit(sum(X),N*length(X)) when n is a scalar.
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Example This example generates a binomial sample of 100 elements, where the
probability of success in a given trial is 0.6, and then estimates this
probability from the outcomes in the sample.

r = binornd(100,0.6);
[phat,pci] = binofit(r,100)
phat =

0.5800
pci =

0.4771 0.6780

The 95% confidence interval, pci, contains the true value, 0.6.

Reference [1] Johnson, N. L., S. Kotz, and A. W. Kemp, Univariate Discrete
Distributions, 2nd edition, Wiley, 1992, pp. 124-130.

See Also binocdf, binoinv, binopdf, binornd, binostat, mle
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Purpose Inverse of binomial cumulative distribution function

Syntax X = binoinv(Y,N,P)

Description X = binoinv(Y,N,P) returns the smallest integer X such that the
binomial cdf evaluated at X is equal to or exceeds Y. You can think of
Y as the probability of observing X successes in N independent trials
where P is the probability of success in each trial. Each X is a positive
integer less than or equal to N.

Y, N, and P can be vectors, matrices, or multidimensional arrays that
all have the same size. A scalar input is expanded to a constant array
with the same dimensions as the other inputs. The parameters in N
must be positive integers, and the values in both P and Y must lie on
the interval [0 1].

Examples If a baseball team has a 50-50 chance of winning any game, what is a
reasonable range of games this team might win over a season of 162
games?

binoinv([0.05 0.95],162,0.5)
ans =

71 91

This result means that in 90% of baseball seasons, a .500 team should
win between 71 and 91 games.

See Also binocdf, binofit, binopdf, binornd, binostat, icdf
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Purpose Binomial probability density function

Syntax Y = binopdf(X,N,P)

Description Y = binopdf(X,N,P) computes the binomial pdf at each of the values
in X using the corresponding parameters in N and P. Y, N, and P can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions of the other inputs.

The parameters in N must be positive integers, and the values in P must
lie on the interval [0 1].

The binomial probability density function for a given value x and given
pair of parameters n and p is

where q = 1-p. The result, y, is the probability of observing x successes
in n independent trials, where the probability of success in any given
trial is p. The indicator function I(0,1,...,n)(x) ensures that x only adopts
values of 0, 1, ..., n.

Examples A Quality Assurance inspector tests 200 circuit boards a day. If 2% of
the boards have defects, what is the probability that the inspector will
find no defective boards on any given day?

binopdf(0,200,0.02)
ans =

0.0176

What is the most likely number of defective boards the inspector will
find?

defects=0:200;
y = binopdf(defects,200,.02);
[x,i]=max(y);
defects(i)
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ans =
4

See Also binocdf, binofit, binoinv, binornd, binostat, pdf
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Purpose Random numbers from binomial distribution

Syntax R = binornd(N,P)
R = binornd(N,P,v)
R = binornd(N,p,m,n)

Description R = binornd(N,P) generates random numbers from the binomial
distribution with parameters specified by N and P. N and P can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of R. A scalar input for N or P is expanded to a
constant array with the same dimensions as the other input.

R = binornd(N,P,v) generates an array R of size v containing random
numbers from the binomial distribution with parameters N and P, where
v is a row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and
v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = binornd(N,p,m,n) generates an m-by-n matrix containing random
numbers from the binomial distribution with parameters N and P.

Algorithm The binornd function uses the direct method using the definition of the
binomial distribution as a sum of Bernoulli random variables.

Example n = 10:10:60;

r1 = binornd(n,1./n)
r1 =

2 1 0 1 1 2

r2 = binornd(n,1./n,[1 6])
r2 =

0 1 2 1 3 1

r3 = binornd(n,1./n,1,6)
r3 =

0 1 1 1 0 3
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See Also binocdf, binofit, binoinv, binopdf, binostat, rand, randtool
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Purpose Mean and variance of binomial distribution

Syntax [M,V] = binostat(N,P)

Description [M,V] = binostat(N,P) returns the mean of and variance for the
binomial distribution with parameters specified by N and P. N and P
can be vectors, matrices, or multidimensional arrays that have the
same size, which is also the size of M and V. A scalar input for N or P is
expanded to a constant array with the same dimensions as the other
input.

The mean of the binomial distribution with parameters n and p is np.
The variance is npq, where q = 1-p.

Examples n = logspace(1,5,5)
n =

10 100 1000 10000 100000

[m,v] = binostat(n,1./n)
m =

1 1 1 1 1
v =

0.9000 0.9900 0.9990 0.9999 1.0000

[m,v] = binostat(n,1/2)
m =

5 50 500 5000 50000
v =

1.0e+04 *
0.0003 0.0025 0.0250 0.2500 2.5000

See Also binocdf, binofit, binoinv, binopdf, binornd
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Purpose Biplot of variable/factor coefficients and scores

Syntax biplot(coefs)
biplot(coefs,...,'Scores',scores)
biplot(coefs,...,'VarLabels',varlabels)
biplot(coefs,...,'Scores',scores,'ObsLabels',obslabels)
biplot(coeffs,...,PropertyName,PropertyValue,...)
h = biplot(coefs,...)

Description biplot(coefs) creates a biplot of the coefficients in the matrix
coefs. The biplot is two-dimensional if coefs has two columns or
three-dimensional if it has three columns. coefs usually contains
principal component coefficients created with princomp, pcacov,
or factor loadings estimated with factoran. The axes in the biplot
represent the principal components or latent factors (columns of coefs),
and the observed variables (rows of coefs) are represented as vectors.

biplot(coefs,...,'Scores',scores) plots both coefs and the
scores in the matrix scores in the biplot. scores usually contains
principal component scores created with princomp or factor scores
estimated with factoran. Each observation (row of scores) is
represented as a point in the biplot.

A biplot allows you to visualize the magnitude and sign of each
variable’s contribution to the first two or three principal components,
and how each observation is represented in terms of those components.

biplot imposes a sign convention, forcing the element with largest
magnitude in each column of coefs to be positive.

biplot(coefs,...,'VarLabels',varlabels) labels each vector
(variable) with the text in the character array or cell array varlabels.

biplot(coefs,...,'Scores',scores,'ObsLabels',obslabels) uses
the text in the character array or cell array obslabels as observation
names when displaying data cursors.

biplot(coeffs,...,PropertyName,PropertyValue,...) sets
properties to the specified property values for all line graphics objects
created by biplot.
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h = biplot(coefs,...) returns a column vector of handles to the
graphics objects created by biplot. The h contains, in order, handles
corresponding to variables (line handles, followed by marker handles,
followed by text handles), to observations (if present, marker handles
followed by text handles), and to the axis lines.

Example load carsmall
x = [Acceleration Displacement Horsepower MPG Weight];
x = x(all(~isnan(x),2),:);
[coefs,score] = princomp(zscore(x));
vlabs = {'Accel','Disp','HP','MPG','Wgt'};
biplot(coefs(:,1:3),'scores',score(:,1:3),...

'varlabels',vlabs);

See Also factoran, princomp, pcacov, rotatefactors
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Purpose Bootstrap confidence interval

Syntax ci = bootci(nboot,bootfun,...)
ci = bootci(nboot,{bootfun,...},'alpha',alpha)
ci = bootci(nboot,{bootfun,...},...,'type',type)
ci = bootci(nboot,{bootfun,...},...,'type','stud','nbootstd',

nbootstd)
ci = bootci(nboot,{bootfun,...},...,'type','stud','stderr',

stderr)

Description ci = bootci(nboot,bootfun,...) computes the 95% BCa bootstrap
confidence interval of the statistic defined by the function bootfun.
nboot is a positive integer indicating the number of bootstrap data
samples used in the computation. bootfun is a function handle specified
with @. The third and later input arguments to bootci are data (scalars,
column vectors, or matrices) that are used to create inputs to bootfun.
bootci creates each bootstrap sample by sampling with replacement
from the rows of the non-scalar data arguments (these must have the
same number of rows). Scalar data are passed to bootfun unchanged.
ci is a vector containing the lower and upper bounds of the confidence
interval.

ci = bootci(nboot,{bootfun,...},'alpha',alpha) computes the
100*(1-alpha)% BCa bootstrap confidence interval of the statistic
defined by the function bootfun. alpha is a scalar between 0 and 1.
The default value of alpha is 0.05.

ci = bootci(nboot,{bootfun,...},...,'type',type) computes the
bootstrap confidence interval of the statistic defined by the function
bootfun. type is the confidence interval type, specifying different
methods of computing the confidence interval. type is a string chosen
from the following:

'normal' or 'norm' Normal approximated interval with
bootstrapped bias and standard error

'per' or 'percentile' Basic percentile method
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'cper' or 'corrected
percentile'

Bias corrected percentile method

'bca' Bias corrected and accelerated
percentile method

'stud' or 'student' Studentized confidence interval

The default value of type is 'bca'.

ci =
bootci(nboot,{bootfun,...},...,'type','stud','nbootstd',nbootstd)
computes the studentized bootstrap confidence interval of the statistic
defined by the function bootfun. The standard error of the
bootstrap statistics is estimated using bootstrap, with nbootstd
bootstrap data samples. nbootstd is a positive integer value.
The default value of nbootstd is 100.

ci =
bootci(nboot,{bootfun,...},...,'type','stud','stderr',stderr)
computes the studentized bootstrap confidence interval of statistics
defined by the function bootfun. The standard error of the bootstrap
statistics is evaluated by the function stderr. stderr is a function
handle created using @. stderr takes the same arguments as bootfun
and returns the standard error of the statistic computed by bootfun.

Examples Computing the Bootstrap Confidence Interval for Statistical
Process Control

Compute the confidence interval for the capability index in statistical
process control.

y = normrnd(1,1,30,1); % Simulated process data

LSL = -3; USL = 3; % Process specifications

capable = @(x) (USL-LSL)./(6* std(x)); % Process capability

bootci(2000,capable, y) % BCa confidence interval

ans =

0.8122

1.2657
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bootci(2000,{capable, y},'type','stud') % Studentized ci

ans =

0.7739

1.2707

See Also bootstrp, jackknife
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Purpose Bootstrap statistics through resampling of data

Syntax bootstat = bootstrp(nboot,bootfun,d1,...)
[bootstat,bootsam] = bootstrp(...)

Description bootstat = bootstrp(nboot,bootfun,d1,...) draws nboot
bootstrap data samples, computes statistics on each sample using
bootfun, and returns the results in the matrix bootstat. nboot must
be a positive integer. bootfun is a function handle specified with @.
Each row of bootstat contains the results of applying bootfun to one
bootstrap sample. If bootfun returns a matrix or array, then this output
is converted to a row vector for storage in bootstat.

The third and later input arguments (d1,...) are data (scalars, column
vectors, or matrices) used to create inputs to bootfun. bootstrp creates
each bootstrap sample by sampling with replacement from the rows of
the non-scalar data arguments (these must have the same number of
rows). bootfun accepts scalar data unchanged.

[bootstat,bootsam] = bootstrp(...) returns an n-by-nboot matrix
of bootstrap indices, bootsam. Each column in bootsam contains indices
of the values that were drawn from the original data sets to constitute
the corresponding bootstrap sample. For example, if d1,... each
contain 16 values, and nboot = 4, then bootsam is a 16-by-4 matrix.
The first column contains the indices of the 16 values drawn from
d1,..., for the first of the four bootstrap samples, the second column
contains the indices for the second of the four bootstrap samples, and so
on. (The bootstrap indices are the same for all input data sets.) To get
the output samples bootsam without applying a function, set bootfun
to empty ([]).

Examples Bootstrapping a Correlation Coefficient Standard Error

Load a data set containing the LSAT scores and law-school GPA for 15
students. These 15 data points are resampled to create 1000 different
data sets, and the correlation between the two variables is computed
for each data set.
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load lawdata
[bootstat,bootsam] = bootstrp(1000,@corr,lsat,gpa);

The histogram shows the variation of the correlation coefficient across
all the bootstrap samples. The sample minimum is positive, indicating
that the relationship between LSAT score and GPA is not accidental.

Finally, compute a bootstrap standard of error for the estimated
correlation coefficient.

se = std(bootstat)
se =

0.1327

Display the first 5 bootstrapped correlation coefficients.

bootstat(1:5,:)
ans =

0.6600
0.7969
0.5807
0.8766
0.9197

Display the indices of the data selected for the first 5 bootstrap samples.

bootsam(:,1:5)
ans =

9 8 15 11 15
14 7 6 7 14
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4 6 10 3 11
3 10 11 9 2

15 4 13 4 14
9 4 5 2 10
8 5 4 3 13
1 9 1 15 11

10 8 6 12 3
1 4 5 2 8
1 1 10 6 2
3 10 15 10 8

14 6 10 3 8
13 12 1 2 4
12 6 4 9 8

hist(bootstat)

Estimating the Density of Bootstrapped Statistic

Compute a sample of 100 bootstrapped means of random samples
taken from the vector Y, and plot an estimate of the density of these
bootstrapped means:

y = exprnd(5,100,1);
m = bootstrp(100,@mean,y);
[fi,xi] = ksdensity(m);
plot(xi,fi);
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Bootstrapping More Than One Statistic

Compute a sample of 100 bootstrapped means and standard deviations
of random samples taken from the vector Y, and plot the bootstrap
estimate pairs:

y = exprnd(5,100,1);
stats = bootstrp(100,@(x)[mean(x) std(x)],y);
plot(stats(:,1),stats(:,2),'o')
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Bootstrapping a Regression Model

Estimate the standard errors for a coefficient vector in a linear
regression by bootstrapping residuals:

load hald
x = [ones(size(heat)),ingredients];
y = heat;
b = regress(y,x);
yfit = x*b;
resid = y - yfit;
se = std(bootstrp(...

1000,@(bootr)regress(yfit+bootr,x),resid));
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Purpose Boundary points of piecewise distribution segments

Syntax [p,q] = boundary(obj)
[p,q] = boundary(obj,i)

Description [p,q] = boundary(obj) returns the boundary points between
segments of the piecewise distribution object obj. p is a vector of
cumulative probabilities at each boundary. q is a vector of quantiles at
each boundary.

[p,q] = boundary(obj,i) returns p and q for the ith boundary.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

See Also paretotails, cdf (piecewisedistribution), icdf
(piecewisedistribution), nsegments
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Purpose Box plot of data sample

Syntax boxplot(X)
boxplot(x,group)
boxplot(...,param1,val1,param2,val2,...)
boxplot(h,...)
H = boxplot(...)

Description boxplot(X) produces a box and whisker plot for each column of the
matrix X. The box has lines at the lower quartile, median, and upper
quartile values. Whiskers extend from each end of the box to the
adjacent values in the data—by default, the most extreme values within
1.5 times the interquartile range from the ends of the box. Outliers
are data with values beyond the ends of the whiskers. Outliers are
displayed with a red + sign.

boxplot(x,group) produces a box and whisker plot for the vector
x grouped by the grouping variable group. group is a categorical
variable, vector, string matrix, or cell array of strings. (See “Grouped
Data” on page 2-41.) group can also be a cell array of several grouping
variables (such as {g1 g2 g3}) to group the values in x by each unique
combination of grouping variable values.

boxplot(...,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs, as described in the following table.

Name Value

'notch' 'on' to include notches (default is 'off')

'symbol' Symbol to use for outliers (default is 'r+'). See
LineSpec for a description of symbols.

'orientation' Box orientation, 'vertical' (default) or
'horizontal'

'whisker' Maximum whisker length in units of interquartile
range (default 1.5)
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Name Value

'labels' Character array or cell array of strings containing
column labels (used only if X is a matrix, and the
default label is the column number)

'colors' A string, such as 'bgry', or a three-column matrix
of box colors. Letters in the string specify colors, as
described in LineSpec. Each box (outline, median
line, and whiskers) is drawn in the corresponding
color. The default is to draw all boxes with blue
outline, red median, and black whiskers. Colors are
reused in the same order if necessary.

'widths' A numeric vector of box widths. The default is
0.5, or slightly smaller for fewer than three boxes.
Widths are reused if necessary.

'positions' A numeric vector of box positions. The default is 1:n.

'grouporder' When the grouping variable G is given, a character
array or cell array of group names, specifying the
ordering of the groups in G. Ignored when G is not
given.

Notches display the variability of the median between samples. The
width of a notch is computed so that box plots whose notches do not
overlap have different medians at the 5% significance level. The
significance level is based on a normal distribution assumption, but
comparisons of medians are reasonably robust for other distributions.
Comparing boxplot medians is like a visual hypothesis test, analogous
to the t test used for means.

Whiskers extend from the box out to the most extreme data value
within whis*iqr, where whis is the value of the 'whisker' parameter
and iqr is the interquartile range of the sample.

boxplot(h,...) plots into the axes with handle h.

H = boxplot(...) returns a matrix H of handles to the lines in the box
plot. H contains one column for each box. Each column contains seven
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handles corresponding to the upper whisker, lower whisker, upper
adjacent value, lower adjacent value, box, median, and outliers.

Examples The following commands create a box plot of car mileage grouped by
country.

load carsmall
boxplot(MPG,Origin)

USA France Japan Germany Sweden Italy

10

15

20

25

30

35

40

45

V
al

ue
s

The following example produces notched box plots for two groups of
sample data.

x1 = normrnd(5,1,100,1);
x2 = normrnd(6,1,100,1);
boxplot([x1,x2],'notch','on')
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The difference between the medians of the two groups is
approximately 1. Since the notches in the boxplot do not overlap, you
can conclude, with 95% confidence, that the true medians do differ.

The following figure shows the boxplot for same data with the length
of the whiskers specified as 1.0 times the interquartile range. Points
beyond the whiskers are displayed using +.

boxplot([x1,x2],'notch','on','whisker',1)
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References [1] McGill, R., J. W. Tukey, and W. A. Larsen, “Variations of Boxplots,”
The American Statistician, Vol. 32, 1978, pp.12-16.

[2] Velleman, P.F., and D.C. Hoaglin, Applications, Basics, and
Computing of Exploratory Data Analysis, Duxbury Press, 1981.

[3] Nelson, L. S., “Evaluating Overlapping Confidence Intervals,”
Journal of Quality Technology, Vol. 21, 1989, pp. 140-141.

See Also anova1, kruskalwallis, multcompare
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Purpose D-optimal design from candidate set using row exchanges

Syntax rlist = candexch(C,nrows)
rlist = candexch(C,nrows,param1,value1,param2,value2,...)

Description rlist = candexch(C,nrows) uses a row-exchange algorithm to select
a D-optimal design from the candidate set C. C is an n-by-p matrix
containing the values of p model terms at each of n points. nrows is the
desired number of rows in the design. rlist is a vector of length nrows
listing the selected rows.

The candexch function selects a starting design X at random, and uses a
row-exchange algorithm to iteratively replace rows of X by rows of C in
an attempt to improve the determinant of X'*X.

rlist = candexch(C,nrows,param1,value1,param2,value2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are the following:

Parameter Value

'display' Either 'on' or 'off' to control display of iteration
number The default is 'on'.

'init' Initial design as an nrows-by-p matrix. The default
is a random subset of the rows of C.

'maxiter' Maximum number of iterations. The default is 10.

Note The rowexch function also generates D-optimal designs using a
row-exchange algorithm, but it accepts a model type and automatically
selects a candidate set that is appropriate for such a model.

Examples Generate a D-optimal design when there is a restriction on the
candidate set. In this case, the rowexch function isn’t appropriate.

F = (fullfact([5 5 5])-1)/4; % Factor settings in unit cube
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T = sum(F,2)<=1.51; % Find rows matching a restriction

F = F(T,:); % Take only those rows

C = [ones(size(F,1),1) F F.^2]; % Compute model terms including a

% constant and all squared terms

R = candexch(C,12); % Find a D-optimal 12-point subset

X = F(R,:); % Get factor settings

See Also candgen, cordexch, rowexch, x2fx

14-77



candgen

Purpose Generate candidate set for D-optimal design

Syntax xcand = candgen(nfactors,model)
[xcand,fxcand] = candgen(nfactors,model)

Description xcand = candgen(nfactors,model) generates a candidate set
appropriate for a D-optimal design with nfactors factors and the model
model. The output matrix xcand has nfactors columns, with each row
representing the coordinates of a candidate point. model is one of:

'linear' Constant and linear terms (the default)

'interaction' Constant, linear, and cross product terms

'quadratic' Interactions plus squared terms

'purequadratic' Constant, linear, and squared terms

Alternatively, model can be a matrix of term definitions as accepted
by the x2fx function.

[xcand,fxcand] = candgen(nfactors,model) returns both the
matrix of factor values xcand and the matrix of term values fxcand.
You can input the latter to candexch to generate the D-optimal design.

Note The rowexch function automatically generates a candidate set
using candgen, and creates a D-optimal design from that candidate set
using candexch. Call these functions separately if you want to modify
the default candidate set.

See Also candexch, rowexch, x2fx
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Purpose Canonical correlation analysis

Syntax [A,B] = canoncorr(X,Y)
[A,B,r] = canoncorr(X,Y)
[A,B,r,U,V] = canoncorr(X,Y)
[A,B,r,U,V,stats] = canoncorr(X,Y)

Description [A,B] = canoncorr(X,Y) computes the sample canonical coefficients
for the n-by-d1 and n-by-d2 data matrices X and Y. X and Y must have
the same number of observations (rows) but can have different numbers
of variables (columns). A and B are d1-by-d and d2-by-d matrices, where
d = min(rank(X),rank(Y)). The jth columns of A and B contain the
canonical coefficients, i.e., the linear combination of variables making
up the jth canonical variable for X and Y, respectively. Columns of A and
B are scaled to make the covariance matrices of the canonical variables
the identity matrix (see U and V below). If X or Y is less than full rank,
canoncorr gives a warning and returns zeros in the rows of A or B
corresponding to dependent columns of X or Y.

[A,B,r] = canoncorr(X,Y) also returns a 1-by-d vector containing the
sample canonical correlations. The jth element of r is the correlation
between the jth columns of U and V (see below).

[A,B,r,U,V] = canoncorr(X,Y) also returns the canonical variables,
scores. U and V are n-by-d matrices computed as

U = (X-repmat(mean(X),N,1))*A
V = (Y-repmat(mean(Y),N,1))*B

[A,B,r,U,V,stats] = canoncorr(X,Y) also returns a structure
stats containing information relating to the sequence of d null

hypotheses , that the (k+1)st through dth correlations are all zero,
for k = 0:(d-1). stats contains seven fields, each a 1-by-d vector with
elements corresponding to the values of k, as described in the following
table:

14-79



canoncorr

Wilks Wilks’ lambda (likelihood ratio) statistic

chisq
Bartlett’s approximate chi-squared statistic for
with Lawley’s modification

pChisq Right-tail significance level for chisq

F
Rao’s approximate F statistic for

pF Right-tail significance level for F

df1 Degrees of freedom for the chi-squared statistic, and
the numerator degrees of freedom for the F statistic

df2 Denominator degrees of freedom for the F statistic

Examples load carbig;
X = [Displacement Horsepower Weight Acceleration MPG];
nans = sum(isnan(X),2) > 0;
[A B r U V] = canoncorr(X(~nans,1:3),X(~nans,4:5));

plot(U(:,1),V(:,1),'.');
xlabel('0.0025*Disp+0.020*HP-0.000025*Wgt');
ylabel('-0.17*Accel-0.092*MPG')
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References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford
University Press, 1988.

[2] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also manova1, princomp
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Purpose Process capability indices

Syntax S = capability(data,specs)

Description S = capability(data,specs) estimates capability indices for
measurements in data given the specifications in specs. data can be
either a vector or a matrix of measurements. If data is a matrix, indices
are computed for the columns. specs can be either a two-element vector
of the form [L,U] containing lower and upper specification limits, or (if
data is a matrix) a two-row matrix with the same number of columns as
data. If there is no lower bound, use -Inf as the first element of specs.
If there is no upper bound, use Inf as the second element of specs.

The output S is a structure with the following fields:

• mu — Sample mean

• sigma — Sample standard deviation

• P — Estimated probability of being within limits

• Pl — Estimated probability of being below L

• Pu — Estimated probability of being above U

• Cp — (U-L)/(6*sigma)

• Cpl — (mu-L)./(3.*sigma)

• Cpu — (U-mu)./(3.*sigma)

• Cpk — min(Cpl,Cpu)

Indices are computed under the assumption that data values are
independent samples from a normal population with constant mean
and variance.

Indices divide a “specification width” (between specification limits)
by a “process width” (between control limits). Higher ratios indicate
processes with less measurements outside of specification.
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Example Simulate a sample from a process with a mean of 3 and a standard
deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification
limit of 3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
Cp: 0.7156

Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744

Visualize the specification and process widths:

capaplot(data,[2.99 3.01]);
grid on
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Reference [1] Montgomery, D., Introduction to Statistical Quality Control, John
Wiley & Sons, 1991, pp. 369–374.

See Also capaplot, histfit
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Purpose Process capability plot

Syntax p = capaplot(data,specs)
[p,h] = capaplot(data,specs)

Description p = capaplot(data,specs) estimates the mean of and variance for
the observations in input vector data, and plots the pdf of the resulting
T distribution. The observations in data are assumed to be normally
distributed. The output, p, is the probability that a new observation
from the estimated distribution will fall within the range specified by
the two-element vector specs. The portion of the distribution between
the lower and upper bounds specified in specs is shaded in the plot.

[p,h] = capaplot(data,specs) additionally returns handles to the
plot elements in h.

Example Simulate a sample from a process with a mean of 3 and a standard
deviation of 0.005:

data = normrnd(3,0.005,100,1);

Compute capability indices if the process has an upper specification
limit of 3.01 and a lower specification limit of 2.99:

S = capability(data,[2.99 3.01])
S =

mu: 3.0006
sigma: 0.0047

P: 0.9669
Pl: 0.0116
Pu: 0.0215
Cp: 0.7156

Cpl: 0.7567
Cpu: 0.6744
Cpk: 0.6744

Visualize the specification and process widths:
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capaplot(data,[2.99 3.01]);
grid on

See Also capability, histfit
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Purpose Read case names from file

Syntax names = caseread(filename)
names = caseread

Description names = caseread(filename) reads the contents of filename and
returns a string matrix of names. filename is the name of a file in the
current directory, or the complete path name of any file elsewhere.
caseread treats each line as a separate case.

names = caseread displays the Select File to Open dialog box for
interactive selection of the input file.

Example Read the file months.dat created using the function casewrite on the
next page.

type months.dat

January
February
March
April
May

names = caseread('months.dat')
names =
January
February
March
April
May

See Also tblread, gname, casewrite, tdfread
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Purpose Write case names to file

Syntax casewrite(strmat,filename)
casewrite(strmat)

Description casewrite(strmat,filename) writes the contents of string matrix
strmat to filename. Each row of strmat represents one case name.
filename is the name of a file in the current directory, or the complete
path name of any file elsewhere. casewrite writes each name to a
separate line in filename.

casewrite(strmat) displays the Select File to Write dialog box for
interactive specification of the output file.

Example strmat = str2mat('January','February',...
'March','April','May')

strmat =
January
February
March
April
May

casewrite(strmat,'months.dat')
type months.dat

January
February
March
April
May

See Also gname, caseread, tblwrite, tdfread
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Purpose Generate central composite design

Syntax D = ccdesign(nfactors)
[D,blk] = ccdesign(nfactors)
[...] = ccdesign(nfactors,param1,val1,param2,val2,...)

Description D = ccdesign(nfactors) generates a central composite design for
nfactors factors. The output matrix D is n-by-nfactors, where n is the
number of points in the design. Each row represents one run of the
design, and it has the settings of all factors for that run. Factor values
are normalized so that the cube points take values between -1 and 1.

[D,blk] = ccdesign(nfactors) requests a blocked design. The
output vector blk is a vector of block numbers. Blocks are groups of
runs that are to be measured under similar conditions (for example, on
the same day). Blocked designs minimize the effect of between-block
differences on the parameter estimates.

[...] = ccdesign(nfactors,param1,val1,param2,val2,...)
enables you to specify additional parameters and their values. Valid
parameters are:

Number of center points:

Integer Specific number of center
points to include

'uniform' Number of center
points is selected to
give uniform precision

'center'

'orthogonal' Number of center points
is selected to give
an orthogonal design
(default)
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Fraction of full factorial
for cube portion
expressed as an exponent
of 1/2. For example:

0 Whole design

1 1/2 fraction

'fraction'

2 1/4 fraction

'type' Either 'inscribed',
'circumscribed', or
'faced'

'blocksize' Maximum number of
points allowed in a block.

See Also bbdesign, cordexch, rowexch
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Purpose Cumulative distribution function for specified distribution

Syntax Y = cdf(name,X,A)
Y = cdf(name,X,A,B)
Y = cdf(name,X,A,B,C)

Description Y = cdf(name,X,A) computes the cumulative distribution function for
the one-parameter family of distributions specified by name. Parameter
values for the distribution are given in A. The cumulative distribution
function is evaluated at the values in X and its values are returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = cdf(name,X,A,B) computes the cumulative distribution function
for two-parameter families of distributions, where parameter values
are given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = cdf(name,X,A,B,C) computes the cumulative distribution function
for three-parameter families of distributions, where parameter values
are given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples p = cdf('Normal',-2:2,0,1)
p =
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0.0228 0.1587 0.5000 0.8413 0.9772

p = cdf('Poisson',0:5,1:6)
p =

0.3679 0.4060 0.4232 0.4335 0.4405 0.4457

See Also mle, random, icdf, pdf
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Purpose Cumulative distribution function for piecewise distribution

Syntax P = cdf(obj,X)

Description P = cdf(obj,X) returns an array P of values of the cumulative
distribution function for the piecewise distribution object obj, evaluated
at the values in the array X.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

cdf(obj,q)
ans =

0.1000
0.9000

See Also paretotails, pdf (piecewisedistribution), icdf
(piecewisedistribution)
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Purpose Plot of empirical cumulative distribution function

Syntax cdfplot(X)
H = cdfplot(X)
[h,stats] = cdfplot(X)

Description cdfplot(X) displays a plot of the empirical cumulative distribution
function (cdf) for the data in the vector X. The empirical cdf is
defined as the proportion of X values less than or equal to x.

This plot, like those produced by hist and normplot, is useful for
examining the distribution of a sample of data. You can overlay a
theoretical cdf on the same plot to compare the empirical distribution
of the sample to the theoretical distribution.

The kstest, kstest2, and lillietest functions compute test statistics
that are derived from the empirical cdf. You may find the empirical
cdf plot produced by cdfplot useful in helping you to understand the
output from those functions.

H = cdfplot(X) returns a handle to the cdf curve.

[h,stats] = cdfplot(X) also returns a stats structure with the
following fields.

Field Contents

stats.min Minimum value

stats.max Maximum value

stats.mean Sample mean

stats.median Sample median (50th percentile)

stats.std Sample standard deviation

Example The following example compares the empirical cdf for a sample from
an extreme value distribution with a plot of the cdf for the sampling
distribution. In practice, the sampling distribution would be unknown,
and would be chosen to match the empirical cdf.
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y = evrnd(0,3,100,1);
cdfplot(y)
hold on
x = -20:0.1:10;
f = evcdf(x,0,3);
plot(x,f,'m')
legend('Empirical','Theoretical','Location','NW')

See Also ecdf, hist, kstest, kstest2, lillietest, normplot
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Purpose Chi-square cumulative distribution function

Syntax P = chi2cdf(X,V)

Description P = chi2cdf(X,V) computes the chi-square cdf at each of the values
in X using the corresponding parameters in V. X and V can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar
input is expanded to a constant array with the same dimensions as
the other input.

The degrees of freedom parameters in V must be positive integers, and
the values in X must lie on the interval [0 Inf].

The χ2 cdf for a given value x and degrees-of-freedom ν is

where ( · ) is the Gamma function.

The chi-square density function with ν degrees-of-freedom is the same
as the gamma density function with parameters ν/2 and 2.

Examples probability = chi2cdf(5,1:5)
probability =

0.9747 0.9179 0.8282 0.7127 0.5841

probability = chi2cdf(1:5,1:5)
probability =

0.6827 0.6321 0.6084 0.5940 0.5841

See Also cdf, chi2inv, chi2pdf, chi2rnd, chi2stat
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Purpose Chi-square goodness-of-fit test

Syntax h = chi2gof(x)
[h,p] = chi2gof(...)
[h,p,stats] = chi2gof(...)
[...] = chi2gof(X,name1,val1,name2,val2,...)

Description h = chi2gof(x) performs a chi-square goodness-of-fit test of the
default null hypothesis that the data in vector x are a random sample
from a normal distribution with mean and variance estimated from
x, against the alternative that the data are not normally distributed
with the estimated mean and variance. The result h is 1 if the null
hypothesis can be rejected at the 5% significance level. The result h is 0
if the null hypothesis cannot be rejected at the 5% significance level.

The null distribution can be changed from a normal distribution to
an arbitrary discrete or continuous distribution. See the syntax for
specifying optional argument name/value pairs below.

The test is performed by grouping the data into bins, calculating
the observed and expected counts for those bins, and computing the
chi-square test statistic

χ2

1

2

= −
=
∑ ( ) /O E Ei i
i

N

i

where Oi are the observed counts and Ei are the expected counts. The
statistic has an approximate chi-square distribution when the counts
are sufficiently large. Bins in either tail with an expected count less
than 5 are pooled with neighboring bins until the count in each extreme
bin is at least 5. If bins remain in the interior with counts less than 5,
chi2gof displays a warning. In this case, you should use fewer bins,
or provide bin centers or edges, to increase the expected counts in all
bins. (See the syntax for specifying optional argument name/value pairs
below.) chi2gof sets the number of bins, nbins, to 10 by default, and
compares the test statistic to a chi-square distribution with nbins – 3
degrees of freedom to take into account the two estimated parameters.
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[h,p] = chi2gof(...) also returns the p-value of the test, p. The
p-value is the probability, under assumption of the null hypothesis, of
observing the given statistic or one more extreme.

[h,p,stats] = chi2gof(...) also returns a structure stats with
the following fields:

• chi2stat — The chi-square statistic

• df — Degrees of freedom

• edges — Vector of bin edges after pooling

• O — Observed count in each bin

• E — Expected count in each bin

[...] = chi2gof(X,name1,val1,name2,val2,...) specifies optional
argument name/value pairs chosen from the following lists. Argument
names are case insensitive and partial matches are allowed.

The following name/value pairs control the initial binning of the data
before pooling. You should not specify more than one of these options.

• 'nbins' — The number of bins to use. Default is 10.

• 'ctrs' — A vector of bin centers

• 'edges' — A vector of bin edges

The following name/value pairs determine the null distribution for the
test. You should not specify both 'cdf' and 'expected'.

• 'cdf' — A fully specified cumulative distribution function. This can
be a function name or function handle, and the function must take x
as its only argument. Alternately, you can provide a cell array whose
first element is a function name or handle, and whose later elements
are parameter values, one per cell. The function must take x as its
first argument, and other parameters as later arguments.
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• 'expected' — A vector with one element per bin specifying the
expected counts for each bin

• 'nparams' — The number of estimated parameters; used to adjust
the degrees of freedom to be nbins – 1 – nparams, where nbins is
the number of bins

If your 'cdf' or 'expected' input depends on estimated parameters,
you should use 'nparams' to ensure that the degrees of freedom for the
test is correct. If 'cdf'is a cell array, the default value of 'nparams' is
the number of parameters in the array; otherwise the default is 0.

The following name/value pairs control other aspects of the test.

• 'emin' — The minimum allowed expected value for a bin; any bin
in either tail having an expected value less than this amount is
pooled with a neighboring bin. Use the value 0 to prevent pooling.
The default is 5.

• 'frequency' — A vector the same length as x containing the
frequency of the corresponding xvalues

• 'alpha' — Significance level for the test. The default is 0.05.

Examples Example 1

Equivalent ways to test against an unspecified normal distribution
with estimated parameters:

x = normrnd(50,5,100,1);

[h,p] = chi2gof(x)

h =

0

p =

0.7532

[h,p] = chi2gof(x,'cdf',@(z)normcdf(z,mean(x),std(x)),'nparams',2)

h =

0
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p =

0.7532

[h,p] = chi2gof(x,'cdf',{@normcdf,mean(x),std(x)})

h =

0

p =

0.7532

Example 2

Test against the standard normal:

x = randn(100,1);

[h,p] = chi2gof(x,'cdf',@normcdf)
h =

0
p =

0.9443

Example 3

Test against the standard uniform:

x = rand(100,1);

n = length(x);
edges = linspace(0,1,11);
expectedCounts = n * diff(edges);
[h,p,st] = chi2gof(x,'edges',edges,...

'expected',expectedCounts)
h =

0
p =

0.3191
st =

chi2stat: 10.4000
df: 9
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edges: [1x11 double]
O: [6 11 4 12 15 8 14 9 11 10]
E: [1x10 double]

Example 4

Test against the Poisson distribution by specifying observed and
expected counts:

bins = 0:5;
obsCounts = [6 16 10 12 4 2];
n = sum(obsCounts);
lambdaHat = sum(bins.*obsCounts)/n;
expCounts = n*poisspdf(bins,lambdaHat);

[h,p,st] = chi2gof(bins,'ctrs',bins,...
'frequency',obsCounts, ...
'expected',expCounts,...
'nparams',1)

h =
0

p =
0.4654

st =
chi2stat: 2.5550

df: 3
edges: [1x6 double]

O: [6 16 10 12 6]
E: [7.0429 13.8041 13.5280 8.8383 6.0284]

See Also crosstab, chi2cdf, kstest, lillietest
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Purpose Inverse of chi-square cumulative distribution function

Syntax X = chi2inv(P,V)

Description X = chi2inv(P,V) computes the inverse of the chi-square cdf with
parameters specified by V for the corresponding probabilities in P.
P and V can be vectors, matrices, or multidimensional arrays that have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other inputs.

The degrees of freedom parameters in V must be positive integers, and
the values in P must lie in the interval [0 1].

The inverse chi-square cdf for a given probability p and ν degrees of
freedom is

where

and ( · ) is the Gamma function. Each element of output X is the value
whose cumulative probability under the chi-square cdf defined by the
corresponding degrees of freedom parameter in V is specified by the
corresponding value in P.

Examples Find a value that exceeds 95% of the samples from a chi-square
distribution with 10 degrees of freedom.

x = chi2inv(0.95,10)
x =

18.3070

You would observe values greater than 18.3 only 5% of the time by
chance.
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See Also chi2gof, chi2pdf, chi2rnd, chi2stat, icdf
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Purpose Chi-square probability density function

Syntax Y = chi2pdf(X,V)

Description Y = chi2pdf(X,V) computes the chi-square pdf at each of the values
in X using the corresponding parameters in V. X and V can be vectors,
matrices, or multidimensional arrays that have the same size, which is
also the size of the output Y. A scalar input is expanded to a constant
array with the same dimensions as the other input.

The degrees of freedom parameters in V must be positive integers, and
the values in X must lie on the interval [0 Inf].

The chi-square pdf for a given value x and ν degrees of freedom is

where ( · ) is the Gamma function.

If x is standard normal, then x2 is distributed chi-square with one
degree of freedom. If x1, x2, ..., xn are n independent standard normal
observations, then the sum of the squares of the x’s is distributed
chi-square with n degrees of freedom (and is equivalent to the gamma
density function with parameters ν/2 and 2).

Examples nu = 1:6;
x = nu;
y = chi2pdf(x,nu)
y =

0.2420 0.1839 0.1542 0.1353 0.1220 0.1120

The mean of the chi-square distribution is the value of the degrees of
freedom parameter, nu. The above example shows that the probability
density of the mean falls as nu increases.

See Also chi2gof, chi2inv, chi2rnd, chi2stat, pdf
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Purpose Random numbers from chi-square distribution

Syntax R = chi2rnd(V)
R = chi2rnd(V,u)
R = chi2rnd(V,m,n)

Description R = chi2rnd(V) generates random numbers from the chi-square
distribution with degrees of freedom parameters specified by V. V can be
a vector, a matrix, or a multidimensional array. R is the same size as V.

R = chi2rnd(V,u) generates an array R of size u containing random
numbers from the chi-square distribution with degrees of freedom
parameters specified by V, where u is a row vector. If u is a 1-by-2
vector, R is a matrix with u(1) rows and u(2) columns. If u is 1-by-n, R
is an n-dimensional array.

R = chi2rnd(V,m,n) generates an m-by-n matrix containing random
numbers from the chi-square distribution with degrees of freedom
parameter V.

Example Note that the first and third commands are the same, but are different
from the second command.

r = chi2rnd(1:6)
r =

0.0037 3.0377 7.8142 0.9021 3.2019 9.0729

r = chi2rnd(6,[1 6])
r =

6.5249 2.6226 12.2497 3.0388 6.3133 5.0388

r = chi2rnd(1:6,1,6)
r =

0.7638 6.0955 0.8273 3.2506 1.5469 10.9197

See Also chi2gof, chi2inv, chi2pdf, chi2stat
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Purpose Mean and variance of chi-square distribution

Syntax [M,V] = chi2stat(NU)

Description [M,V] = chi2stat(NU) returns the mean of and variance for the
chi-square distribution with degrees of freedom parameters specified
by NU.

The mean of the chi-square distribution is ν, the degrees of freedom
parameter, and the variance is 2ν.

Example nu = 1:10;
nu = nu'*nu;
[m,v] = chi2stat(nu)
m =
1 2 3 4 5 6 7 8 9 10
2 4 6 8 10 12 14 16 18 20
3 6 9 12 15 18 21 24 27 30
4 8 12 16 20 24 28 32 36 40
5 10 15 20 25 30 35 40 45 50
6 12 18 24 30 36 42 48 54 60
7 14 21 28 35 42 49 56 63 70
8 16 24 32 40 48 56 64 72 80
9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

v =
2 4 6 8 10 12 14 16 18 20
4 8 12 16 20 24 28 32 36 40
6 12 18 24 30 36 42 48 54 60
8 16 24 32 40 48 56 64 72 80

10 20 30 40 50 60 70 80 90 100
12 24 36 48 60 72 84 96 108 120
14 28 42 56 70 84 98 112 126 140
16 32 48 64 80 96 112 128 144 160
18 36 54 72 90 108 126 144 162 180
20 40 60 80 100 120 140 160 180 200
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See Also chi2gof, chi2inv, chi2pdf, chi2rnd
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Purpose Child nodes of tree node

Syntax C = children(t)
C = children(t,nodes)

Description C = children(t) returns an n-by-2 array C containing the numbers
of the child nodes for each node in the tree t, where n is the number of
nodes. Leaf nodes have child node 0.

C = children(t,nodes) takes a vector nodes of node numbers and
returns the children for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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C = children(t)
C =

2 3
0 0
4 5
6 7
0 0
8 9
0 0
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0 0
0 0

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, parent
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Purpose Cholesky-like decomposition for covariance matrix

Syntax T = cholcov(SIGMA)
[T,num] = cholcov(SIGMA)
[T,num] = cholcov(SIGMA,0)

Description T = cholcov(SIGMA) computes T such that SIGMA = T'*T. SIGMA must
be square, symmetric, and positive semi-definite. If SIGMA is positive
definite, then T is the square, upper triangular Cholesky factor. If SIGMA
is not positive definite, T is computed from an eigenvalue decomposition
of SIGMA. T is not necessarily triangular or square in this case. Any
eigenvectors whose corresponding eigenvalue is close to zero (within
a small tolerance) are omitted. If any remaining eigenvectors are
negative, T is empty.

[T,num] = cholcov(SIGMA) returns the number num of negative
eigenvalues of SIGMA, and T is empty if num is positive. If num is zero,
SIGMA is positive semi-definite. If SIGMA is not square and symmetric,
num is NaN and T is empty.

[T,num] = cholcov(SIGMA,0) returns num equal to zero if SIGMA
is positive definite, and T is the Cholesky factor. If SIGMA is not
positive definite, num is a positive integer and T is empty. [...] =
cholcov(SIGMA,1) is equivalent to [...] = cholcov(SIGMA).

Example The following 4-by-4 covariance matrix is rank-deficient:

C1 = [2 1 1 2;1 2 1 2;1 1 2 2;2 2 2 3]
C1 =

2 1 1 2
1 2 1 2
1 1 2 2
2 2 2 3

rank(C1)
ans =

3

Use cholcov to factor C1:
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T = cholcov(C1)
T =

-0.2113 0.7887 -0.5774 0
0.7887 -0.2113 -0.5774 0
1.1547 1.1547 1.1547 1.7321

C2 = T'*T
C2 =

2.0000 1.0000 1.0000 2.0000
1.0000 2.0000 1.0000 2.0000
1.0000 1.0000 2.0000 2.0000
2.0000 2.0000 2.0000 3.0000

Use T to generate random data with the specified covariance:

C3 = cov(randn(1e6,3)*T)
C3 =

1.9973 0.9982 0.9995 1.9975
0.9982 1.9962 0.9969 1.9956
0.9995 0.9969 1.9980 1.9972
1.9975 1.9956 1.9972 2.9951

See Also chol
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Purpose Class counts at tree nodes

Syntax P = classcount(t)
P = classcount(t,nodes)

Description P = classcount(t) returns an n-by-m array P of class counts for the
nodes in the classification tree t, where n is the number of nodes and
m is the number of classes. For any node number i, the class counts
P(i,:) are counts of observations (from the data used in fitting the
tree) from each class satisfying the conditions for node i.

P = classcount(t,nodes) takes a vector nodes of node numbers and
returns the class counts for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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P = classcount(t)
P =

50 50 50
50 0 0
0 50 50
0 49 5
0 1 45
0 47 1
0 2 4
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0 47 0
0 0 1

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes
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Purpose Discriminant analysis

Syntax class = classify(sample,training,group)
class = classify(sample,training,group,type)
class = classify(sample,training,group,type,prior)
[class,err] = classify(...)
[class,err,POSTERIOR] = classify(...)
[class,err,POSTERIOR,logp] = classify(...)
[class,err,POSTERIOR,logp,coeff] = classify(...)

Description class = classify(sample,training,group) classifies each row of
the data in sample into one of the groups in training. sample and
training must be matrices with the same number of columns. group is
a grouping variable for training. Its unique values define groups; each
element defines the group to which the corresponding row of training
belongs. group can be a categorical variable, a numeric vector, a string
array, or a cell array of strings. training and group must have the
same number of rows. (See “Grouped Data” on page 2-41.) classify
treats NaNs or empty strings in group as missing values, and ignores
the corresponding rows of training. The output class indicates the
group to which each row of sample has been assigned, and is of the
same type as group.

class = classify(sample,training,group,type) allows you to
specify the type of discriminant function. type is one of:

• 'linear' — Fits a multivariate normal density to each group, with a
pooled estimate of covariance. This is the default.

• 'diaglinear' — Similar to 'linear', but with a diagonal covariance
matrix estimate (naive Bayes classifiers).

• 'quadratic' — Fits multivariate normal densities with covariance
estimates stratified by group.

• 'diagquadratic' — Similar to 'quadratic', but with a diagonal
covariance matrix estimate (naive Bayes classifiers).
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• 'mahalanobis' — Uses Mahalanobis distances with stratified
covariance estimates.

class = classify(sample,training,group,type,prior) allows you
to specify prior probabilities for the groups. prior is one of:

• A numeric vector the same length as the number of unique values
in group (or the number of levels defined for group, if group is
categorical). If group is numeric or categorical, the order of prior
must correspond to the ordered values in group, or, if group contains
strings, to the order of first occurrence of the values in group.

• A 1-by-1 structure with fields:

- prob — A numeric vector.

- group — Of the same type as group, containing unique values
indicating the groups to which the elements of prob correspond.

As a structure, prior can contain groups that do not appear in
group. This can be useful if training is a subset a larger training
set. classify ignores any groups that appear in the structure but
not in the group array.

• The string 'empirical', indicating that group prior probabilities
should be estimated from the group relative frequencies in training.

prior defaults to a numeric vector of equal probabilities, i.e., a uniform
distribution. prior is not used for discrimination by Mahalanobis
distance, except for error rate calculation.

[class,err] = classify(...) also returns an estimate err of the
misclassification error rate based on the training data. classify
returns the apparent error rate, i.e., the percentage of observations in
training that are misclassified, weighted by the prior probabilities
for the groups.

[class,err,POSTERIOR] = classify(...) also returns a matrix
POSTERIOR of estimates of the posterior probabilities that the jth
training group was the source of the ith sample observation, i.e.,
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Pr(group j|obs i). POSTERIOR is not computed for Mahalanobis
discrimination.

[class,err,POSTERIOR,logp] = classify(...) also returns a
vector logp containing estimates of the logarithms of the unconditional
predictive probability density of the sample observations, p(obs i) = sum
of p(obs i|group j)Pr(group j) over all groups. logp is not computed
for Mahalanobis discrimination.

[class,err,POSTERIOR,logp,coeff] = classify(...) also returns
a structure array coeff containing coefficients of the boundary
curves between pairs of groups. Each element coeff(I,J) contains
information for comparing group I to group J in the following fields:

• type — Type of discriminant function, from the type input.

• name1 — Name of the first group.

• name2 — Name of the second group.

• const — Constant term of the boundary equation (K)

• linear — Linear coefficients of the boundary equation (L)

• quadratic — Quadratic coefficient matrix of the boundary equation
(Q)

For the 'linear' and 'diaglinear' types, the quadratic field is
absent, and a row x from the sample array is classified into group I
rather than group J if 0 < K+x*L. For the other types, x is classified
into group I if 0 < K+x*L+x*Q*x'.

Example For training data, use Fisher’s sepal measurements for iris versicolor
and virginica:

load fisheriris
SL = meas(51:end,1);
SW = meas(51:end,2);
group = species(51:end);
h1 = gscatter(SL,SW,group,'rb','v^',[],'off');
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set(h1,'LineWidth',2)
legend('Fisher versicolor','Fisher virginica',...

'Location','NW')

Classify a grid of measurements on the same scale:

[X,Y] = meshgrid(linspace(4.5,8),linspace(2,4));
X = X(:); Y = Y(:);
[C,err,P,logp,coeff] = classify([X Y],[SL SW],group,'quadratic');

Visualize the classification:

hold on;
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gscatter(X,Y,C,'rb','.',1,'off');
K = coeff(1,2).const;
L = coeff(1,2).linear;
Q = coeff(1,2).quadratic;
f = sprintf('0 = %g+%g*x+%g*y+%g*x^2+%g*x.*y+%g*y.^2',...

K,L,Q(1,1),Q(1,2)+Q(2,1),Q(2,2));
h2 = ezplot(f,[4.5 8 2 4]);
set(h2,'Color','m','LineWidth',2)
axis([4.5 8 2 4])
xlabel('Sepal Length')
ylabel('Sepal Width')
title('{\bf Classification with Fisher Training Data}')
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See Also mahal, treefit

References [1] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford
University Press, 1988.

[2] Seber, G.A.F., Multivariate Observations, Wiley, 1984.
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Purpose Class probabilities at tree nodes

Syntax P = classprob(t)
P = classprob(t,nodes)

Description P = classprob(t) returns an n-by-m array P of class probabilities
for the nodes in the classification tree t, where n is the number of
nodes and m is the number of classes. For any node number i, the class
probabilities P(i,:) are the estimated probabilities for each class for a
point satisfying the conditions for node i.

P = classprob(t,nodes) takes a vector nodes of node numbers and
returns the class probabilities for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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P = classprob(t)
P =

0.3333 0.3333 0.3333
1.0000 0 0

0 0.5000 0.5000
0 0.9074 0.0926
0 0.0217 0.9783
0 0.9792 0.0208
0 0.3333 0.6667
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0 1.0000 0
0 0 1.0000

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes

14-125



classregtree

Purpose Construct classification and regression tree object

Syntax t = classregtree(X,y)
t = classregtree(X,y,param1,val1,param2,val2)

Description t = classregtree(X,y) creates a decision tree t for predicting the
response y as a function of the predictors in the columns of X. X is an
n-by-m matrix of predictor values. If y is a vector of n response values,
classregtree performs regression. If y is a categorical variable,
character array, or cell array of strings, classregtree performs
classification. Either way, t is a binary tree where each branching node
is split based on the values of a column of X. NaN values in X or y are
taken as missing values, and observations with any missing values are
not used in the fit.

t = classregtree(X,y,param1,val1,param2,val2) specifies optional
parameter name/value pairs, as follows.

For all trees:

• 'categorical' — Vector of indices of the columns of X that are to be
treated as unordered (nominal) categorical variables.

• 'method' — Either 'classification' (default if y is text or a
categorical variable) or 'regression' (default if y is numeric).

• 'names' — A cell array of names for the predictor variables, in the
order in which they appear in the X from which the tree was created.
(See treefit.)

• 'prune' — 'on' (default) to compute the full tree and the optimal
sequence of pruned subtrees, or 'off' for the full tree without
pruning.

• 'splitmin' — A number k such that impure nodes must have k or
more observations to be split (default is 10).

For classification trees only:
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• 'cost' — Square matrix C, where C(i,j) is the cost of classifying
a point into class j if its true class is i. (The default has C(i,j)
= 1 if i ~= j, and C(i,j) = 0 if i = j.) Alternatively, this value
can be a structure with two fields:

- group — Containing the group names as a character array or cell
array of strings

- cost — Containing the cost matrix C

• 'splitcriterion' — Criterion for choosing a split. One of:

- 'gdi' — For Gini’s diversity index (default)

- 'twoing' — For the twoing rule

- 'deviance' — For maximum deviance reduction

• 'priorprob' — Prior probabilities for each class, specified as a
vector (one value for each distinct group name) or as a structure with
two fields:

- group — Containing the group names as a character array or cell
array of strings

- prob — Containing a vector of corresponding probabilities

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica

14-127



classregtree

8 class = versicolor
9 class = virginica

view(t)

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.
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See Also eval, test, view, prune
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Purpose Construct clusters from linkage output

Syntax T = cluster(Z,'cutoff',c)
T = cluster(Z,'maxclust',n)
T = cluster(...,'criterion',crit)
T = cluster(...,'depth',d)

Description T = cluster(Z,'cutoff',c) constructs clusters from the hierarchical
cluster tree, Z, generated by the linkage function. Z is a matrix of size
(m-1)-by-3, where m is the number of observations in the original data.
c is a threshold for cutting Z into clusters. Clusters are formed when
inconsistent values are less than c. See the inconsistent function for
more information. The output T is a vector of size m that contains the
cluster number for each observation in the original data.

T = cluster(Z,'maxclust',n) specifies n as the maximum number of
clusters to form from the hierarchical tree in Z.

T = cluster(...,'criterion',crit) uses the specified criterion for
forming clusters, where crit is either 'inconsistent' or 'distance'.

T = cluster(...,'depth',d) evaluates inconsistent values to a depth
of d in the tree. The default is d = 2. An inconsistency coefficient
computation compares a link between two objects in the cluster tree
with neighboring links up to the specified depth. See the inconsistent
function for more information.

Example The example uses the pdist function to calculate the distance between
items in a matrix of random numbers and then uses the linkage
function to compute the hierarchical cluster tree based on the matrix.
The example passes the output of the linkage function to the cluster
function. The 'maxclust' value 3 indicates that you want to group the
items into three clusters. The find function lists all the items grouped
into cluster 1.

rand('state', 7)
X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);

14-130



cluster

Z = linkage(Y);
T = cluster(Z,'maxclust',3);
find(T==1)
ans =

11
12
13
14
15
16
17
18
19
20

See Also clusterdata, cophenet, inconsistent, linkage, pdist
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Purpose Construct clusters from data

Syntax T = clusterdata(X,cutoff)
T = clusterdata(X,param1,val1,param2,val2,...)

Description T = clusterdata(X,cutoff) uses the pdist, linkage, and cluster
functions to construct clusters from data X. X is an m-by-n matrix,
treated as m observations of n variables. cutoff is a threshold for
cutting the hierarchical tree generated by linkage into clusters. When
0 < cutoff < 2, clusterdata forms clusters when inconsistent values
are greater than cutoff (see the inconsistent function). When cutoff
is an integer and cutoff ≥ 2, then clusterdata interprets cutoff
as the maximum number of clusters to keep in the hierarchical tree
generated by linkage. The output T is a vector of size m containing a
cluster number for each observation.

T = clusterdata(X,cutoff) is the same as

Y = pdist(X,'euclid');
Z = linkage(Y,'single');
T = cluster(Z,'cutoff',cutoff);

T = clusterdata(X,param1,val1,param2,val2,...) provides more
control over the clustering through a set of parameter/value pairs. Valid
parameters are

'distance' Any of the distance metric names allowed by pdist
(follow the 'minkowski' option by the value of the
exponent p)

'linkage' Any of the linkage methods allowed by the linkage
function

'cutoff' Cutoff for inconsistent or distance measure

'maxclust' Maximum number of clusters to form

'criterion' Either 'inconsistent' or 'distance'

’depth' Depth for computing inconsistent values
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Example The example first creates a sample data set of random numbers. It then
uses clusterdata to compute the distances between items in the data
set and create a hierarchical cluster tree from the data set. Finally,
the clusterdata function groups the items in the data set into three
clusters. The example uses the find function to list all the items in
cluster 2, and the scatter3 function to plot the data with each cluster
shown in a different color.

rand('state',12);
X = [rand(10,3); rand(10,3)+1.2; rand(10,3)+2.5];
T = clusterdata(X,'maxclust',3);
find(T==2)
ans =

11
11
13
14
15
16
17
18
19
20

scatter3(X(:,1),X(:,2),X(:,3),100,T,'filled')
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See Also cluster, inconsistent, kmeans, linkage, pdist
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Purpose Classical multidimensional scaling

Syntax Y = cmdscale(D)
[Y,e] = cmdscale(D)

Description Y = cmdscale(D) takes an n-by-n distance matrix D, and returns an
n-by-p configuration matrix Y. Rows of Y are the coordinates of n points
in p-dimensional space for some p < n. When D is a Euclidean distance
matrix, the distances between those points are given by D. p is the
dimension of the smallest space in which the n points whose inter-point
distances are given by D can be embedded.

[Y,e] = cmdscale(D) also returns the eigenvalues of Y*Y'. When D is
Euclidean, the first p elements of e are positive, the rest zero. If the first
k elements of e are much larger than the remaining (n-k), then you can
use the first k columns of Y as k-dimensional points whose inter-point
distances approximate D. This can provide a useful dimension reduction
for visualization, e.g., for k = 2.

D need not be a Euclidean distance matrix. If it is non-Euclidean or a
more general dissimilarity matrix, then some elements of e are negative,
and cmdscale chooses p as the number of positive eigenvalues. In this
case, the reduction to p or fewer dimensions provides a reasonable
approximation to D only if the negative elements of e are small in
magnitude.

You can specify D as either a full dissimilarity matrix, or in upper
triangle vector form such as is output by pdist. A full dissimilarity
matrix must be real and symmetric, and have zeros along the diagonal
and positive elements everywhere else. A dissimilarity matrix in upper
triangle form must have real, positive entries. You can also specify D
as a full similarity matrix, with ones along the diagonal and all other
elements less than one. cmdscale transforms a similarity matrix to a
dissimilarity matrix in such a way that distances between the points
returned in Y equal or approximate sqrt(1-D). To use a different
transformation, you must transform the similarities prior to calling
cmdscale.

14-135



cmdscale

Examples Generate some points in 4-dimensional space, but close to 3-dimensional
space, then reduce them to distances only.

X = [normrnd(0,1,10,3) normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Find a configuration with those inter-point distances.

[Y,e] = cmdscale(D);

% Four, but fourth one small
dim = sum(e > eps^(3/4))

% Poor reconstruction
maxerr2 = max(abs(pdist(X)-pdist(Y(:,1:2))))

% Good reconstruction
maxerr3 = max(abs(pdist(X)-pdist(Y(:,1:3))))

% Exact reconstruction
maxerr4 = max(abs(pdist(X)-pdist(Y)))

% D is now non-Euclidean
D = pdist(X,'cityblock');
[Y,e] = cmdscale(D);

% One is large negative
min(e)

% Poor reconstruction
maxerr = max(abs(pdist(X)-pdist(Y)))

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984

See Also mdscale, pdist, procrustes
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Purpose Enumeration of all combinations of n objects k at a time

Syntax C = combnk(v,k)

Description C = combnk(v,k) returns all combinations of the n elements in v taken
k at a time.

C = combnk(v,k) produces a matrix C with k columns and n! / k!(n-k)!
rows, where each row contains k of the elements in the vector v.

It is not practical to use this function if v has more than about 15
elements.

Example Combinations of characters from a string.

C = combnk('tendril',4);
last5 = C(31:35,:)
last5 =
tedr
tenl
teni
tenr
tend

Combinations of elements from a numeric vector.

c = combnk(1:4,2)
c =

3 4
2 4
2 3
1 4
1 3
1 2
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Purpose Shewhart control charts

Syntax controlchart(X)
controlchart(x,group)
controlchart(X,group)
[stats,plotdata] = controlchart(...)
controlchart(...,param1,val1,param2,val2,...)

Description controlchart(X) produces an xbar chart of the measurements in
matrix X. Each row of X is considered to be a subgroup of measurements
containing replicate observations taken at the same time. The rows
should be in time order. If X is a time series object, the time samples
should contain replicate observations.

The chart plots the means of the subgroups in time order, a center line
(CL) at the average of the means, and upper and lower control limits
(UCL, LCL) at three standard deviations from the center line. Process
standard deviation is estimated from the average of the subgroup
standard deviations. Out of control measurements are marked as
violations and drawn with a red circle. Data cursor mode is enabled, so
clicking any data point displays information about that point.

controlchart(x,group) accepts a grouping variable group for a vector
of measurements x. (See “Grouped Data” on page 2-41.) group is a
categorical variable, vector, string array, or cell array of strings the
same length as x. Consecutive measurements x(n) sharing the same
value of group(n) for 1 ≤ n ≤ length(x) are defined to be a subgroup.
Subgroups can have different numbers of observations.

Control limits are shown at three subgroup standard deviations from
the subgroup means.

controlchart(X,group) accepts a grouping variable group for a matrix
of measurements in X. In this case, group is only used to label the time
axis; it does not change the default grouping by rows.

[stats,plotdata] = controlchart(...) returns a structure stats of
subgroup statistics and parameter estimates, and a structure plotdata
of plotted values. plotdata contains one record for each chart.
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The fields in stats and plotdata depend on the chart type.

The fields in stats are selected from the following:

• mean — Subgroup means

• std — Subgroup standard deviations

• range — Subgroup ranges

• n — Subgroup size, or total inspection size or area

• i — Individual data values

• ma — Moving averages

• mr — Moving ranges

• count — Count of defects or defective items

• mu — Estimated process mean

• sigma — Estimated process standard deviation

• p — Estimated proportion defective

• m — Estimated mean defects per unit

The fields in plotdata are the following:

• pts — Plotted point values

• cl — Center line

• lcl — Lower control limit

• ucl — Upper control limit

• se — Standard error of plotted point

• n — Subgroup size

• ooc — Logical that is true for points that are out of control

controlchart(...,param1,val1,param2,val2,...) specifies one or
more of the following parameter name/value pairs:
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• 'charttype' — The name of a chart type chosen from among the
following:

- 'xbar' — Xbar or mean

- 's' — Standard deviation

- 'r' — Range

- 'ewma' — Exponentially weighted moving average

- 'i' — Individual observation

- 'mr' — Moving range of individual observations

- 'ma' — Moving average of individual observations

- 'p' — Proportion defective

- 'np' — Number of defectives

- 'u' — Defects per unit

- 'c' — Count of defects

Alternatively, a parameter can be a cell array listing multiple
compatible chart types. There are four sets of compatible types:

- 'xbar', 's', 'r', and 'ewma'

- 'i', 'mr', and 'ma'

- 'p' and 'np'

- 'u' and 'c'

• 'display' — Either 'on' (default) to display the control chart, or
'off' to omit the display

• 'label' — A string array or cell array of strings, one per subgroup.
This label is displayed as part of the data cursor for a point on the
plot.

• 'lambda' — A parameter between 0 and 1 controlling how much the
current prediction is influenced by past observations in an EWMA
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plot. Higher values of 'lambda' give less weight to past observations
and more weight to the current observation. The default is 0.4.

• 'limits' — A three-element vector specifying the values of the
lower control limit, center line, and upper control limits. Default is
to estimate the center line and to compute control limits based on
the estimated value of sigma. Not permitted if there are multiple
chart types.

• 'mean' — Value for the process mean, or an empty value (default)
to estimate the mean from X. This is the p parameter for p and np
charts, the mean defects per unit for u and c charts, and the normal
mu parameter for other charts.

• 'nsigma' — The number of sigma multiples from the center line
to a control limit. Default is 3.

• 'parent' — The handle of the axes to receive the control chart plot.
Default is to create axes in a new figure. Not permitted if there are
multiple chart types.

• 'rules' — The name of a control rule, or a cell array containing
multiple control rule names. These rules, together with the control
limits, determine if a point is marked as out of control. The default is
to apply no control rules, and to use only the control limits to decide
if a point is out of control. See controlrules for more information.
Control rules are applied to charts that measure the process level
(xbar, i, c, u, p, and np) rather than the variability (r, s), and they
are not applied to charts based on moving statistics (ma, mr, ewma).

• 'sigma' — Either a value for sigma, or a method of estimating
sigma chosen from among 'std' (the default) to use the average
within-subgroup standard deviation, 'range' to use the average
subgroup range, and 'variance' to use the square root of the pooled
variance. When creating i, mr, or ma charts for data not in subgroups,
the estimate is always based on a moving range.

• 'specs' — A vector specifying specification limits. Typically this is
a two-element vector of lower and upper specification limits. Since
specification limits typically apply to individual measurements, this
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parameter is primarily suitable for i charts. These limits are not
plotted on r, s, or mr charts.

• 'unit' — The total number of inspected items for p and np charts,
and the size of the inspected unit for u and c charts. In both cases
X must be the count of the number of defects or defectives found.
Default is 1 for u and c charts. This argument is required (no default)
for p and np charts.

• 'width' — The width of the window used for computing the moving
ranges and averages in mr and ma charts, and for computing the
sigma estimate in i, mr, and ma charts. Default is 5.

Example Create xbar and r control charts for the data in parts.mat:

load parts
st = controlchart(runout,'chart',{'xbar' 'r'});
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Display the process mean and standard deviation:

fprintf('Parameter estimates: mu = %g, sigma = %g\n',st.mu,st.sigma);

Parameter estimates: mu = -0.0863889, sigma = 0.130215

See Also controlrules
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Purpose Western Electric and Nelson control rules

Syntax R = controlrules(rules,x,cl,se)
[R,RULES] = controlrules(...)

Description R = controlrules(rules,x,cl,se) determines which points in the
vector x violate the control rules in rules. cl is a vector of center-line
values. se is a vector of standard errors. (Typically, control limits on a
control chart are at the values cl – 3*se and cl + 3*se.) rules is the
name of a control rule, or a cell array containing multiple control rule
names, from the list below. If x has n values and rules contains m
rules, then R is an n-by-m logical array, with R(i,j) assigned the value
1 if point i violates rule j, 0 if it does not.

The following are accepted values for rules:

• 'we1' — 1 point above cl + 3*se

• 'we2' — 2 of 3 above cl + 2*se

• 'we3' — 4 of 5 above cl + se

• 'we4' — 8 of 8 above cl

• 'we5' — 1 below cl 3*se

• 'we6' — 2 of 3 below cl 2*se

• 'we7' — 4 of 5 below cl se

• 'we8' — 8 of 8 below cl

• 'we9' — 15 of 15 between cl se and cl + se

• 'we10' — 8 of 8 below cl se or above cl + se

• 'n1' — 1 point below cl 3*se or above cl + 3*se

• 'n2' — 9 of 9 on the same side of cl

• 'n3' — 6 of 6 increasing or decreasing

• 'n4' — 14 alternating up/down
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• 'n5' — 2 of 3 below cl 2*se or above cl + 2*se, same side

• 'n6' — 4 of 5 below cl se or above cl + se, same side

• 'n7' — 15 of 15 between cl se and cl + se

• 'n8' — 8 of 8 below cl se or above cl + se, either side

• 'we' — All Western Electric rules

• 'n' — All Nelson rules

For multi-point rules, a rule violation at point i indicates that the set
of points ending at point i triggered the rule. Point i is considered to
have violated the rule only if it is one of the points violating the rule’s
condition.

Any points with NaN as their x, cl, or se values are not considered to
have violated rules, and are not counted in the rules for other points.

Control rules can be specified in the controlchart function as values
for the 'rules' parameter.

[R,RULES] = controlrules(...) returns a cell array of text strings
RULES listing the rules applied.

Example Create an xbar chart using the we2 rule to mark out of control
measurements:

load parts;
st = controlchart(runout,'rules','we2');
x = st.mean;
cl = st.mu;
se = st.sigma./sqrt(st.n);
hold on
plot(cl+2*se,'m')
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Use controlrules to identify the measurements that violate the
control rule:

R = controlrules('we2',x,cl,se);
I = find(R)
I =

21
23
24
25
26
27

See Also controlchart
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Purpose Cophenetic correlation coefficient

Syntax c = cophenet(Z,Y)
[c,d] = cophenet(Z,Y)

Description c = cophenet(Z,Y) computes the cophenetic correlation coefficient
for the hierarchical cluster tree represented by Z. Z is the output of
the linkage function. Y contains the distances or dissimilarities used
to construct Z, as output by the pdist function. Z is a matrix of size
(m-1)-by-3, with distance information in the third column. Y is a vector
of size .

[c,d] = cophenet(Z,Y) returns the cophenetic distances d in the same
lower triangular distance vector format as Y.

The cophenetic correlation for a cluster tree is defined as the linear
correlation coefficient between the cophenetic distances obtained from
the tree, and the original distances (or dissimilarities) used to construct
the tree. Thus, it is a measure of how faithfully the tree represents the
dissimilarities among observations.

The cophenetic distance between two observations is represented in a
dendrogram by the height of the link at which those two observations
are first joined. That height is the distance between the two subclusters
that are merged by that link.

The output value, c, is the cophenetic correlation coefficient. The
magnitude of this value should be very close to 1 for a high-quality
solution. This measure can be used to compare alternative cluster
solutions obtained using different algorithms.

The cophenetic correlation between Z(:,3) and Y is defined as

where:
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• Yij is the distance between objects i and j in Y.

• Zij is the cophenetic distance between objects i and j, from Z(:,3).

• y and z are the average of Y and Z(:,3), respectively.

Example X = [rand(10,3); rand(10,3)+1; rand(10,3)+2];
Y = pdist(X);
Z = linkage(Y,'average');

% Compute Spearman's rank correlation between the
% dissimilarities and the cophenetic distances
[c,D] = cophenet(Z,Y);
r = corr(Y',D','type','spearman')
r =

0.8279

See Also cluster, dendrogram, inconsistent, linkage, pdist, squareform
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Purpose Copula cumulative distribution function

Syntax Y = copulacdf('Gaussian',U,rho)
Y = copulacdf('t',U,rho,NU)
Y = copulacdf(family,U,alpha)

Description Y = copulacdf('Gaussian',U,rho) returns the cumulative
probability of the Gaussian copula with linear correlation parameters
rho, evaluated at the points in U. U is an n-by-p matrix of values in
[0,1], representing n points in the p-dimensional unit hypercube. rho
is a p-by-p correlation matrix. If U is an n-by-2 matrix, rho may also
be a scalar correlation coefficient.

Y = copulacdf('t',U,rho,NU) returns the cumulative probability
of the t copula with linear correlation parameters rho and degrees
of freedom parameter NU, evaluated at the points in U. U is an n-by-p
matrix of values in [0,1]. rho is a p-by-p correlation matrix. If U is an
n-by-2 matrix, rho may also be a scalar correlation coefficient.

Y = copulacdf(family,U,alpha) returns the cumulative probability
of the bivariate Archimedean copula determined by family, with scalar
parameter alpha, evaluated at the points in U. family is 'Clayton',
'Frank', or 'Gumbel'. U is an n-by-2 matrix of values in [0,1].

Example u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulacdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10));
xlabel('u1'); ylabel('u2');
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See Also copulapdf, copularnd, copulastat, copulaparam
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Purpose Copula parameters as function of rank correlation

Syntax rho = copulaparam('Gaussian',R)
rho = copulaparam('t',R,NU)
alpha = copulaparam(family,R)
[...] = copulaparam(...,'type',type)

Description rho = copulaparam('Gaussian',R) returns the linear correlation
parameters rho corresponding to a Gaussian copula having Kendall’s
rank correlation R. If R is a scalar correlation coefficient, rho is a scalar
correlation coefficient corresponding to a bivariate copula. If R is a
p-by-p correlation matrix, rho is a p-by-p correlation matrix.

rho = copulaparam('t',R,NU) returns the linear correlation
parameters rho corresponding to a t copula having Kendall’s rank
correlation R and degrees of freedom NU. If R is a scalar correlation
coefficient, rho is a scalar correlation coefficient corresponding to a
bivariate copula. If R is a p-by-p correlation matrix, rho is a p-by-p
correlation matrix.

alpha = copulaparam(family,R) returns the copula parameter alpha
corresponding to a bivariate Archimedean copula having Kendall’s
rank correlation R. R is a scalar. family is one of 'Clayton', 'Frank',
or 'Gumbel'.

[...] = copulaparam(...,'type',type) assumes R is the specified
type of rank correlation. type is 'Kendall' for Kendall’s tau or
'Spearman' for Spearman’s rho.

copulaparam uses an approximation to Spearman’s rank correlation
for some copula families when no analytic formula exists. The
approximation is based on a smooth fit to values computed using Monte
Carlo simulations.

Example Get the linear correlation coefficient corresponding to a bivariate
Gaussian copula having a rank correlation of -0.5.

tau = -0.5
rho = copulaparam('gaussian',tau)
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rho =
-0.7071

% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','k')
tau_sample =

1.0000 -0.4638
-0.4638 1.0000

See Also copulacdf, copulapdf, copularnd, copulastat
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Purpose Copula probability density function

Syntax Y = copulapdf('Gaussian',U,rho)
Y = copulapdf('t',U,rho,NU)
Y = copulapdf(family,U,alpha)

Description Y = copulapdf('Gaussian',U,rho) returns the probability density of
the Gaussian copula with linear correlation parameters rho, evaluated
at the points in U. U is an n-by-p matrix of values in [0,1], representing
n points in the p-dimensional unit hypercube. rho is a p-by-p correlation
matrix. If U is an n-by-2 matrix, rho may also be a scalar correlation
coefficient.

Y = copulapdf('t',U,rho,NU) returns the probability density of the t
copula with linear correlation parameters rho and degrees of freedom
parameter NU, evaluated at the points in U. U is an n-by-p matrix of
values in [0,1]. rho is a p-by-p correlation matrix. If U is an n-by-2
matrix, rho may also be a scalar correlation coefficient.

Y = copulapdf(family,U,alpha) returns the probability density of
the bivariate Archimedean copula determined by family, with scalar
parameter alpha, evaluated at the points in U. family is 'Clayton',
'Frank', or 'Gumbel'. U is an n-by-2 matrix of values in [0,1].

Example u = linspace(0,1,10);
[U1,U2] = meshgrid(u,u);
F = copulapdf('Clayton',[U1(:) U2(:)],1);
surf(U1,U2,reshape(F,10,10));
xlabel('u1'); ylabel('u2');
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See Also copulacdf, copulaparam, copularnd, copulastat
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Purpose Rank correlation for copula

Syntax R = copulastat('Gaussian',rho)
R = copulastat('t',rho,NU)
R = copulastat(family,alpha)
R = copulastat(...,'type',type)

Description R = copulastat('Gaussian',rho) returns the Kendall’s rank
correlation R that corresponds to a Gaussian copula having linear
correlation parameters rho. If rho is a scalar correlation coefficient, R is
a scalar correlation coefficient corresponding to a bivariate copula. If
rho is a p-by-p correlation matrix, R is a p-by-p correlation matrix.

R = copulastat('t',rho,NU) returns the Kendall’s rank correlation R
that corresponds to a t copula having linear correlation parameters rho
and degrees of freedom NU. If rho is a scalar correlation coefficient, R is
a scalar correlation coefficient corresponding to a bivariate copula. If
rho is a p-by-p correlation matrix, R is a p-by-p correlation matrix.

R = copulastat(family,alpha) returns the Kendall’s rank correlation
R that corresponds to a bivariate Archimedean copula with scalar
parameter alpha. family is one of 'Clayton', 'Frank', or 'Gumbel'.

R = copulastat(...,'type',type) returns the specified type of rank
correlation. type is 'Kendall' to compute Kendall’s tau, or 'Spearman'
to compute Spearman’s rho.

copulastat uses an approximation to Spearman’s rank correlation
for some copula families when no analytic formula exists. The
approximation is based on a smooth fit to values computed using
Monte-Carlo simulations.

Example Get the theoretical rank correlation coefficient for a bivariate.

% Gaussian copula with linear correlation parameter rho
rho = -.7071;
tau = copulastat('gaussian',rho)
tau =

-0.5000
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% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);

% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','k')
tau_sample =

1.0000 -0.5265
-0.5265 1.0000

See Also copulacdf, copulaparam, copulapdf, copularnd
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Purpose Random numbers from copula

Syntax U = copularnd('Gaussian',rho,N)
U = copularnd('t',rho,NU,N)
U = copularnd(family,alpha,N)

Description U = copularnd('Gaussian',rho,N) returns N random vectors
generated from a Gaussian copula with linear correlation parameters
rho. If rho is a p-by-p correlation matrix, U is an n-by-p matrix. If rho is
a scalar correlation coefficient, copularnd generates U from a bivariate
Gaussian copula. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

U = copularnd('t',rho,NU,N) returns N random vectors generated
from a t copula with linear correlation parameters rho and degrees of
freedom NU. If rho is a p-by-p correlation matrix, U is an n-by-p matrix.
If rho is a scalar correlation coefficient, copularnd generates U from a
bivariate t copula. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

U = copularnd(family,alpha,N) returns N random vectors generated
from the bivariate Archimedean copula determined by family, with
scalar parameter alpha. family is 'Clayton', 'Frank', or 'Gumbel'. U
is an n-by-2 matrix. Each column of U is a sample from a Uniform(0,1)
marginal distribution.

Example Determine the linear correlation parameter corresponding to a bivariate
Gaussian copula having a rank correlation of -0.5.

tau = -0.5
rho = copulaparam('gaussian',tau)
rho =

-0.7071

% Generate dependent beta random values using that copula
u = copularnd('gaussian',rho,100);
b = betainv(u,2,2);
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% Verify that the sample has a rank correlation
% approximately equal to tau
tau_sample = corr(b,'type','kendall')
tau_sample =

1.0000 -0.4537
-0.4537 1.0000

See Also copulacdf, copulaparam, copulapdf, copulastat
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Purpose D-optimal design of experiments coordinate exchange algorithm

Syntax settings = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns)
[settings,X] = cordexch(nfactors,nruns,model)
[settings,X] = cordexch(...,param1,val1,param2,val2,...)

Description settings = cordexch(nfactors,nruns) generates the factor settings
matrix, settings, for a D-optimal design using a linear additive model
with a constant term. settings has nruns rows and nfactors columns.

[settings,X] = cordexch(nfactors,nruns) also generates the
associated design matrix X.

[settings,X] = cordexch(nfactors,nruns,model) produces a
design for fitting a specified regression model. The input, model, can be
one of the following strings:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product terms.

'quadratic' Includes interactions and squared terms.

'purequadratic'Includes constant, linear and squared terms.

Alternatively model can be a matrix of term definitions as accepted
by the x2fx function.

[settings,X] = cordexch(...,param1,val1,param2,val2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:

'bounds' Lower and upper bounds for each factor, specified as a
2-by-nfactors matrix. Alternatively, this value can
be a cell array containing nfactors elements, each
element specifying the vector of allowable values for
the corresponding factor.

'categorical'Indices of categorical predictors.
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'display' Either 'on' or 'off' to control display of iteration
counter. The default is 'on'.

'excludefun' Function to exclude undesirable runs.

'init' Initial design as an nruns-by-nfactors matrix. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.

'tries' Number of times to try to generate a design from a
new starting point, using random points for each try
except possibly the first. The default is 1.

'maxiter' Maximum number of iterations. The default is 10.

Examples The D-optimal design for two factors in nine runs using a quadratic
model is the 32 factorial as shown below:

settings = cordexch(2,9,'quadratic')
settings =

-1 1
1 1
0 1
1 -1

-1 -1
0 -1
1 0
0 0

-1 0

The D-optimal design for 2 of 3 factors making up a mixture, where
factor values are up to 50%, and the two factors must not make up less
than 15% or greater than 85% of the whole mixture is shown as:

f = @(x) sum(x,2)>85 | sum(x,2)<15;
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bnds = [0 0;50 50];

x = sortrows(cordexch(2,9,'q','bounds',bnds,...

'levels',101,'excl',f))

x =

0 50.0000

0 50.0000

0.5000 14.5000

15.0000 0

25.0000 25.0000

25.0000 25.0000

35.0000 50.0000

50.0000 0

50.0000 35.0000

plot(x(:,1),x(:,2),'bo')
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Algorithm The cordexch function searches for a D-optimal design using a
coordinate exchange algorithm. It creates a starting design, and then
iterates by changing each coordinate of each design point in an attempt
to reduce the variance of the coefficients that would be estimated using
this design.

See Also bbdesign, candexch, candgen, ccdesign, daugment, dcovary, rowexch,
x2fx
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Purpose Linear or rank correlation

Syntax RHO = corr(X)
RHO = corr(X,Y,...)
[RHO,PVAL] = corr(...)
[...] = corr(...,param1,val1,param2,val2,...)

Description RHO = corr(X) returns a p-by-p matrix containing the pairwise linear
correlation coefficient between each pair of columns in the n-by-p
matrix X.

RHO = corr(X,Y,...) returns a p1-by-p2 matrix containing the
pairwise correlation coefficient between each pair of columns in the
n-by-p1 and n-by-p2 matrices X and Y.

[RHO,PVAL] = corr(...) also returns PVAL, a matrix of p-values for
testing the hypothesis of no correlation against the alternative that
there is a nonzero correlation. Each element of PVAL is the p-value for
the corresponding element of RHO. If PVAL(i, j) is small, say less than
0.05, then the correlation RHO(i, j) is significantly different from zero.

[...] = corr(...,param1,val1,param2,val2,...) specifies
additional parameters and their values. The following table lists the
valid parameters and their values.

Parameter Values

'type' • 'Pearson' (the default) computes Pearson’s
linear correlation coefficient

• 'Kendall' computes Kendall’s tau

• 'Spearman' computes Spearman’s rho
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Parameter Values

'rows' • 'all' (the default) uses all rows regardless of
missing values (NaNs)

• 'complete' uses only rows with no missing
values

• 'pairwise'computes RHO(i,j) using rows
with no missing values in column i or j

'tail' — The
alternative
hypothesis
against which to
compute p-values
for testing the
hypothesis of no
correlation

• 'ne' — Correlation is not zero (the default)

• 'gt' — Correlation is greater than zero

• 'lt' — Correlation is less than zero

Using the 'pairwise' option for the 'rows' parameter might return
a matrix that is not positive definite. The 'complete' option always
returns a positive definite matrix, but in general the estimates will
be based on fewer observations.

corr computes p-values for Pearson’s correlation using a Student’s t
distribution for a transformation of the correlation. This is exact when
X and Y are normal. corr computes p-values for Kendall’s tau and
Spearman’s rho using either the exact permutation distributions (for
small sample sizes), or large-sample approximations.

corr computes p-values for the two-tailed test by doubling the more
significant of the two one-tailed p-values.

See Also corrcoef, partialcorr, tiedrank
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Purpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,param1,val1,param2,val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients
calculated from an input matrix X whose rows are observations and
whose columns are variables. The (i,j)th element of the matrix R is
related to the covariance matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the covariance function, that is, the
zeroth lag of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If P(i,j) is small, say less than 0.05,
then the correlation R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP,
of the same size as R, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,param1,val1,param2,val2,...) specifies
additional parameters and their values. Valid parameters are the
following.
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'alpha' A number between 0 and 1 to specify a confidence level
of 100(1 - alpha)%. Default is 0.05 for 95% confidence
intervals.

'rows' Either 'all' (default) to use all rows, 'complete' to
use rows with no NaN values, or 'pairwise' to compute
R(i,j) using rows with no NaN values in either column
i or j.

The p-value is computed by transforming the correlation to create a
t statistic having n-2 degrees of freedom, where n is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1+R)/(1-R)), with an approximate variance
equal to 1/(n-3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an R matrix that is not positive definite.

The corrcoef function is part of the standard MATLAB language.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation
[r,p] = corrcoef(x) % Sample correlation and p-values
r =

1.0000 -0.3566 0.1929 0.3457
-0.3566 1.0000 -0.1429 0.4461
0.1929 -0.1429 1.0000 0.5183
0.3457 0.4461 0.5183 1.0000

p =
1.0000 0.0531 0.3072 0.0613
0.0531 1.0000 0.4511 0.0135
0.3072 0.4511 1.0000 0.0033
0.0613 0.0135 0.0033 1.0000

[i,j] = find(p<0.05); % Find significant correlations
[i,j] % Display their (row,col) indices
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ans =
4 2
4 3
2 4
3 4

See Also cov, mean, std, var, partialcorr
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Purpose Covariance matrix

Syntax C = cov(X)
cov(x,y)

Description C = cov(X) computes the covariance matrix. For a single vector,
cov(x) returns a scalar containing the variance. For matrices, where
each row is an observation, and each column a variable, cov(X) is the
covariance matrix.

The variance function, var(X) is the same as diag(cov(X)).

The standard deviation function, std(X) is equivalent to
sqrt(diag(cov(X))).

cov(x,y), where x and y are column vectors of equal length, gives the
same result as cov([x y]).

The cov function is part of the standard MATLAB language.

Algorithm The algorithm for cov is

[n,p] = size(X);
X = X-ones(n,1)*mean(X);
Y = X'*X/(n-1);

See Also corrcoef, mean, std, var
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Purpose Cox proportional hazards regression

Syntax b = coxphfit(X,y)
[...] = coxphfit(X,Y,param1,val1,param2,val2,...)
[b,logl,H,stats] = coxphfit(...)

Description b = coxphfit(X,y) returns a p-by-1 vector b of coefficient estimates
for a Cox proportional hazards regression of the responses in y on
the predictors in X. X is an n-by-p matrix of p predictors at each of n
observations. y is an n-by-1 vector of observed responses.

The hazard rate for the distribution of y is modeled by h(t)*exp(X*b),
where h(t) is a common baseline hazard function. The model does not
include a constant term, and X should not contain a column of ones.

[...] = coxphfit(X,Y,param1,val1,param2,val2,...) specifies
additional parameter name/value pairs chosen from the following:

Name Value

'baseline' The X values at which the baseline hazard is to be
computed. Default is mean(X), so the hazard at X
is h(t)*exp((X-mean(X))*b). Enter 0 to compute
the baseline relative to 0, so the hazard at X is
h(t)*exp(X*b).

'censoring' A boolean array of the same size as y that is 1
for observations that are right-censored and 0 for
observations that are observed exactly. Default is all
observations observed exactly.

'frequency' An array of the same size as y containing nonnegative
integer counts. The jth element of this vector gives
the number of times the jth element of y and the jth

row of X were observed. Default is one observation
per row of X and y.
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Name Value

'init' A vector containing initial values for the estimated
coefficients b.

'options' A structure specifying control parameters for
the iterative algorithm used to estimate b. This
argument can be created by a call to statset.
For parameter names and default values, type
statset('coxphfit').

[b,logl,H,stats] = coxphfit(...) returns additional results. logl
is the log likelihood. H is a two-column matrix containing y values in the
first column and the estimated baseline cumulative hazard evaluated at
those values in the second column. stats is a structure that contains
the fields:

• beta — Coefficient estimates (same as b)

• se — Standard errors of coefficient estimates b

• z — z statistics for b (b divided by standard error)

• p — p-values for b

• covb — Estimated covariance matrix for b

Example Generate Weibull data depending on predictor x:

x = 4*rand(100,1);
A = 50*exp(-0.5*x); B = 2;
y = wblrnd(A,B);

Fit a Cox model :

[b,logL,H,stats] = coxphfit(x,y);

Show the Cox estimate of the baseline survivor function together with
the known Weibull function:

stairs(H(:,1),exp(-H(:,2)))
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xx = linspace(0,100);
line(xx,1-wblcdf(xx,50*exp(-0.5*mean(x)),B),'color','r')
xlim([0,50])
title(sprintf('Baseline survivor function ...

for X = %g',mean(x)));
legend('Survivor Function','Weibull Function')

Reference [1] Cox, D.R., and D. Oakes, Analysis of Survival Data, Chapman &
Hall, Boca Raton, 1984.

[2] Lawless, J.F., Statistical Models and Methods for Lifetime Data,
Wiley, New York, 2003.
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See Also ecdf, statset, wblfit
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Purpose Cross-tabulation of vectors

Syntax table = crosstab(col1,col2)
table = crosstab(col1,col2,col3,...)
[table,chi2,p] = crosstab(col1,col2)
[table,chi2,p,label] = crosstab(col1,col2)

Description table = crosstab(col1,col2) takes two vectors of positive integers
and returns a matrix, table, of cross-tabulations. The ijth element of
table contains the count of all instances where col1 = i and col2 = j.

Alternatively, col1 and col2 can be vectors containing non-integer
values, categorical variables, character arrays, or cell arrays of strings.
crosstab implicitly assigns a positive integer group number to each
distinct value in col1 and col2, and creates a cross-tabulation using
those numbers.

table = crosstab(col1,col2,col3,...) returns table as an
n-dimensional array, where n is the number of arguments you supply.
The value of table(i,j,k,...) is the count of all instances where
col1 = i, col2 = j, col3 = k, and so on.

[table,chi2,p] = crosstab(col1,col2) also returns the chi-square
statistic, chi2, for testing the independence of the rows and columns
of table. The scalar p is the significance level of the test. Values of p
near zero cast doubt on the assumption of independence of the rows
and columns of table.

[table,chi2,p,label] = crosstab(col1,col2) also returns a cell
array label that has one column for each input argument. The value
in label(i,j) is the value of colj that defines group i in the jth
dimension.

Example Example 1

This example generates 2 columns of 50 discrete uniform random
numbers. The first column has numbers from 1 to 3. The second has
only the numbers 1 and 2. The two columns are independent so it would
be surprising if p were near zero.
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r1 = unidrnd(3,50,1);
r2 = unidrnd(2,50,1);
[table,chi2,p] = crosstab(r1,r2)
table =

10 5
8 8
6 13

chi2 =
4.1723

p =
0.1242

The result, 0.1242, is not a surprise. A very small value of p would
make you suspect the “randomness” of the random number generator.

Example 2

Suppose you have data collected on several cars over a period of time.
How many four-cylinder cars were made in the USA during the late
part of this period?

[t,c,p,l] = crosstab(cyl4,when,org);
l
l =

'Other' 'Early' 'USA'
'Four' 'Mid' 'Europe'

[] 'Late' 'Japan'
t(2,3,1)
ans =

38

See Also tabulate
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Purpose Categories for tree branches

Syntax C = cutcategories(t)
C = cutcategories(t,nodes)

Description C = cutcategories(t) returns an n-by-2 cell array C of the categories
used at branches in the decision tree t, where n is the number of nodes.
For each branch node i based on a categorical predictor variable x,
the left child is chosen if x is among the categories listed in C{i,1},
and the right child is chosen if x is among those listed in C{i,2}. Both
columns of C are empty for branch nodes based on continuous predictors
and for leaf nodes.

C = cutcategories(t,nodes) takes a vector nodes of node numbers
and returns the categories for the specified nodes.

Example Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
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view(t)

C = cutcategories(t)
C =

[4] [1x2 double]
[] []

[6] [ 8]
[] []
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[] []
[] []
[] []
[] []
[] []
[] []
[] []
[] []
[] []

C{1,2}
ans =

6 8

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, cutvar, cutpoint, cuttype
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Purpose Cutpoints for tree branches

Syntax v = cutpoint(t)
v = cutpoint(t,nodes)

Description v = cutpoint(t) returns an n-element vector v of the values used as
cutpoints in the decision tree t, where n is the number of nodes. For each
branch node i based on a continuous predictor variable x, the left child
is chosen if x < v(i) and the right child is chosen if x >= v(i). v is
NaN for branch nodes based on categorical predictors and for leaf nodes.

v = cutpoint(t,nodes) takes a vector nodes of node numbers and
returns the cutpoints for the specified nodes.

Example Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA

view(t)
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v = cutpoint(t)
v =

NaN
31.5000

NaN
21.5000
41.0000
17.0000

NaN
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NaN
NaN
NaN
NaN
NaN
NaN

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, cutvar, cutcategories, cuttype
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Purpose Cut types for tree branches

Syntax c = cuttype(t)
c = cuttype(t,nodes)

Description c = cuttype(t) returns an n-element cell array c indicating the type
of cut at each node in the tree t, where n is the number of nodes. For
each node i, c{i} is:

• 'continuous' — If the cut is defined in the form x < v for a variable
x and cutpoint v.

• 'categorical' — If the cut is defined by whether a variable x takes
a value in a set of categories.

• '' — If i is a leaf node.

cutvar returns the cutpoints for 'continuous' cuts, and
cutcategories returns the set of categories.

c = cuttype(t,nodes) takes a vector nodes of node numbers and
returns the cut types for the specified nodes.

Example Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
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8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA

view(t)

14-182



cuttype

c = cuttype(t)
c =

'categorical'
'continuous'
'categorical'
'continuous'
'continuous'
'continuous'
''
''
''
''
''
''
''

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, cutvar, cutcategories
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Purpose Variable names for tree branches

Syntax v = cutvar(t)
v = cutvar(t,nodes)
[v,num] = cutvar(...)

Description v = cutvar(t) returns an n-element cell array v of the names of the
variables used for branching in each node of the tree t, where n is
the number of nodes. These variables are sometimes known as cut
variables. For leaf nodes, v contains an empty string.

v = cutvar(t,nodes) takes a vector nodes of node numbers and
returns the cut variables for the specified nodes.

[v,num] = cutvar(...) also returns a vector num containing the
number of each variable.

Example Create a classification tree for car data:

load carsmall

t = classregtree([MPG Cylinders],Origin,...
'names',{'MPG' 'Cyl'},'cat',2)

t =
Decision tree for classification
1 if Cyl=4 then node 2 else node 3
2 if MPG<31.5 then node 4 else node 5
3 if Cyl=6 then node 6 else node 7
4 if MPG<21.5 then node 8 else node 9
5 if MPG<41 then node 10 else node 11
6 if MPG<17 then node 12 else node 13
7 class = USA
8 class = France
9 class = USA

10 class = Japan
11 class = Germany
12 class = Germany
13 class = USA
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view(t)

[v,num] = cutvar(t)
v =

'Cyl'
'MPG'
'Cyl'
'MPG'
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'MPG'
'MPG'
''
''
''
''
''
''
''

num =
2
1
2
1
1
1
0
0
0
0
0
0
0

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, children
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Purpose Create dataset array

Syntax A = dataset(var1,var2,...)
A = dataset(...,{var,name},...)
A = dataset(...,{var,name_1,...,name_m},...)
A = dataset(...,'varnames',{name_1,...,name_m},...)
A = dataset(...,'obsnames',{name_1,...,name_n},...)
A = dataset('File',filename,...)
A = dataset('File',filename,'Format',format,...)
A = dataset('XLSFile',filename,...)

Description A = dataset(var1,var2,...) creates a dataset array A from the
workspace variables var1, var2, ... . All variables must have the same
number of rows.

A = dataset(...,{var,name},...) creates the variable var in A
and assigns the variable name name. Names must be valid, unique
MATLAB identifier strings.

A = dataset(...,{var,name_1,...,name_m},...), where var is
an n-by-m-by-p-by-... array, creates m variables in A, each of size
n-by-p-by-..., with names name_1, ..., name_m.

A = dataset(...,'varnames',{name_1,...,name_m},...) creates
variables in A with the specified variable names. Names must be valid,
unique MATLAB identifier strings. You may not use the 'varnames'
parameter and provide names for individual variables.

A = dataset(...,'obsnames',{name_1,...,name_n},...) creates
observations in A with the specified observation names. The names
need not be valid MATLAB identifier strings, but must be unique.
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Note Dataset arrays may contain built-in types or array objects as
variables. Array objects must implement each of the following:

• Standard MATLAB parenthesis indexing of the form var(i,...),
where i is a numeric or logical vector corresponding to rows of the
variable

• A size method with a dim argument

• A vertcat method

A = dataset('File',filename,...) creates a dataset array A from
column-oriented data in a text file specified by the string filename.
You can indicate a delimiter character using a delimiter argument,
as for tdfread.

A = dataset('File',filename,'Format',format,...) creates a
dataset array A from column-oriented data in a text file specified by
the string filename and format string format, as for textscan. You
can also use any of the other parameter name/value pairs allowed by
textscan.

A = dataset('XLSFile',filename,...) creates a dataset array A
from column-oriented data in an Excel spreadsheet file specified by
the string filename. You can also indicate a sheet number and a
rectangular range of cells in the spreadsheet, as for xlsread.

When reading from a text file or spreadsheet, by default, variable names
are taken from the first row of the file. You can use a 'ReadVarNames'
parameter and an associated logical value to indicate whether
(true) or not (false) to respect the default behavior. Similarly, a
'ReadObsNames' parameter and an associated logical value can be used
to determine whether or not the first column of the file is treated as
observation names (the default value is false). If 'ReadVarNames' and
'ReadObsNames' are both true, the name in the first column of the first
row of the file is saved as the first dimension name for the dataset array.
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Reading from a text file or spreadsheet creates scalar-valued variables
in the dataset array, i.e., one variable from each column in the file.
The variables that are created are either double-valued, if the entire
column is numeric, or string-valued (i.e., a cell array of strings), if any
element in a column is nonnumeric.

Examples Example 1

Create a dataset array to contain Fisher’s iris data:

load fisheriris
NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

iris(1:5,:)
ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':
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patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also tdfread, textscan, xlsread
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Purpose Apply function to variables of dataset array

Syntax b = datasetfun(fun,A)
[b,c,...] = datasetfun(fun,A)
[b,...] = datasetfun(fun,A,...,'UniformOutput',false)
[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
[b,...] = datasetfun(fun,A,...,'DataVars',vars)
[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames)
[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun)

Description b = datasetfun(fun,A) applies the function specified by fun to each
variable of the dataset array A, and returns the results in the vector b.
The ith element of b is equal to fun applied to the ith dataset variable of
A. fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called, and datasetfun concatenates them into the vector
b. The outputs from fun must be one of the following types: numeric,
logical, character, structure, or cell.

To apply functions that return results that are nonscalar or of different
sizes and types, use the 'UniformOutput' or 'DatasetOutput'
parameters described below.

Do not rely on the order in which datasetfun computes the elements
of b, which is unspecified.

If fun is bound to more than one built-in function or M-file, (that is,
if it represents a set of overloaded functions), datasetfun follows
MATLAB dispatching rules in calling the function. (See “How MATLAB
Determines Which Method to Call”.)

[b,c,...] = datasetfun(fun,A), where fun is a function handle
to a function that returns multiple outputs, returns vectors b, c, ...,
each corresponding to one of the output arguments of fun. datasetfun
calls fun each time with as many outputs as there are in the call to
datasetfun. fun may return output arguments having different classes,
but the class of each output must be the same each time fun is called.
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[b,...] = datasetfun(fun,A,...,'UniformOutput',false) allows
you to specify a function fun that returns values of different sizes or
types. datasetfun returns a cell array (or multiple cell arrays), where
the ith cell contains the value of fun applied to the ith dataset variable
of A. Setting 'UniformOutput' to true is equivalent to the default
behavior.

[b,...] = datasetfun(fun,A,...,'DatasetOutput',true)
specifies that the output(s) of fun are returned as variables in a dataset
array (or multiple dataset arrays). fun must return values with the
same number of rows each time it is called, but it may return values of
any type. The variables in the output dataset array(s) have the same
names as the variables in the input. Setting 'DatasetOutput' to false
specifies that the type of the output(s) from datasetfun is determined
by 'UniformOutput'.

[b,...] = datasetfun(fun,A,...,'DataVars',vars) allows you to
apply fun only to the dataset variables in A specified by vars. vars is
a positive integer, a vector of positive integers, a variable name, a cell
array containing one or more variable names, or a logical vector.

[b,...] = datasetfun(fun,A,...,'ObsNames',obsnames) specifies
observation names for the dataset output when 'DatasetOutput' is
true.

[b,...] = datasetfun(fun,A,...,'ErrorHandler',efun), where
efun is a function handle, specifies the function for MATLAB to call
if the call to fun fails. The error-handling function is called with the
following input arguments:

• A structure with the fields identifier, message, and index,
respectively containing the identifier of the error that occurred, the
text of the error message, and the linear index into the input array(s)
at which the error occurred

• The set of input arguments at which the call to the function failed

The error-handling function should either re-throw an error, or return
the same number of outputs as fun. These outputs are then returned as
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the outputs of datasetfun. If 'UniformOutput' is true, the outputs of
the error handler must also be scalars of the same type as the outputs
of fun. For example, the following code could be saved in an M-file as
the error-handling function:

function [A,B] = errorFunc(S,varargin)

warning(S.identifier,S.message);
A = NaN;
B = NaN;

If an error-handling function is not specified, the error from the call
to fun is rethrown.

Example Compute statistics on selected variables in the hospital dataset array:

load hospital

stats = datasetfun(@mean,hospital,...
'DataVars',{'Weight','BloodPressure'},...
'UniformOutput',false)

stats =
[154] [1x2 double]

stats{2}
ans =

122.7800 82.9600

Display the blood pressure variable:

datasetfun(@hist,hospital,...
'DataVars','BloodPressure',...
'UniformOutput',false);

title('{\bf Blood Pressure}')
legend('Systolic','Diastolic','Location','N')
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See Also grpstats (dataset)
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Purpose D-optimal augmentation of experimental design

Syntax settings = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns)
[settings,X] = daugment(startdes,nruns,model)
[settings,X] = daugment(...,param1,val1,param2,val2,...)

Description settings = daugment(startdes,nruns) adds nruns runs to an
experimental design using the coordinate exchange D-optimal
algorithm. startdes is a matrix of factor settings in the original design.
The output matrix settings is the matrix of factor settings for the
design.

[settings,X] = daugment(startdes,nruns) also generates the
associated design matrix, X.

[settings,X] = daugment(startdes,nruns,model) also controls
the order of the regression model. The input model can be one of the
following strings:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product
terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

Alternatively model can be a matrix of term definitions as accepted
by the x2fx function.

[settings,X] = daugment(...,param1,val1,param2,val2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameter/value pairs are the following:
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Parameter Value

'display' Either 'on' or 'off' to control display of iteration
counter. The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The
default is a randomly selected set of points.

'maxiter' Maximum number of iterations. The default is 10.

Example This example adds 5 runs to a 22 factorial design to fit a quadratic model.

startdes = [-1 -1; 1 -1; -1 1; 1 1];
settings = daugment(startdes,5,'quadratic')
settings =

-1 -1
1 -1

-1 1
1 1
1 0

-1 0
0 1
0 0
0 -1

The result is a 32 factorial design.

See Also cordexch, x2fx
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Purpose D-optimal design with specified fixed covariates

Syntax settings = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates)
[settings,X] = dcovary(nfactors,covariates,model)
[settings,X] = dcovary(...,param1,val1,param2,val2,...)

Description settings = dcovary(nfactors,covariates) uses a coordinate
exchange algorithm to generate a D-optimal design for nfactors
factors, subject to the constraint that it also include the fixed covariate
values in the input matrix covariates. The number of runs in the
design is taken to be the number of rows in the covariates matrix. The
output matrix settings is the matrix of factor settings for the design,
including the fixed covariates.

[settings,X] = dcovary(nfactors,covariates) also generates the
associated design matrix, X.

[settings,X] = dcovary(nfactors,covariates,model) also controls
the order of the regression model. The input model can be one of the
following strings:

'linear' Includes constant and linear terms (the default)

'interaction' Includes constant, linear, and cross-product
terms.

'quadratic' Includes interactions and squared terms.

'purequadratic' Includes constant, linear and squared terms.

Alternatively model can be a matrix of term definitions as accepted by
the x2fx function. The model is applied to the fixed covariates as well
as the regular factors. If you want to treat the fixed covariates specially,
for example by including linear terms for them but quadratic terms for
the regular factors, you can do this by creating the proper model matrix.

[settings,X] = dcovary(...,param1,val1,param2,val2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:
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'display' Either 'on' or 'off' to control display of iteration
counter. The default is 'on'.

'init' Initial design as an nruns-by-nfactors matrix. The
default is a randomly selected set of points.

’maxiter’ Maximum number of iterations. The default is 10.

Example Example 1

Generate a design for three factors in 2 blocks of 4 runs.

blk = [-1 -1 -1 -1 1 1 1 1]';
dsgn = dcovary(3,blk)
dsgn =

-1 1 1 -1
1 -1 -1 -1

-1 1 -1 -1
1 -1 1 -1
1 1 -1 1
1 1 1 1

-1 -1 1 1
-1 -1 -1 1

Example 2

Suppose you want to block an eight-run experiment into 4 blocks of size
2 to fit a linear model on two factors.

covariates = dummyvar([1 1 2 2 3 3 4 4]);
settings = dcovary(2,covariates(:,1:3),'linear')
settings =

1 1 1 0 0
-1 -1 1 0 0
-1 1 0 1 0
1 -1 0 1 0
1 1 0 0 1

-1 -1 0 0 1
-1 1 0 0 0
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1 -1 0 0 0

The first two columns of the output matrix contain the settings for the
two factors. The last three columns are dummy variable codings for
the four blocks.

Algorithm The dcovary function creates a starting design that includes the
fixed covariate values, and then iterates by changing the non-fixed
coordinates of each design point in an attempt to reduce the variance of
the coefficients that would be estimated using this design.

See Also cordexch, daugment, rowexch, x2fx
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Purpose Plot dendrogram

Syntax H = dendrogram(Z)
H = dendrogram(Z,p)
[H,T] = dendrogram(...)
[H,T,perm] = dendrogram(...)
[...] = dendrogram(...,'colorthreshold',t)
[...] = dendrogram(...,'orientation','orient')
[...] = dendrogram(...,'labels',S)

Description H = dendrogram(Z) generates a dendrogram plot of the hierarchical,
binary cluster tree represented by Z. Z is an (m-1)-by-3 matrix, generated
by the linkage function, where m s the number of objects in the original
data set. The output, H, is a vector of handles to the lines in the
dendrogram.

A dendrogram consists of many U-shaped lines connecting objects in a
hierarchical tree. The height of each U represents the distance between
the two objects being connected. If there were 30 or fewer data points
in the original dataset, each leaf in the dendrogram corresponds to one
data point. If there were more than 30 data points, the complete tree can
look crowded, and dendrogram collapses lower branches as necessary, so
that some leaves in the plot correspond to more than one data point.

H = dendrogram(Z,p) generates a dendrogram with no more than p
leaf nodes, by collapsing lower branches of the tree. To display the
complete tree, set p = 0.

[H,T] = dendrogram(...) generates a dendrogram and returns T, a
vector of length m that contains the leaf node number for each object in
the original data set. T is useful when p is less than the total number of
objects, so some leaf nodes in the display correspond to multiple objects.
For example, to find out which objects are contained in leaf node k of the
dendrogram, use find(T==k). When there are fewer than p objects in
the original data, all objects are displayed in the dendrogram. In this
case, T is the identity map, i.e., T = (1:m)', where each node contains
only a single object.
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[H,T,perm] = dendrogram(...) generates a dendrogram and
returns the permutation vector of the node labels of the leaves of
the dendrogram. perm is ordered from left to right on a horizontal
dendrogram and bottom to top for a vertical dendrogram.

[...] = dendrogram(...,'colorthreshold',t) assigns a unique
color to each group of nodes in the dendrogram where the linkage is less
than the threshold t. t is a value in the interval [0,max(Z(:,3))].
Setting t to the string 'default' is the same as t = .7(max(Z(:,3))).
0 is the same as not specifying 'colorthreshold'. The value
max(Z(:,3)) treats the entire tree as one group and colors it all one
color.

[...] = dendrogram(...,'orientation','orient') orients the
dendrogram within the figure window. The options for ’orient’ are

'top' Top to bottom (default)

'bottom' Bottom to top

'left' Left to right

'right' Right to left

[...] = dendrogram(...,'labels',S) accepts a character array
or cell array of strings S with one label for each observation. Any
leaves in the tree containing a single observation are labeled with that
observation’s label.

Example X= rand(100,2);
Y= pdist(X,'cityblock');
Z= linkage(Y,'average');
[H,T] = dendrogram(Z,'colorthreshold','default');
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find(T==20)
ans =

20
49
62
65
73
96

This output indicates that leaf node 20 in the dendrogram contains the
original data points 20, 49, 62, 65, 73, and 96.

See Also cluster, clusterdata, cophenet, inconsistent, linkage, silhouette
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Purpose Interactive fitting of distributions to data

Syntax dfittool
dfittool(y)
dfittool(y,cens)
dfittool(y,cens,freq)
dfittool(y,cens,freq,dsname)

Description dfittool opens a graphical user interface for displaying fit distributions
to data. To fit distributions to your data and display them over plots
over plots of the empirical distributions, you can import data from the
workspace.

dfittool(y) displays the Distribution Fitting Tool and creates a data
set with data specified by the vector y.

dfittool(y,cens) uses the vector cens to specify whether the
observation y(j) is censored, (cens(j)==1) and/or observed, exactly
(cens(j)==0). If cens is omitted or empty, no y values are censored.

dfittool(y,cens,freq) uses the vector freq to specify the frequency
of each element of y. If freq is omitted or empty, all y values have a
frequency of 1.

dfittool(y,cens,freq,dsname) creates a data set with the name
dsname using the data vector y, censoring indicator cens, and frequency
vector freq.

For more information, see “Distribution Fitting Tool” on page 5-122.

See Also mle,randtool,disttool
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Purpose Interactive pdf and cdf plots

Syntax disttool

Description disttool is a graphical interface for exploring the effects of changing
parameters on the plot of a cdf or pdf.

See Also randtool, dfittool

14-204



droplevels

Purpose Drop levels from categorical array

Syntax B = droplevels(A)
B = droplevels(A,oldlevels)

Description B = droplevels(A) removes unused levels from the categorical array
A. B is a categorical array with the same size and values as A, but with a
list of potential levels that includes only those present in some element
of A.

B = droplevels(A,oldlevels) removes specified levels from
the categorical array A. oldlevels is a cell array of strings or a
two-dimensional character matrix specifying the levels to be removed.

droplevels removes levels, but does not remove elements. Elements
of B that correspond to elements of A having levels in oldlevels all
have an undefined level.

Examples Example 1

Drop unused age levels from the data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =

'20s' '30s' '40s' '50s'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
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'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also addlevels, islevel, mergelevels, reorderlevels, getlabels
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Purpose {0,1}-valued matrix of dummy variables

Syntax D = dummyvar(group)

Description D = dummyvar(group) generates a matrix, D, of {0, 1}-valued columns.
D has one column for each unique value in each column of the matrix
group. group can be a categorical variable, a cell array of multiple
categorical variables, or a matrix of grouping variable values. (See
“Grouped Data” on page 2-41.) If group is a matrix, the values of the
elements in any column go from 1 to the number of members in the
group defined by that column.

Example Suppose you are studying the effects of two machines and three
operators on a process. The first column of group would have the values
1 or 2 depending on which machine was used. The second column of
group would have the values 1, 2, or 3 depending on which operator
ran the machine.

group = [1 1;1 2;1 3;2 1;2 2;2 3];
D = dummyvar(group)
D =

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
0 1 0 0 1

See Also pinv, regress
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Purpose Durbin-Watson test

Syntax [P,DW] = dwtest(R,X)
[...] = dwtest(R,X,method)
[...] = dwtest(R,X,method,tail)

Description [P,DW] = dwtest(R,X) performs a Durbin-Watson test on the vector R
of residuals from a linear regression, where X is the design matrix from
that linear regression. P is the computed p-value for the test, and DW
is the Durbin-Watson statistic. The Durbin-Watson test is used to test
if the residuals are independent, against the alternative that there is
autocorrelation among them.

[...] = dwtest(R,X,method) specifies the method to be used in
computing the p-value. method can be either of the following:

• 'exact' — Calculates an exact p-value using the PAN algorithm (the
default if the sample size is less than 400).

• 'approximate' — Calculates the p-value using a normal
approximation (the default if the sample size is 400 or larger).

[...] = dwtest(R,X,method,tail) performs the test against the
alternative hypothesis specified by tail:

'both' Serial correlation is not 0.

'right' Serial correlation is greater than 0 (right-tailed test).

'left' Serial correlation is less than 0 (left-tailed test).

See Also regress
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Purpose Empirical cumulative distribution function

Syntax [f,x] = ecdf(y)
[f,x,flo,fup] = ecdf(y)
ecdf(...)
ecdf(ax,...)
[...] = ecdf(y,param1,val1,param2,val2,...)

Description [f,x] = ecdf(y) calculates the Kaplan-Meier estimate of the
cumulative distribution function (cdf), also known as the empirical cdf.
y is a vector of data values. f is a vector of values of the empirical cdf
evaluated at x.

[f,x,flo,fup] = ecdf(y) also returns lower and upper confidence
bounds for the cdf. These bounds are calculated using Greenwood’s
formula, and are not simultaneous confidence bounds.

ecdf(...) without output arguments produces a plot of the empirical
cdf.

ecdf(ax,...) plots into axes ax instead of gca.

[...] = ecdf(y,param1,val1,param2,val2,...) specifies
additional parameter/value pairs chosen from the following:

'censoring' Boolean vector of the same size as x. Elements are
1 for observations that are right-censored and 0 for
observations that are observed exactly. Default is all
observations observed exactly.

'frequency' Vector of the same size as x containing nonnegative
integer counts. The jth element of this vector
gives the number of times the jth element of x was
observed. Default is 1 observation per element of x.

'alpha' Value between 0 and 1 for a confidence level of
100(1-alpha)%. Default is alpha=0.05 for 95%
confidence.
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'function' Type of function returned as the f output argument,
chosen from 'cdf' (default), 'survivor', or
'cumulative hazard'.

'bounds' Either 'on' to include bounds, or 'off' (the default)
to omit them. Used only for plotting.

Examples Generate random failure times and random censoring times, and
compare the empirical cdf with the known true cdf.

y = exprnd(10,50,1); % Random failure times exponential(10)
d = exprnd(20,50,1); % Drop-out times exponential(20)
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

% Calculate and plot empirical cdf and confidence bounds
[f,x,flo,fup] = ecdf(t,'censoring',censored);
stairs(x,f);
hold on;
stairs(x,flo,'r:'); stairs(x,fup,'r:');

% Superimpose a plot of the known true cdf
xx = 0:.1:max(t); yy = 1-exp(-xx/10); plot(xx,yy,'g-')
hold off;
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References [1] Cox, D. R., and D. Oakes, Analysis of Survival Data, Chapman &
Hall, London, 1984.

See Also cdfplot, ecdfhist
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Purpose Create histogram from output of ecdf

Syntax n = ecdfhist(f,x)
n = ecdfhist(f,x,m)
n = ecdfhist(f,x,c)
[n,c] = ecdfhist(...)
ecdfhist(...)

Description n = ecdfhist(f,x) takes a vector f of empirical cumulative
distribution function (cdf) values and a vector x of evaluation points,
and returns a vector n containing the heights of histogram bars for 10
equally spaced bins. The function computes the bar heights from the
increases in the empirical cdf, and normalizes them so that the area of
the histogram is equal to 1. In contrast, hist produces bars whose
heights represent bin counts.

n = ecdfhist(f,x,m), where m is a scalar, uses m bins.

n = ecdfhist(f,x,c), where c is a vector, uses bins with centers
specified by c.

[n,c] = ecdfhist(...) also returns the position of the bin centers
in c.

ecdfhist(...) without output arguments produces a histogram bar
plot of the results.

Example The following code generates random failure times and random
censoring times, and compares the empirical pdf with the known true
pdf.

y = exprnd(10,50,1); % Random failure times
d = exprnd(20,50,1); % Drop-out times
t = min(y,d); % Observe the minimum of these times
censored = (y>d); % Observe whether the subject failed

% Calculate the empirical cdf and plot a histogram from it
[f,x] = ecdf(t,'censoring',censored);
ecdfhist(f,x);
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% Superimpose a plot of the known true pdf
hold on;
xx = 0:.1:max(t); yy = exp(-xx/10)/10; plot(xx,yy,'g-');
hold off;
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See Also ecdf, hist, histc
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Purpose Plot error bars along curve

Syntax errorbar(X,Y,L,U,symbol)
errorbar(X,Y,L)
errorbar(Y,L)

Description errorbar(X,Y,L,U,symbol) plots X versus Y with error bars specified
by L and U. X, Y, L, and U must be the same length. If X, Y, L, and U are
matrices, then each column produces a separate line. The error bars
are each drawn a distance of U(i) above and L(i) below the points in
(X,Y). symbol is a string that controls the line type, plotting symbol,
and color of the error bars.

errorbar(X,Y,L) plots X versus Y with symmetric error bars about Y.

errorbar(Y,L) plots Y with error bars [Y-L Y+L].

The errorbar function is a part of the standard MATLAB language.

Example lambda = (0.1:0.2:0.5);
r = poissrnd(lambda(ones(50,1),:));
[p,pci] = poissfit(r,0.001);
L = p - pci(1,:)
L =

0.1200 0.1600 0.2600
U = pci(2,:)-p
U =

0.2000 0.2200 0.3400
errorbar(1:3,p,L,U,'+')
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Purpose Predicted responses for tree

Syntax yfit = eval(t,X)
yfit = eval(t,X,s)
[yfit,nodes] = eval(...)
[yfit,nodes,cnums] = eval(...)
[...] = t(X)
[...] = t(X,s)

Description yfit = eval(t,X) takes a classification or regression tree t and a
matrix X of predictors, and produces a vector yfit of predicted response
values. For a regression tree, yfit(i) is the fitted response value for
a point having the predictor values X(i,:). For a classification tree,
yfit(i) is the class into which the tree assigns the point with data
X(i,:).

yfit = eval(t,X,s) takes an additional vector s of pruning levels,
with 0 representing the full, unpruned tree. t must include a pruning
sequence as created by classregtree or by prune. If s has k elements
and X has n rows, the output yfit is an n-by-k matrix, with the jth
column containing the fitted values produced by the s(j) subtree. s
must be sorted in ascending order.

To compute fitted values for a tree that is not part of the optimal
pruning sequence, first use prune to prune the tree.

[yfit,nodes] = eval(...) also returns a vector nodes the same size
as yfit containing the node number assigned to each row of X. Use view
to display the node numbers for any node you select.

[yfit,nodes,cnums] = eval(...) is valid only for classification trees.
It returns a vector cnum containing the predicted class numbers.

NaN values in X are treated as missing. If eval encounters a missing
value when it attempts to evaluate the split rule at a branch node, it
cannot determine whether to proceed to the left or right child node.
Instead, it sets the corresponding fitted value equal to the fitted value
assigned to the branch node.

[...] = t(X) or [...] = t(X,s) also invoke eval.
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Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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Find assigned class names:

sfit = eval(t,meas);

Compute proportion correctly classified:

pct = mean(strcmp(sfit,species))
pct =

0.9800

14-217



eval

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, prune, view, test
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Purpose Extreme value cumulative distribution function

Syntax P = evcdf(X,mu,sigma)
[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha)

Description P = evcdf(X,mu,sigma) computes the cumulative distribution function
(cdf) for the type 1 extreme value distribution, with location parameter
mu and scale parameter sigma, at each of the values in X. X, mu, and
sigma can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array of
the same size as the other inputs. The default values for mu and sigma
are 0 and 1, respectively.

[P,PLO,PUP] = evcdf(X,mu,sigma,pcov,alpha) produces confidence
bounds for P when the input parameters mu and sigma are estimates.
pcov is a 2-by-2 covariance matrix of the estimated parameters. alpha
has a default value of 0.05, and specifies 100(1 - alpha)% confidence
bounds. PLO and PUP are arrays of the same size as P, containing the
lower and upper confidence bounds.

The function evcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also cdf, evfit, evinv, evlike, evpdf, evrnd, evstat
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Purpose Parameter estimates and confidence intervals for extreme value
distributed data

Syntax parmhat = evfit(data)
[parmhat,parmci] = evfit(data)
[parmhat,parmci] = evfit(data,alpha)
[...] = evfit(data,alpha,censoring)
[...] = evfit(data,alpha,censoring,freq)
[...] = evfit(data,alpha,censoring,freq,options)

Description parmhat = evfit(data) returns maximum likelihood estimates of
the parameters of the type 1 extreme value distribution given the
data in the vector data. parmhat(1) is the location parameter, , and
parmhat(2) is the scale parameter, σ.

[parmhat,parmci] = evfit(data) returns 95% confidence intervals
for the parameter estimates on the and σ parameters in the 2-by-2
matrix parmci. The first column of the matrix of the extreme value
fit contains the lower and upper confidence bounds for the parameter

, and the second column contains the confidence bounds for the
parameter σ.

[parmhat,parmci] = evfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value
in the range [0 1] specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = evfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = evfit(data,alpha,censoring,freq) accepts a frequency
vector, freq of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use
their default values.

[...] = evfit(data,alpha,censoring,freq,options) accepts
a structure, options, that specifies control parameters for the
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iterative algorithm the function uses to compute maximum likelihood
estimates. You can create options using the function statset.
Enter statset('evfit') to see the names and default values of the
parameters that evfit accepts in the options structure. See the
reference page for statset for more information about these options.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evinv, evlike, evpdf, evrnd, evstat, mle, statset
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Purpose Inverse of extreme value cumulative distribution function

Syntax X = evinv(P,mu,sigma)
[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha)

Description X = evinv(P,mu,sigma) returns the inverse cumulative distribution
function (cdf) for a type 1 extreme value distribution with location
parameter mu and scale parameter sigma, evaluated at the values in P.
P, mu, and sigma can be vectors, matrices, or multidimensional arrays
that all have the same size. A scalar input is expanded to a constant
array of the same size as the other inputs. The default values for mu and
sigma are 0 and 1, respectively.

[X,XLO,XUP] = evinv(P,mu,sigma,pcov,alpha) produces confidence
bounds for X when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
is a scalar that specifies 100(1 - alpha)% confidence bounds for the
estimated parameters, and has a default value of 0.05. XLO and XUP are
arrays of the same size as X containing the lower and upper confidence
bounds.

The function evinv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from an extreme value distribution with
parameters and . The computed bounds give approximately
the desired confidence level when you estimate mu, sigma, and pcov
from large samples, but in smaller samples other methods of computing
the confidence bounds might be more accurate.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evfit, evlike, evpdf, evrnd, evstat, icdf
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Purpose Negative log-likelihood for extreme value distribution

Syntax nlogL = evlike(params,data)
[nlogL,AVAR] = evlike(params,data)
[...] = evlike(params,data,censoring)
[...] = evlike(params,data,censoring,freq)

Description nlogL = evlike(params,data) returns the negative of the
log-likelihood for the type 1 extreme value distribution, evaluated at
parameters params(1) = mu and params(2) = sigma, given data.
nlogL is a scalar.

[nlogL,AVAR] = evlike(params,data) returns the inverse of Fisher’s
information matrix, AVAR. If the input parameter values in params are
the maximum likelihood estimates, the diagonal elements of AVAR are
their asymptotic variances. AVAR is based on the observed Fisher’s
information, not the expected information.

[...] = evlike(params,data,censoring) accepts a Boolean
vector of the same size as data, which is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = evlike(params,data,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for censoring to use its default value.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evfit, evinv, evpdf, evrnd, evstat
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Purpose Extreme value probability density function

Syntax Y = evpdf(X,mu,sigma)

Description Y = evpdf(X,mu,sigma) returns the pdf of the type 1 extreme value
distribution with location parameter mu and scale parameter sigma,
evaluated at the values in X. X, mu, and sigma can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array of the same size as the other inputs.
The default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evrnd, evstat, pdf
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Purpose Random numbers from extreme value distribution

Syntax R = evrnd(mu,sigma)
R = evrnd(mu,sigma,v)
R = evrnd(mu,sigma,m,n)

Description R = evrnd(mu,sigma) generates random numbers from the extreme
value distribution with parameters specified by mu and sigma. mu and
sigma can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of R. A scalar input for mu or sigma
is expanded to a constant array with the same dimensions as the other
input.

R = evrnd(mu,sigma,v) generates an array R of size v containing
random numbers from the extreme value distribution with parameters
mu and sigma, where v is a row vector. If v is a 1-by-2 vector, R is
a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

If mu and sigma are both scalars, R = evrnd(mu,sigma,m,n) returns an
m-by-n matrix.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evpdf, evstat
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Purpose Mean and variance of extreme value distribution

Syntax [M,V] = evstat(mu,sigma)

Description [M,V] = evstat(mu,sigma) returns the mean of and variance for
the type 1 extreme value distribution with location parameter mu and
scale parameter sigma. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other input. The
default values for mu and sigma are 0 and 1, respectively.

The type 1 extreme value distribution is also known as the Gumbel
distribution. If x has a Weibull distribution, then X = log(x) has the
type 1 extreme value distribution.

See Also evcdf, evfit, evinv, evlike, evpdf, evrnd
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Purpose Exponential cumulative distribution function

Syntax P = expcdf(X,mu)
[P,PLO,PUP] = expcdf(X,mu,pcov,alpha)

Description P = expcdf(X,mu) computes the exponential cdf at each of the values
in X using the corresponding parameters in mu. X and mu can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in mu must be positive.

The exponential cdf is

The result, p, is the probability that a single observation from an
exponential distribution will fall in the interval [0 x].

[P,PLO,PUP] = expcdf(X,mu,pcov,alpha) produces confidence
bounds for P when the input parameter mu is an estimate. pcov is the
variance of the estimated mu. alpha specifies 100(1 - alpha)% confidence
bounds. The default value of alpha is 0.05. PLO and PUP are arrays of
the same size as P containing the lower and upper confidence bounds.
The bounds are based on a normal approximation for the distribution of
the log of the estimate of mu. If you estimate mu from a set of data, you
can get a more accurate set of bounds by applying expfit to the data
to get a confidence interval for mu, and then evaluating expinv at the
lower and upper endpoints of that interval.

Examples The following code shows that the median of the exponential
distribution is µ*log(2).

mu = 10:10:60;
p = expcdf(log(2)*mu,mu)
p =

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
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What is the probability that an exponential random variable is less
than or equal to the mean, µ?

mu = 1:6;
x = mu;
p = expcdf(x,mu)
p =

0.6321 0.6321 0.6321 0.6321 0.6321 0.6321

See Also cdf, expfit, expinv, exppdf, exprnd, expstat
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Purpose Parameter estimates and confidence intervals for exponentially
distributed data

Syntax parmhat = expfit(data)
[parmhat,parmci] = expfit(data)
[parmhat,parmci] = expfit(data,alpha)
[...] = expfit(data,alpha,censoring)
[...] = expfit(data,alpha,censoring,freq)

Description parmhat = expfit(data) returns estimates of the parameter, µ, of the
exponential distribution, given the data in data. Each entry of parmhat
corresponds to the data in a column of data.

[parmhat,parmci] = expfit(data) returns 95% confidence intervals
for the parameter estimates in matrix parmci. The first row of parmci
contains the lower bounds of the confidence intervals, and the second
row contains the upper bounds.

[parmhat,parmci] = expfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates, where alpha is a value
in the range [0 1] specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = expfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.
data must be a vector in order to pass in the argument censoring.

[...] = expfit(data,alpha,censoring,freq) accepts a frequency
vector, freq of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use
their default values.

Example This example generates 100 independent samples of exponential data
with µ = 3. muhat is an estimate of µ and muci is a 99% confidence
interval around muhat. Notice that muci contains the true value of µ.

data = exprnd(3, 100, 1);
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[parmhat, parmci] = expfit(data, 0.01)
parmhat =

2.7292
parmci =

2.1384
3.5854

See Also expcdf, expinv, explike, exppdf, exprnd, expstat, mle, statset
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Purpose Inverse of exponential cumulative distribution function

Syntax X = expinv(P,mu)
[X,XLO,XUP] = expinv(X,mu,pcov,alpha)

Description X = expinv(P,mu) computes the inverse of the exponential cdf with
parameters specified by mu for the corresponding probabilities in P. P
and mu can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array with
the same dimensions as the other input. The parameters in mu must be
positive and the values in P must lie on the interval [0 1].

[X,XLO,XUP] = expinv(X,mu,pcov,alpha) produces confidence
bounds for X when the input parameter mu is an estimate. pcov is the
variance of the estimated mu. alpha specifies 100(1 - alpha)% confidence
bounds. The default value of alpha is 0.05. XLO and XUP are arrays of
the same size as X containing the lower and upper confidence bounds.
The bounds are based on a normal approximation for the distribution of
the log of the estimate of mu. If you estimate mu from a set of data, you
can get a more accurate set of bounds by applying expfit to the data
to get a confidence interval for mu, and then evaluating expinv at the
lower and upper end points of that interval.

The inverse of the exponential cdf is

The result, x, is the value such that an observation from an exponential
distribution with parameter µ will fall in the range [0 x] with
probability p.

Examples Let the lifetime of light bulbs be exponentially distributed with µ = 700
hours. What is the median lifetime of a bulb?

expinv(0.50,700)
ans =
485.2030
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Suppose you buy a box of “700 hour” light bulbs. If 700 hours is the
mean life of the bulbs, half of them will burn out in less than 500 hours.

See Also expcdf, expfit, exppdf, exprnd, expstat, icdf
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Purpose Negative log-likelihood for exponential distribution

Syntax nlogL = explike(param,data)
[nlogL,avar] = explike(param,data)
[...] = explike(param,data,censoring)
[...] = explike(param,data,censoring,freq)

Description nlogL = explike(param,data) returns the negative of the
log-likelihood for the exponential distribution, evaluated at the
parameter param = mu, given data. nlogL is a scalar.

[nlogL,avar] = explike(param,data) returns the inverse of Fisher’s
information, avar, a scalar. If the input parameter value in param is
the maximum likelihood estimate, avar is its asymptotic variance.
avar is based on the observed Fisher’s information, not the expected
information.

[...] = explike(param,data,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = explike(param,data,censoring,freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically
contains integer frequencies for the corresponding elements in data,
but can contain any nonnegative values. Pass in [] for censoring to
use its default value.

See Also expcdf, expfit, expinv, exppdf, exprnd
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Purpose Exponential probability density function

Syntax Y = exppdf(X,mu)

Description Y = exppdf(X,mu) computes the exponential pdf at each of the values
in X using the corresponding parameters in mu. X and mu can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar
input is expanded to a constant array with the same dimensions as the
other input. The parameters in mu must be positive.

The exponential pdf is

The exponential pdf is the gamma pdf with its first parameter equal to 1.

The exponential distribution is appropriate for modeling waiting
times when the probability of waiting an additional period of time is
independent of how long you have already waited. For example, the
probability that a light bulb will burn out in its next minute of use is
relatively independent of how many minutes it has already burned.

Examples y = exppdf(5,1:5)
y =

0.0067 0.0410 0.0630 0.0716 0.0736

y = exppdf(1:5,1:5)
y =

0.3679 0.1839 0.1226 0.0920 0.0736

See Also expcdf, expfit, expinv, exprnd, expstat, pdf
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Purpose Random numbers from exponential distribution

Syntax R = exprnd(mu)
R = exprnd(mu,v)
R = exprnd(mu,m,n)

Description R = exprnd(mu) generates random numbers from the exponential
distribution with mean parameter mu. mu can be a vector, a matrix, or a
multidimensional array. The size of R is the size of mu.

R = exprnd(mu,v) generates an array R of size v containing random
numbers from the exponential distribution with mean mu, where v is a
row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2)
columns. If v is 1-by-n, R is an n-dimensional array.

R = exprnd(mu,m,n) generates random numbers from the exponential
distribution with mean parameter mu, where scalars m and n are the
row and column dimensions of R.

Examples n1 = exprnd(5:10)
n1 =

7.5943 18.3400 2.7113 3.0936 0.6078 9.5841

n2 = exprnd(5:10,[1 6])
n2 =

3.2752 1.1110 23.5530 23.4303 5.7190 3.9876

n3 = exprnd(5,2,3)
n3 =

24.3339 13.5271 1.8788
4.7932 4.3675 2.6468

See Also expcdf, expfit, expinv, exppdf, expstat
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Purpose Mean and variance of exponential distribution

Syntax [m,v] = expstat(mu)

Description [m,v] = expstat(mu) returns the mean of and variance for the
exponential distribution with parameters mu. mu can be a vectors,
matrix, or multidimensional array. The mean of the exponential
distribution is µ, and the variance is µ2.

Examples [m,v] = expstat([1 10 100 1000])
m =

1 10 100 1000
v =

1 100 10000 1000000

See Also expcdf, expfit, expinv, exppdf, exprnd
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Purpose Maximum likelihood common factor analysis

Syntax lambda = factoran(X,m)
[lambda,psi] = factoran(X,m)
[lambda,psi,T] = factoran(X,m)
[lambda,psi,T,stats] = factoran(X,m)
[lambda,psi,T,stats,F] = factoran(X,m)
[...] = factoran(...,param1,val1,param2,val2,...)

Definition factoran computes the maximum likelihood estimate (MLE) of the
factor loadings matrix in the factor analysis model

where is a vector of observed variables, is a constant vector of
means, is a constant d-by-m matrix of factor loadings, is a vector
of independent, standardized common factors, and is a vector of
independent specific factors. , , and are of length d. is of length m.

Alternatively, the factor analysis model can be specified as

where is a d-by-d diagonal matrix of specific variances.

Description lambda = factoran(X,m) returns the maximum likelihood estimate,
lambda, of the factor loadings matrix, in a common factor analysis
model with m common factors. X is an n-by-d matrix where each row
is an observation of d variables. The (i,j)th element of the d-by-m
matrix lambda is the coefficient, or loading, of the jth factor for the ith
variable. By default, factoran calls the function rotatefactors to
rotate the estimated factor loadings using the 'varimax' option.

[lambda,psi] = factoran(X,m) also returns maximum likelihood
estimates of the specific variances as a column vector psi of length d.

[lambda,psi,T] = factoran(X,m) also returns the m-by-m factor
loadings rotation matrix T.
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[lambda,psi,T,stats] = factoran(X,m) also returns a structure
stats containing information relating to the null hypothesis, H0, that
the number of common factors is m. stats includes the following fields:

loglike Maximized log-likelihood value

dfe Error degrees of freedom = ((d-m)^2 - (d+m))/2

chisq Approximate chi-squared statistic for the null hypothesis

p Right-tail significance level for the null hypothesis

factoran does not compute the chisq and p fields unless dfe is positive
and all the specific variance estimates in psi are positive (see “Heywood
Case” on page 14-243 below). If X is a covariance matrix, then you must
also specify the 'nobs' parameter if you want factoran to compute the
chisq and p fields.

[lambda,psi,T,stats,F] = factoran(X,m) also returns, in F,
predictions of the common factors, known as factor scores. F is an n-by-m
matrix where each row is a prediction of m common factors. If X is a
covariance matrix, factoran cannot compute F. factoran rotates F
using the same criterion as for lambda.

[...] = factoran(...,param1,val1,param2,val2,...) enables
you to specify optional parameter name/value pairs to control the model
fit and the outputs. The following are the valid parameter/value pairs.

Parameter Value

Type of input in the matrix X. 'xtype' can be one of:

'data' Raw data (default)

'xtype'

'covariance' Positive definite covariance or
correlation matrix
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Parameter Value

Method for predicting factor scores. 'scores' is ignored
if X is not raw data.

’wls'
'Bartlett'

Synonyms for a weighted least squares
estimate that treats F as fixed (default)

'scores'

'regression'
'Thomson'

Synonyms for a minimum mean squared
error prediction that is equivalent to a
ridge regression

Starting point for the specific variances psi in the
maximum likelihood optimization. Can be specified as:

'random' Chooses d uniformly distributed values
on the interval [0,1].

’Rsquared' Chooses the starting vector as a scale
factor times diag(inv(corrcoef(X)))
(default). For examples, see Jöreskog
[2].

Positive
integer

Performs the given number of maximum
likelihood fits, each initialized as with
'random'. factoran returns the fit
with the highest likelihood.

'start'

Matrix Performs one maximum likelihood fit
for each column of the specified matrix.
The ith optimization is initialized with
the values from the ith column. The
matrix must have d rows.

'rotate' Method used to rotate factor loadings and scores.
'rotate' can have the same values as the 'Method'
parameter of rotatefactors. See the reference page
for rotatefactors for a full description of the available
methods.

’none' Performs no rotation.

14-239



factoran

Parameter Value

'equamax' Special case of the orthomax rotation.
Use the 'normalize', 'reltol', and
'maxit' parameters to control the
details of the rotation.

'orthomax' Orthogonal rotation that maximizes a
criterion based on the variance of the
loadings.

Use the 'coeff', 'normalize',
'reltol', and 'maxit’ parameters to
control the details of the rotation.

'parsimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and ’maxit’ parameters to
control the details of the rotation.

'pattern' Performs either an oblique rotation (the
default) or an orthogonal rotation to
best match a specified pattern matrix.
Use the 'type' parameter to choose
the type of rotation. Use the 'target'
parameter to specify the pattern matrix.

’procrustes' Performs either an oblique (the default)
or an orthogonal rotation to best match
a specified target matrix in the least
squares sense.

Use the 'type' parameter to choose
the type of rotation. Use 'target' to
specify the target matrix.
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Parameter Value

'promax' Performs an oblique procrustes rotation
to a target matrix determined by
factoran as a function of an orthomax
solution.

Use the 'power' parameter to specify
the exponent for creating the target
matrix. Because 'promax' uses
'orthomax' internally, you can also
specify the parameters that apply to
'orthomax'.

'quartimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and ’maxit’ parameters to
control the details of the rotation.

'varimax' Special case of the orthomax rotation
(default). Use the 'normalize',
'reltol', and 'maxit' parameters to
control the details of the rotation.

Function Function handle to rotation function of
the form

[B,T] =
myrotation(A,...)

where A is a d-by-m matrix of unrotated
factor loadings, B is a d-by-m matrix
of rotated loadings, and T is the
corresponding m-by-m rotation matrix.

Use the factoran parameter
'userargs' to pass additional
arguments to this rotation function. See
Example 4.
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Parameter Value

'coeff' Coefficient, often denoted as , defining the specific
'orthomax' criterion. Must be between 0 and 1. The
value 0 corresponds to quartimax, and 1 corresponds
to varimax. Default is 1.

'normalize' Flag indicating whether the loading matrix should
be row-normalized (1) or left unnormalized (0) for
'orthomax' or 'varimax' rotation. Default is 1.

'reltol' Relative convergence tolerance for 'orthomax' or
'varimax' rotation. Default is sqrt(eps).

'maxit' Iteration limit for 'orthomax' or 'varimax' rotation.
Default is 250.

'target' Target factor loading matrix for 'procrustes' rotation.
Required for 'procrustes' rotation. No default value.

'type' Type of 'procrustes' rotation. Can be 'oblique'
(default) or 'orthogonal'.

'power' Exponent for creating the target matrix in the 'promax'
rotation. Must be ≥ 1. Default is 4.

'userargs' Denotes the beginning of additional input values for a
user-defined rotation function. factoran appends all
subsequent values, in order and without processing,
to the rotation function argument list, following the
unrotated factor loadings matrix A. See Example 4.

'nobs' If X is a covariance or correlation matrix, indicates
the number of observations that were used in its
estimation. This allows calculation of significance for
the null hypothesis even when the original data are not
available. There is no default. 'nobs' is ignored if X
is raw data.
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Parameter Value

'delta' Lower bound for the specific variances psi during the
maximum likelihood optimization. Default is 0.005.

'optimopts' Structure that specifies control parameters for
the iterative algorithm the function uses to
compute maximum likelihood estimates. Create
this structure with the function statset. Enter
statset('factoran') to see the names and default
values of the parameters that factoran accepts in the
options structure. See the reference page for statset
for more information about these options.

Remarks Observed Data Variables

The variables in the observed data matrix X must be linearly
independent, i.e., cov(X) must have full rank, for maximum likelihood
estimation to succeed. factoran reduces both raw data and a covariance
matrix to a correlation matrix before performing the fit.

factoran standardizes the observed data X to zero mean and unit
variance before estimating the loadings lambda. This does not affect the
model fit, because MLEs in this model are invariant to scale. However,
lambda and psi are returned in terms of the standardized variables,
i.e., lambda*lambda'+diag(psi) is an estimate of the correlation
matrix of the original data X (although not after an oblique rotation).
See Examples 1 and 3.

Heywood Case

If elements of psi are equal to the value of the 'delta' parameter
(i.e., they are essentially zero), the fit is known as a Heywood case, and
interpretation of the resulting estimates is problematic. In particular,
there can be multiple local maxima of the likelihood, each with different
estimates of the loadings and the specific variances. Heywood cases
can indicate overfitting (i.e., m is too large), but can also be the result
of underfitting.
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Rotation of Factor Loadings and Scores

Unless you explicitly specify no rotation using the 'rotate' parameter,
factoran rotates the estimated factor loadings, lambda, and the factor
scores, F. The output matrix T is used to rotate the loadings, i.e.,
lambda = lambda0*T, where lambda0 is the initial (unrotated) MLE of
the loadings. T is an orthogonal matrix for orthogonal rotations, and
the identity matrix for no rotation. The inverse of T is known as the
primary axis rotation matrix, while T itself is related to the reference
axis rotation matrix. For orthogonal rotations, the two are identical.

factoran computes factor scores that have been rotated by inv(T'),
i.e., F = F0 * inv(T'), where F0 contains the unrotated predictions.
The estimated covariance of F is inv(T'*T), which, for orthogonal or no
rotation, is the identity matrix. Rotation of factor loadings and scores
is an attempt to create a more easily interpretable structure in the
loadings matrix after maximum likelihood estimation.

Examples Example 1

Load the carbig data, and fit the default model with two factors.

load carbig
X = [Acceleration Displacement Horsepower MPG Weight];
X = X(all(~isnan(X),2),:);
[Lambda,Psi,T,stats,F] = factoran(X,2,...

'scores','regression')
inv(T'*T) % Estimated correlation matrix of F, == eye(2)
Lambda*Lambda'+diag(Psi) % Estimated correlation matrix
Lambda*inv(T) % Unrotate the loadings
F*T' % Unrotate the factor scores
biplot(Lambda) % Create biplot of two factors
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Example 2

Although the estimates are the same, the use of a covariance matrix
rather than raw data doesn’t let you request scores or significance level.

[Lambda,Psi,T] = factoran(cov(X),2,'xtype','cov')
[Lambda,Psi,T] = factoran(corrcoef(X),2,'xtype','cov')

Example 3

Use promax rotation.

[Lambda,Psi,T,stats,F] = factoran(X,2,'rotate','promax',...
'powerpm',4)

inv(T'*T) % Est'd corr of F,
% no longer eye(2)

Lambda*inv(T'*T)*Lambda'+diag(Psi) % Est'd corr of X

Plot the unrotated variables with oblique axes superimposed.

invT = inv(T)

14-245



factoran

Lambda0 = Lambda*invT
biplot(Lambda0);
line([-invT(1,1) invT(1,1) NaN -invT(2,1) invT(2,1)], ...

[-invT(1,2) invT(1,2) NaN -invT(2,2) invT(2,2)], ...
'color','r','linewidth',2);

text(invT(:,1), invT(:,2),['I';'II'],'color','r');
xlabel('Loadings for unrotated Factor 1')
ylabel('Loadings for unrotated Factor 2')

Plot the rotated variables against the oblique axes.

biplot(Lambda)
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Example 4

Syntax for passing additional arguments to a user-defined rotation
function.

[Lambda,Psi,T] = ...
factoran(X,2,'rotate',@myrotation,'userargs',1,'two')

References [1] Harman, H. H., Modern Factor Analysis, 3rd Ed., University of
Chicago Press, Chicago, 1976.

[2] Jöreskog, K. G., “Some Contributions to Maximum Likelihood Factor
Analysis,” Psychometrika, Vol. 32, 1967, pp. 443-482.

[3] Lawley, D. N. and A. E. Maxwell, Factor Analysis as a Statistical
Method, 2nd Edition, American Elsevier Pub. Co., New York, 1971.

See Also biplot, princomp, procrustes, pcacov, rotatefactors, statset
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Purpose F cumulative distribution function

Syntax P = fcdf(X,V1,V2)

Description P = fcdf(X,V1,V2) computes the F cdf at each of the values in X
using the corresponding parameters in V1 and V2. X, V1, and V2 can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant matrix with the same
dimensions as the other inputs. The parameters in V1 and V2 must
be positive integers.

The F cdf is

The result, p, is the probability that a single observation from an F
distribution with parameters ν1 and ν2 will fall in the interval [0 x].

Examples This example illustrates an important and useful mathematical identity
for the F distribution.

nu1 = 1:5;
nu2 = 6:10;
x = 2:6;

F1 = fcdf(x,nu1,nu2)
F1 =

0.7930 0.8854 0.9481 0.9788 0.9919

F2 = 1 - fcdf(1./x,nu2,nu1)
F2 =

0.7930 0.8854 0.9481 0.9788 0.9919

See Also cdf, finv, fpdf, frnd, fstat
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Purpose Two-level full-factorial designs

Syntax X = ff2n(n)

Description X = ff2n(n) creates a two-level full-factorial design, X, where n is the
desired number of columns of X. The number of rows in X is 2n.

Example X = ff2n(3)

X =
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

X is the binary representation of the numbers from 0 to 2n-1.

See Also fracfact, fullfact
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Purpose Inverse of F cumulative distribution function

Syntax X = finv(P,V1,V2)

Description X = finv(P,V1,V2) computes the inverse of the F cdf with numerator
degrees of freedom V1 and denominator degrees of freedom V2 for the
corresponding probabilities in P. P, V1, and V2 can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
is expanded to a constant array with the same dimensions as the other
inputs.

The parameters in V1 and V2 must all be positive integers, and the
values in P must lie on the interval [0 1].

The F inverse function is defined in terms of the F cdf as

where

Examples Find a value that should exceed 95% of the samples from an F
distribution with 5 degrees of freedom in the numerator and 10 degrees
of freedom in the denominator.

x = finv(0.95,5,10)
x =

3.3258

You would observe values greater than 3.3258 only 5% of the time by
chance.

See Also fcdf, fpdf, frnd, fstat, icdf
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Purpose F probability density function

Syntax Y = fpdf(X,V1,V2)

Description Y = fpdf(X,V1,V2) computes the F pdf at each of the values in X using
the corresponding parameters in V1 and V2. X, V1, and V2 can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs. The parameters in V1 and V2 must all be positive
integers, and the values in X must lie on the interval [0 ∞).

The probability density function for the F distribution is

Examples y = fpdf(1:6,2,2)
y =

0.2500 0.1111 0.0625 0.0400 0.0278 0.0204

z = fpdf(3,5:10,5:10)
z =

0.0689 0.0659 0.0620 0.0577 0.0532 0.0487

See Also fcdf, finv, frnd, fstat, pdf
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Purpose Generate fractional factorial design from generators

Syntax x = fracfact(gen)
[x,conf] = fracfact(gen)

Description x = fracfact(gen) generates a fractional factorial design as specified
by the generator string gen, and returns a matrix x of design points.
The input string gen is a generator string consisting of “words”
separated by spaces. Each word describes how a column of the output
design should be formed from columns of a full factorial. Typically
gen will include single-letter words for the first few factors, plus
additional multiple-letter words describing how the remaining factors
are confounded with the first few.

The output matrix x is a fraction of a two-level full-factorial design.
Suppose there are m words in gen, and that each word is formed from a
subset of the first n letters of the alphabet. The output matrix x has 2n

rows and m columns. Let F represent the two-level full-factorial design
as produced by ff2n(n). The values in column j of x are computed by
multiplying together the columns of F corresponding to letters that
appear in the jth word of the generator string.

[x,conf] = fracfact(gen) also returns a cell array, conf, that
describes the confounding pattern among the main effects and all
two-factor interactions.

Examples Example 1

You want to run an experiment to study the effects of four factors
on a response, but you can only afford eight runs. (A run is a single
repetition of the experiment at a specified combination of factor values.)
Your goal is to determine which factors affect the response. There may
be interactions between some pairs of factors.

A total of sixteen runs would be required to test all factor combinations.
However, if you are willing to assume there are no three-factor
interactions, you can estimate the main factor effects in just eight runs.

[x,conf] = fracfact('a b c abc')
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x =
-1 -1 -1 -1
-1 -1 1 1
-1 1 -1 1
-1 1 1 -1
1 -1 -1 1
1 -1 1 -1
1 1 -1 -1
1 1 1 1

conf =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'abc' 'X4'
'X1*X2' 'ab' 'X1*X2+X3*X4'
'X1*X3' 'ac' 'X1*X3+X2*X4'
'X1*X4' 'bc' 'X1*X4+X2*X3'
'X2*X3' 'bc' 'X1*X4+X2*X3'
'X2*X4' 'ac' 'X1*X3+X2*X4'
'X3*X4' 'ab' 'X1*X2+X3*X4'

The first three columns of the x matrix form a full-factorial design. The
final column is formed by multiplying the other three. The confounding
pattern shows that the main effects for all four factors are estimable,
but the two-factor interactions are not. For example, the X1*X2 and
X3*X4 interactions are confounded, so it is not possible to estimate their
effects separately.

After conducting the experiment, you may find out that the 'ab' effect
is significant. In order to determine whether this effect comes from
X1*X2 or X3*X4 you would have to run the remaining eight runs. You
can obtain those runs by reversing the sign of the final generator.

fracfact('a b c -abc')
ans =
-1 -1 -1 1
-1 -1 1 -1
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-1 1 -1 -1
-1 1 1 1
1 -1 -1 -1
1 -1 1 1
1 1 -1 1
1 1 1 -1

Example 2

Suppose now you need to study the effects of eight factors. A full
factorial would require 256 runs. By clever choice of generators, you can
find a sixteen-run design that can estimate those eight effects with no
confounding from two-factor interactions.

[x,c] = fracfact('a b c d abc acd abd bcd');
c(1:10,:)
ans =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1'
'X2' 'b' 'X2'
'X3' 'c' 'X3'
'X4' 'd' 'X4'
'X5' 'abc' 'X5'
'X6' 'acd' 'X6'
'X7' 'abd' 'X7'
'X8' 'bcd' 'X8'
'X1*X2' 'ab' 'X1*X2+X3*X5+X4*X7+X6*X8'

This confounding pattern shows that the main effects are not
confounded with two-factor interactions. The final row shown reveals
that a group of four two-factor interactions is confounded. Other choices
of generators would not have the same desirable property.

[x,c] = fracfact('a b c d ab cd ad bc');
c(1:10,:)
ans =
'Term' 'Generator' 'Confounding'
'X1' 'a' 'X1+X2*X5+X4*X7'
'X2' 'b' 'X2+X1*X5+X3*X8'
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'X3' 'c' 'X3+X2*X8+X4*X6'
'X4' 'd' 'X4+X1*X7+X3*X6'
'X5' 'ab' 'X5+X1*X2'
'X6' 'cd' 'X6+X3*X4'
'X7' 'ad' 'X7+X1*X4'
'X8' 'bc' 'X8+X2*X3'
'X1*X2' 'ab' 'X5+X1*X2'

Here all the main effects are confounded with one or more two-factor
interactions.

References [1] Box, G. A. F., W. G. Hunter, and J. S. Hunter, Statistics for
Experimenters, Wiley, 1978.

See Also ff2n, fullfact, hadamard
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Purpose Fractional factorial design generators

Syntax gens = fracfactgen(model,K)
gens = fracfactgen(model,K,res)
gens = fracfactgen(model,K,res,basic)

Description gens = fracfactgen(model,K) finds a set of fractional factorial design
generators suitable for fitting a specified model. model specifies the
model, and is either a text string or a matrix of 0s and 1s as accepted by
the x2fx function. The design has 2^K runs. The output gens is a cell
array that specifies the confounding of the design, and that is suitable
for use as input to the fracfact function. The fracfact function
can generate the design and display the confounding pattern for the
generators. If K is not given, fracfactgen tries to find the smallest
possible value.

If model is a text string, model must consist of a sequence of words
separated by spaces, each word representing a term that must be
estimable in the design. The jth letter of the alphabet represents the
jth factor. For example, 'a b c d ac' defines a model that includes
the main effects for factors a through d, and the interaction between
factors a and c.

fracfactgen uses the Franklin-Bailey algorithm to find the generators
of a design that is capable of fitting the specified model.

gens = fracfactgen(model,K,res) tries to find a design with
resolution res (the default value is 3). If fracfactgen is unable to find
the requested resolution, it either displays an error, or if it locates a
lower-resolution design capable of fitting the model, it returns the
generators for that design along with a warning. If the result is an
error, it may still be possible to call fracfactgen with a lower value of
res and find a set of design generators.

gens = fracfactgen(model,K,res,basic) also accepts a vector basic
with K elements specifying the numbers of the factors that are to be
treated as basic factors. These factors receive single-letter generators,
and other factors are confounded with interactions among the basic
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factors. The default is chosen to include factors that are part of the
highest-order interaction in model.

Examples Find the generators for a design with four factors and 2^3=8 runs so
that you can estimate the interaction between the first and third factors.

fracfactgen('a b c d ac',3)
ans =

'a'
'b'
'c'
'abc'

m = [1 0 0 0;
0 1 0 0;
0 0 1 0;
0 0 0 1;
1 0 1 0];

fracfactgen(m,3)
ans =

'a'
'b'
'c'
'abc'

See Also fracfact
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Purpose Friedman’s nonparametric two-way analysis of variance

Syntax p = friedman(X,reps)
p = friedman(X,reps,displayopt)
[p,table] = friedman(...)
[p,table,stats] = friedman(...)

Description p = friedman(X,reps) performs the nonparametric Friedman’s test
to compare column effects in a two-way layout. Friedman’s test is
similar to classical balanced two-way ANOVA, but it tests only for
column effects after adjusting for possible row effects. It does not test
for row effects or interaction effects. Friedman’s test is appropriate
when columns represent treatments that are under study, and rows
represent nuisance effects (blocks) that need to be taken into account
but are not of any interest.

The different columns of X represent changes in a factor A. The different
rows represent changes in a blocking factor B. If there is more than one
observation for each combination of factors, input reps indicates the
number of replicates in each “cell,” which must be constant.

The matrix below illustrates the format for a set-up where column
factor A has three levels, row factor B has two levels, and there are two
replicates (reps=2). The subscripts indicate row, column, and replicate,
respectively.

Friedman’s test assumes a model of the form
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where is an overall location parameter, represents the column
effect, represents the row effect, and represents the error. This
test ranks the data within each level of B, and tests for a difference
across levels of A. The p that friedman returns is the p-value for the
null hypothesis that . If the p-value is near zero, this casts doubt
on the null hypothesis. A sufficiently small p-value suggests that at
least one column-sample median is significantly different than the
others; i.e., there is a main effect due to factor A. The choice of a critical
p-value to determine whether a result is “statistically significant” is left
to the researcher. It is common to declare a result significant if the
p-value is less than 0.05 or 0.01.

friedman also displays a figure showing an ANOVA table, which divides
the variability of the ranks into two or three parts:

• The variability due to the differences among the column effects

• The variability due to the interaction between rows and columns (if
reps is greater than its default value of 1)

• The remaining variability not explained by any systematic source

The ANOVA table has six columns:

• The first shows the source of the variability.

• The second shows the Sum of Squares (SS) due to each source.

• The third shows the degrees of freedom (df) associated with each
source.

• The fourth shows the Mean Squares (MS), which is the ratio SS/df.

• The fifth shows Friedman’s chi-square statistic.

• The sixth shows the p-value for the chi-square statistic.

p = friedman(X,reps,displayopt) enables the ANOVA table display
when displayopt is 'on' (default) and suppresses the display when
displayopt is 'off'.
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[p,table] = friedman(...) returns the ANOVA table (including
column and row labels) in cell array table. (You can copy a text version
of the ANOVA table to the clipboard by selecting Copy Text from the
Edit menu.

[p,table,stats] = friedman(...) returns a stats structure that
you can use to perform a follow-up multiple comparison test. The
friedman test evaluates the hypothesis that the column effects are
all the same against the alternative that they are not all the same.
Sometimes it is preferable to perform a test to determine which pairs of
column effects are significantly different, and which are not. You can
use the multcompare function to perform such tests by supplying the
stats structure as input.

Assumptions

Friedman’s test makes the following assumptions about the data in X:

• All data come from populations having the same continuous
distribution, apart from possibly different locations due to column
and row effects.

• All observations are mutually independent.

The classical two-way ANOVA replaces the first assumption with the
stronger assumption that data come from normal distributions.

Examples Let’s repeat the example from the anova2 function, this time applying
Friedman’s test. Recall that the data below come from a study of
popcorn brands and popper type (Hogg 1987). The columns of the
matrix popcorn are brands (Gourmet, National, and Generic). The
rows are popper type (Oil and Air). The study popped a batch of each
brand three times with each popper. The values are the yield in cups
of popped popcorn.

load popcorn
popcorn
popcorn =

5.5000 4.5000 3.5000
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5.5000 4.5000 4.0000
6.0000 4.0000 3.0000
6.5000 5.0000 4.0000
7.0000 5.5000 5.0000
7.0000 5.0000 4.5000

p = friedman(popcorn,3)
p =

0.0010

The small p-value of 0.001 indicates the popcorn brand affects the yield
of popcorn. This is consistent with the results from anova2.

You could also test popper type by permuting the popcorn array as
described in “Friedman’s Test” on page 7-30 and repeating the test.

References [1] Hogg, R. V. and J. Ledolter, Engineering Statistics, MacMillan, 1987.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods,
Wiley, 1973.

See Also anova2, multcompare, kruskalwallis
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Purpose Random numbers from F distribution

Syntax R = frnd(V1,V2)
R = frnd(V1,V2,v)
R = frnd(V1,V2,m,n)

Description R = frnd(V1,V2) generates random numbers from the F distribution
with numerator degrees of freedom V1 and denominator degrees of
freedom V2. V1 and V2 can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input for V1 or V2 is
expanded to a constant array with the same dimensions as the other
input.

R = frnd(V1,V2,v) generates random numbers from the F distribution
with parameters V1 and V2, where v is a row vector. If v is a 1-by-2
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R
is an n-dimensional array.

R = frnd(V1,V2,m,n) generates random numbers from the F
distribution with parameters V1 and V2, where scalars m and n are the
row and column dimensions of R.

Example n1 = frnd(1:6,1:6)
n1 =

0.0022 0.3121 3.0528 0.3189 0.2715 0.9539

n2 = frnd(2,2,[2 3])
n2 =

0.3186 0.9727 3.0268
0.2052 148.5816 0.2191

n3 = frnd([1 2 3;4 5 6],1,2,3)
n3 =

0.6233 0.2322 31.5458
2.5848 0.2121 4.4955

See Also fcdf, finv, fpdf, fstat
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Purpose Mean and variance of F distribution

Syntax [M,V] = fstat(V1,V2)

Description [M,V] = fstat(V1,V2) returns the mean of and variance for the F
distribution with parameters specified by V1 and V2. V1 and V2 can be
vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of M and V. A scalar input for V1 or V2 is
expanded to a constant arrays with the same dimensions as the other
input.

The mean of the F distribution for values of ν2 greater than 2 is

The variance of the F distribution for values of ν2 greater than 4 is

The mean of the F distribution is undefined if ν2 is less than 3. The
variance is undefined for ν2 less than 5.

Examples fstat returns NaN when the mean and variance are undefined.

[m,v] = fstat(1:5,1:5)
m =

NaN NaN 3.0000 2.0000 1.6667
v =

NaN NaN NaN NaN 8.8889

See Also fcdf, finv, frnd, frnd
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Purpose Interactive contour plot

Syntax fsurfht(fun,xlims,ylims)
fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5)

Description fsurfht(fun,xlims,ylims) is an interactive contour plot of the
function specified by the text variable fun. The x-axis limits are
specified by xlims in the form [xmin xmax], and the y-axis limits are
specified by ylims in the form [ymin ymax].

fsurfht(fun,xlims,ylims,p1,p2,p3,p4,p5) allows for five optional
parameters that you can supply to the function fun.

The intersection of the vertical and horizontal reference lines on the plot
defines the current x-value and y-value. You can drag these reference
lines and watch the calculated z-values (at the top of the plot) update
simultaneously. Alternatively, you can type the x-value and y-value into
editable text fields on the x-axis and y-axis.

Example Plot the Gaussian likelihood function for the gas.mat data.

load gas

Create a function containing the following commands, and name it
gauslike.m.

function z = gauslike(mu,sigma,p1)
n = length(p1);
z = ones(size(mu));
for i = 1:n
z = z .* (normpdf(p1(i),mu,sigma));
end

The gauslike function calls normpdf, treating the data sample as fixed
and the parameters µ and σ as variables. Assume that the gas prices
are normally distributed, and plot the likelihood surface of the sample.

fsurfht('gauslike',[112 118],[3 5],price1)
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The sample mean is the x-value at the maximum, but the sample
standard deviation is not the y-value at the maximum.

mumax = mean(price1)
mumax =
115.1500

sigmamax = std(price1)*sqrt(19/20)
sigmamax =

3.7719
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Purpose Full-factorial experimental design

Syntax design = fullfact(levels)

Description design = fullfact(levels) give the factor settings for a full factorial
design. Each element in the vector levels specifies the number of
unique values in the corresponding column of design.

For example, if the first element of levels is 3, then the first column
of design contains only integers from 1 to 3.

Example If levels = [2 4], fullfact generates an eight-run design with two
levels in the first column and four in the second column.

d = fullfact([2 4])
d =

1 1
2 1
1 2
2 2
1 3
2 3
1 4
2 4

See Also ff2n, dcovary, daugment, cordexch
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Purpose Gage repeatability and reproducibility study

Syntax gagerr(y,{part,operator})
gagerr(y,GROUP)
gagerr(y,part)
gagerr(...,param1,val1,param2,val2,...)
[TABLE, stats] = gagerr(...)

Description gagerr(y,{part,operator}) performs a gage repeatability and
reproducibility study on measurements in y collected by operator on
part. y is a column vector containing the measurements on different
parts. part and operator are categorical variables, numeric vectors,
character matrices, or cell arrays of strings. The number of elements in
part and operator should be the same as in y.

gagerr prints a table in the command window in which the
decomposition of variance, standard deviation, study var (5.15 x
standard deviation) are listed with respective percentages for different
sources. Summary statistics are printed below the table giving the
number of distinct categories (NDC) and the percentage of Gage R&R
of total variations (PRR).

gagerr also plots a bar graph showing the percentage of different
components of variations. Gage R&R, repeatability, reproducibility, and
part-to-part variations are plotted as four vertical bars. Variance and
study var are plotted as two groups.

To determine the capability of a measurement system using NDC, use
the following guidelines:

• If NDC > 5, the measurement system is capable.

• If NDC < 2, the measurement system is not capable.

• Otherwise, the measurement system may be acceptable.

To determine the capability of a measurement system using PRR, use
the following guidelines:
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• If PRR < 10%, the measurement system is capable.

• If PRR > 30%, the measurement system is not capable.

• Otherwise, the measurement system may be acceptable.

gagerr(y,GROUP) performs a gage R&R study on measurements in
y with part and operator represented in GROUP. GROUP is a numeric
matrix whose first and second columns specify different parts and
operators, respectively. The number of rows in GROUP should be the same
as the number of elements in y. (See “Grouped Data” on page 2-41.)

gagerr(y,part) performs a gage R&R study on measurements in y
without operator information. The assumption is that all variability is
contributed by part.

gagerr(...,param1,val1,param2,val2,...) performs a gage R&R
study using one or more of the following parameter name/value pairs:

• 'spec' — A two-element vector that defines the lower and upper
limit of the process, respectively. In this case, summary statistics
printed in the command window include Precision-to-Tolerance
Ratio (PTR). Also, the bar graph includes an additional group, the
percentage of tolerance.

To determine the capability of a measurement system using PTR, use
the following guidelines:

- If PTR < 0.1, the measurement system is capable.

- If PTR > 0.3, the measurement system is not capable.

- Otherwise, the measurement system may be acceptable.

• 'printtable' — A string with a value 'on' or 'off' that indicates
whether the tabular output should be printed in the command
window or not. The default value is 'on'.

• 'printgraph' — A string with a value 'on' or 'off' that indicates
whether the bar graph should be plotted or not. The default value
is 'on'.
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• 'randomoperator' — A logical value, true or false, that indicates
whether the effect of operator is random or not. The default value
is true.

• 'model' — The model to use, specified by one of:

- 'linear' — Main effects only (default)

- 'interaction' — Main effects plus two-factor interactions

- 'nested' — Nest operator in part

The default value is 'linear'.

[TABLE, stats] = gagerr(...) returns a 6-by-5 matrix TABLE and
a structure stats. The columns of TABLE, from left to right, represent
variance, percentage of variance, standard deviations, study var,
and percentage of study var. The rows of TABLE, from top to bottom,
represent different sources of variations: gage R&R, repeatability,
reproducibility, operator, operator and part interactions, and part.
stats is a structure containing summary statistics for the performance
of the measurement system. The fields of stats are:

• ndc — Number of distinct categories

• prr — Percentage of gage R&R of total variations

• ptr — Precision-to-tolerance ratio. The value is NaN if the parameter
'spec' is not given.

Example Conduct a gage R&R study for a simulated measurement system using
a mixed ANOVA model without interactions:

y = randn(100,1); % measurements

part = ceil(3*rand(100,1)); % parts

operator = ceil(4*rand(100,1)); % operators

gagerr(y,{part, operator},'randomoperator',true) % analysis

Source Variance % Variance sigma 5.15*sigma % 5.15*sigma

===================================================================================
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Gage R&R 0.77 100.00 0.88 4.51 100.00

Repeatability 0.76 99.08 0.87 4.49 99.54

Reproducibility 0.01 0.92 0.08 0.43 9.61

Operator 0.01 0.92 0.08 0.43 9.61

Part 0.00 0.00 0.00 0.00 0.00

Total 0.77 100.00 0.88 4.51

-----------------------------------------------------------------------------------

Number of distinct categories (NDC): 0

% of Gage R&R of total variations (PRR): 100.00

Note: The last column of the above table does not have to sum to 100%
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Purpose Gamma cumulative distribution function

Syntax gamcdf(X,A,B)
[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha)

Description gamcdf(X,A,B) computes the gamma cdf at each of the values in X using
the corresponding parameters in A and B. X, A, and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs. The parameters in A and B must be positive.

The gamma cdf is

The result, p, is the probability that a single observation from a gamma
distribution with parameters a and b will fall in the interval [0 x].

[P,PLO,PUP] = gamcdf(X,A,B,pcov,alpha) produces confidence
bounds for P when the input parameters A and B are estimates.
pcov is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1-alpha)% confidence bounds. PLO and PUP are arrays of the same
size as P containing the lower and upper confidence bounds.

gammainc is the gamma distribution with b fixed at 1.

Examples a = 1:6;
b = 5:10;
prob = gamcdf(a.*b,a,b)
prob =

0.6321 0.5940 0.5768 0.5665 0.5595 0.5543

The mean of the gamma distribution is the product of the parameters,
ab. In this example, the mean approaches the median as it increases
(i.e., the distribution becomes more symmetric).
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See Also cdf, gamfit, gaminv, gamlike, gampdf, gamrnd, gamstat, gammainc
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Purpose Parameter estimates and confidence intervals for gamma distributed
data

Syntax phat = gamfit(data)
[phat,pci] = gamfit(data)
[phat,pci] = gamfit(data,alpha)
[...] = gamfit(data,alpha,censoring,freq,options)

Description phat = gamfit(data) returns the maximum likelihood estimates
(MLEs) for the parameters of the gamma distribution given the data
in vector data.

[phat,pci] = gamfit(data) returns MLEs and 95% percent
confidence intervals. The first row of pci is the lower bound of the
confidence intervals; the last row is the upper bound.

[phat,pci] = gamfit(data,alpha) returns 100(1 - alpha)%
confidence intervals. For example, alpha = 0.01 yields 99% confidence
intervals.

[...] = gamfit(data,alpha,censoring) accepts a boolean vector of
the same size as data that is 1 for observations that are right-censored
and 0 for observations that are observed exactly.

[...] = gamfit(data,alpha,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but may contain
any nonnegative values.

[...] = gamfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates.
The gamma fit function accepts an options structure which can be
created using the function statset. Enter statset('gamfit') to see
the names and default values of the parameters that gamfit accepts
in the options structure.

Example Note that the 95% confidence intervals in the example below bracket
the true parameter values of 2 and 4.
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a = 2; b = 4;
data = gamrnd(a,b,100,1);
[p,ci] = gamfit(data)
p =

2.1990 3.7426
ci =

1.6840 2.8298
2.7141 4.6554

Reference [1] Hahn, G. J., and S. S. Shapiro, Statistical Models in Engineering.
John Wiley & Sons, 1994. p. 88.

See Also gamcdf, gaminv, gamlike, gampdf, gamrnd, gamstat, mle, statset
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Purpose Inverse of gamma cumulative distribution function

Syntax X = gaminv(P,A,B)
[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha)

Description X = gaminv(P,A,B) computes the inverse of the gamma cdf with
parameters A and B for the corresponding probabilities in P. P, A, and B
can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in A and B must all be
positive, and the values in P must lie on the interval [0 1].

The gamma inverse function in terms of the gamma cdf is

where

[X,XLO,XUP] = gamcdf(P,A,B,pcov,alpha) produces confidence
bounds for P when the input parameters A and B are estimates.
pcov is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1-alpha)% confidence bounds. PLO and PUP are arrays of the same
size as P containing the lower and upper confidence bounds.

Algorithm There is no known analytical solution to the integral equation above.
gaminv uses an iterative approach (Newton’s method) to converge on
the solution.

Examples This example shows the relationship between the gamma cdf and its
inverse function.

a = 1:5;
b = 6:10;
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x = gaminv(gamcdf(1:5,a,b),a,b)
x =

1.0000 2.0000 3.0000 4.0000 5.0000

See Also gamcdf, gamfit, gamlike, gampdf, gamrnd, gamstat, icdf
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Purpose Negative log-likelihood for gamma distribution

Syntax nlogL = gamlike(params,data)
[nlogL,AVAR] = gamlike(params,data)

Description nlogL = gamlike(params,data) returns the negative of the gamma
log-likelihood function for the parameters, params, given data. The
length of output vector nlogL is the length of vector data.

[nlogL,AVAR] = gamlike(params,data) also returns AVAR, which is
the asymptotic variance-covariance matrix of the parameter estimates
when the values in params are the maximum likelihood estimates. AVAR
is the inverse of Fisher’s information matrix. The diagonal elements of
AVAR are the asymptotic variances of their respective parameters.

[...] = gamlike(params,data,censoring) accepts a boolean
vector of the same size as data that is 1 for observations that are
right-censored and 0 for observations that are observed exactly.

[...] = gamfit(params,data,censoring,freq) accepts a frequency
vector of the same size as data. freq typically contains integer
frequencies for the corresponding elements in data, but may contain
any non-negative values.

gamlike is a utility function for maximum likelihood estimation of
the gamma distribution. Since gamlike returns the negative gamma
log-likelihood function, minimizing gamlike using fminsearch is the
same as maximizing the likelihood.

Example This example continues the example for gamfit.

a = 2; b = 3;
r = gamrnd(a,b,100,1);
[nlogL,info] = gamlike(gamfit(r),r)
nlogL =

267.5648
info =

0.0788 -0.1104
-0.1104 0.1955
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See Also betalike, gamcdf, gamfit, gaminv, gampdf, gamrnd, gamstat, mle,
normlike, wbllike
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Purpose Gamma probability density function

Syntax Y = gampdf(X,A,B)

Description Y = gampdf(X,A,B) computes the gamma pdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in A and B must all be
positive, and the values in X must lie on the interval [0 ∞).

The gamma pdf is

The gamma probability density function is useful in reliability models of
lifetimes. The gamma distribution is more flexible than the exponential
distribution in that the probability of a product surviving an additional
period may depend on its current age. The exponential and χ2 functions
are special cases of the gamma function.

Examples The exponential distribution is a special case of the gamma distribution.

mu = 1:5;

y = gampdf(1,1,mu)
y =

0.3679 0.3033 0.2388 0.1947 0.1637

y1 = exppdf(1,mu)
y1 =

0.3679 0.3033 0.2388 0.1947 0.1637

See Also gamcdf, gamfit, gaminv, gamlike, gamrnd, gamstat, pdf, gamma,
gammaln
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Purpose Random numbers from gamma distribution

Syntax R = gamrnd(A,B)
R = gamrnd(A,B,v)
R = gamrnd(A,B,m,n)

Description R = gamrnd(A,B) generates random numbers from the gamma
distribution with parameters A and B. A and B can be vectors, matrices,
or multidimensional arrays that all have the same size. A scalar input
for A or B is expanded to a constant array with the same dimensions
as the other input.

R = gamrnd(A,B,v) generates random numbers from the gamma
distribution with parameters A and B, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = gamrnd(A,B,m,n) generates gamma random numbers with
parameters A and B, where scalars m and n are the row and column
dimensions of R.

Example n1 = gamrnd(1:5,6:10)
n1 =

9.1132 12.8431 24.8025 38.5960 106.4164

n2 = gamrnd(5,10,[1 5])
n2 =

30.9486 33.5667 33.6837 55.2014 46.8265

n3 = gamrnd(2:6,3,1,5)
n3 =

12.8715 11.3068 3.0982 15.6012 21.6739

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamstat, randg
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Purpose Mean and variance of gamma distribution

Syntax [M,V] = gamstat(A,B)

Description [M,V] = gamstat(A,B) returns the mean of and variance for the
gamma distribution with parameters specified by A and B. A and B can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of M and V. A scalar input for A or B is expanded to
a constant array with the same dimensions as the other input.

The mean of the gamma distribution with parameters a and b is ab.
The variance is ab2.

Examples [m,v] = gamstat(1:5,1:5)
m =

1 4 9 16 25
v =

1 8 27 64 125

[m,v] = gamstat(1:5,1./(1:5))
m =

1 1 1 1 1
v =

1.0000 0.5000 0.3333 0.2500 0.2000

See Also gamcdf, gamfit, gaminv, gamlike, gampdf, gamrnd
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Purpose Access dataset array properties

Syntax get(A)
s = get(A)
p = get(A,PropertyName)
p = get(A,{PropertyName1,PropertyName2,...})

Description get(A) displays a list of property/value pairs for the dataset array A.

s = get(A) returns the values in a scalar structure s with field names
given by the properties.

p = get(A,PropertyName) returns the value of the property specified
by the string PropertyName.

p = get(A,{PropertyName1,PropertyName2,...}) allows multiple
property names to be specified and returns their values in a cell array.

Example Create a dataset array from Fisher’s iris data and access the
information:

load fisheriris
NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

get(iris)
Description: ''
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

ON = get(iris,'ObsNames');
ON(1:3)
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ans =
'Obs1'
'Obs2'
'Obs3'

See Also set, summary (dataset)
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Purpose Access labels of levels in categorical array

Syntax labels = getlabels(A)

Description labels = getlabels(A) returns the labels of the levels in the
categorical array A as a cell array of strings labels. For ordinal A, the
labels are returned in the order of the levels.

Examples Example 1

Display levels in a nominal and an ordinal array:

standings = nominal({'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Bruins' 'Canadiens' 'Leafs'

standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Leafs' 'Canadiens' 'Bruins'

Example 2

Display age groups containing data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
AgeGroup = droplevels(AgeGroup);
getlabels(AgeGroup)
ans =

'20s' '30s' '40s' '50s'

See Also setlabels
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Purpose Geometric cumulative distribution function

Syntax Y = geocdf(X,P)

Description Y = geocdf(X,P) computes the geometric cdf at each of the values in
X using the corresponding probabilities in P. X and P can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in P must lie on the interval [0 1].

The geometric cdf is

where .

The result, y, is the probability of observing up to x trials before a
success, when the probability of success in any given trial is p.

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads),
that is a success. What is the probability of observing three or fewer
tails before getting a heads?

p = geocdf(3,0.5)
p =

0.9375

See Also cdf, geoinv, geopdf, geornd, geostat
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Purpose Inverse of geometric cumulative distribution function

Syntax X = geoinv(Y,P)

Description X = geoinv(Y,P) returns the smallest positive integer X such that the
geometric cdf evaluated at X is equal to or exceeds Y. You can think of
Y as the probability of observing X successes in a row in independent
trials where P is the probability of success in each trial.

Y and P can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input for P or Y is expanded to a constant
array with the same dimensions as the other input. The values in P
and Y must lie on the interval [0 1].

Examples The probability of correctly guessing the result of 10 coin tosses in a row
is less than 0.001 (unless the coin is not fair).

psychic = geoinv(0.999,0.5)
psychic =

9

The example below shows the inverse method for generating random
numbers from the geometric distribution.

rndgeo = geoinv(rand(2,5),0.5)
rndgeo =

0 1 3 1 0
0 1 0 2 0

See Also geocdf, geopdf, geornd, geostat, icdf
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Purpose Geometric mean of sample

Syntax m = geomean(x)
geomean(X,dim)

Description m = geomean(x) calculates the geometric mean of a sample. For
vectors, geomean(x) is the geometric mean of the elements in x. For
matrices, geomean(X) is a row vector containing the geometric means
of each column. For N-dimensional arrays, geomean operates along the
first nonsingleton dimension of X.

geomean(X,dim) takes the geometric mean along the dimension dim
of X.

The geometric mean is

Examples The arithmetic mean is greater than or equal to the geometric mean.

x = exprnd(1,10,6);

geometric = geomean(x)
geometric =

0.7466 0.6061 0.6038 0.2569 0.7539 0.3478

average = mean(x)
average =

1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, harmmean, trimmean
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Purpose Geometric probability density function

Syntax Y = geopdf(X,P)

Description Y = geopdf(X,P) computes the geometric pdf at each of the values in
X using the corresponding probabilities in P. X and P can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other input. The parameters in P must lie on the interval [0 1].

The geometric pdf is

where .

Examples Suppose you toss a fair coin repeatedly. If the coin lands face up (heads),
that is a success. What is the probability of observing exactly three
tails before getting a heads?

p = geopdf(3,0.5)
p =

0.0625

See Also geocdf, geoinv, geornd, geostat, pdf
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Purpose Random numbers from geometric distribution

Syntax R = geornd(P)
R = geornd(P,v)
R = geornd(P,m,n)

Description The geometric distribution is useful when you want to model the
number of successive failures preceding a success, where the probability
of success in any given trial is the constant P.

R = geornd(P) generates geometric random numbers with probability
parameter P. P can be a vector, a matrix, or a multidimensional array.
The size of R is the size of P.

R = geornd(P,v) generates geometric random numbers with
probability parameter P, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = geornd(P,m,n) generates geometric random numbers with
probability parameter P, where scalars m and n are the row and column
dimensions of R.

The parameters in P must lie on the interval [0 1].

Example r1 = geornd(1 ./ 2.^(1:6))
r1 =

2 10 2 5 2 60

r2 = geornd(0.01,[1 5])
r2 =

65 18 334 291 63

r3 = geornd(0.5,1,6)
r3 =

0 7 1 3 1 0

See Also geocdf, geoinv, geopdf, geostat
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Purpose Mean and variance of geometric distribution

Syntax [M,V] = geostat(P)

Description [M,V] = geostat(P) returns the mean of and variance for the
geometric distribution with parameters specified by P.

The mean of the geometric distribution with parameter p is q/p, where q
= 1-p. The variance is q/p2.

Examples [m,v] = geostat(1./(1:6))
m =

0 1.0000 2.0000 3.0000 4.0000 5.0000
v =

0 2.0000 6.0000 12.0000 20.0000 30.0000

See Also geocdf, geoinv, geopdf, geornd
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Purpose Generalized extreme value cumulative distribution function

Syntax P = gevcdf(X,K,sigma,mu)

Description P = gevcdf(X,K,sigma,mu) returns the cdf of the generalized extreme
value (GEV) distribution with shape parameter K, scale parameter
sigma, and location parameter, mu, evaluated at the values in X. The size
of P is the common size of the input arguments. A scalar input functions
as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblcdf
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evcdf, gevfit, gevinv, gevlike, gevpdf, gevrnd, gevstat, cdf

14-292



gevfit

Purpose Parameter estimates and confidence intervals for generalized extreme
value distributed data

Syntax parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)

Description parmhat = gevfit(X) returns maximum likelihood estimates of the
parameters for the generalized extreme value (GEV) distribution given
the data in X. parmhat(1) is the shape parameter, K, parmhat(2) is the
scale parameter, sigma, and parmhat(3) is the location parameter, mu.

[parmhat,parmci] = gevfit(X) returns 95% confidence intervals for
the parameter estimates.

[parmhat,parmci] = gevfit(X,alpha) returns 100(1-alpha)%
confidence intervals for the parameter estimates.

[...] = gevfit(X,alpha,options) specifies control parameters for
the iterative algorithm used to compute ML estimates. This argument
can be created by a call to statset. See statset('gevfit') for
parameter names and default values. Pass in [] for alpha to use the
default values.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblfit
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evfit function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution is defined
for K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.
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[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evfit, gevcdf, gevinv, gevlike, gevpdf, gevrnd, gevstat, mle,
statset
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Purpose Inverse of generalized extreme value cumulative distribution function

Syntax X = gevinv(P,K,sigma,mu)

Description X = gevinv(P,K,sigma,mu) returns the inverse cdf of the generalized
extreme value (GEV) distribution with shape parameter K, scale
parameter sigma, and location parameter mu, evaluated at the values
in P. The size of X is the common size of the input arguments. A scalar
input functions as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblinv
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evinv function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evinv, gevfit, gevcdf, gevlike, gevpdf, gevrnd, gevstat, icdf
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Purpose Negative log-likelihood for generalized extreme value distribution

Syntax nlogL = gevlike(params,data)
[nlogL,ACOV] = gevlike(params,data)

Description nlogL = gevlike(params,data) returns the negative of the
log-likelihood nlogL for the generalized extreme value (GEV)
distribution, evaluated at parameters params(1) = K, params(2) =
sigma, and params(3) = mu, given data.

[nlogL,ACOV] = gevlike(params,data) returns the inverse of
Fisher’s information matrix, ACOV. If the input parameter values in
params are the maximum likelihood estimates, the diagonal elements
of ACOV are their asymptotic variances. ACOV is based on the observed
Fisher’s information, not the expected information.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wbllike
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evlike function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evlike, gevfit, gevinv, gevcdf, gevpdf, gevrnd, gevstat
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Purpose Generalized extreme value probability density function

Syntax Y = gevpdf(X,K,sigma,mu)

Description Y = gevpdf(X,K,sigma,mu) returns the pdf of the generalized extreme
value (GEV) distribution with shape parameter K, scale parameter
sigma, and location parameter, mu, evaluated at the values in X. The size
of Y is the common size of the input arguments. A scalar input functions
as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblpdf
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evcdf function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evpdf, gevfit, gevinv, gevlike, gevcdf, gevrnd, gevstat, pdf

14-297



gevrnd

Purpose Random numbers from generalized extreme value distribution

Syntax R = gevrnd(K,sigma,mu)
R = gevrnd(K,sigma,mu,M,N,...)
R = gevrnd(K,sigma,mu,[M,N,...])

Description R = gevrnd(K,sigma,mu) returns an array of random numbers chosen
from the generalized extreme value (GEV) distribution with shape
parameter K, scale parameter sigma, and location parameter, mu.
The size of R is the common size of the input arguments if all are
arrays. If any parameter is a scalar, the size of R is the size of the other
parameters.

R = gevrnd(K,sigma,mu,M,N,...) or

R = gevrnd(K,sigma,mu,[M,N,...]) returns an m-by-n-by-... array.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblrnd
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evrnd function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evrnd, gevfit, gevinv, gevlike, gevpdf, gevcdf, gevstat, random
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Purpose Mean and variance of generalized extreme value distribution

Syntax [M,V] = gevstat(K,sigma,mu)

Description [M,V] = gevstat(K,sigma,mu) returns the mean of and variance for
the generalized extreme value (GEV) distribution with shape parameter
K, scale parameter sigma, and location parameter, mu. The sizes of M and
V are the common size of the input arguments. A scalar input functions
as a constant matrix of the same size as the other inputs.

Default values for K, sigma, and mu are 0, 1, and 0, respectively.

When K < 0, the GEV is the type III extreme value distribution. When
K > 0, the GEV distribution is the type II, or Frechet, extreme value
distribution. If w has a Weibull distribution as computed by the wblstat
function, then -w has a type III extreme value distribution and 1/w has
a type II extreme value distribution. In the limit as K approaches 0, the
GEV is the mirror image of the type I extreme value distribution as
computed by the evstat function.

The mean of the GEV distribution is not finite when K ≥ 1, and the
variance is not finite when K ≥ 1/2. The GEV distribution has positive
density only for values of X such that K*(X-mu)/sigma > -1.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also evstat, gevfit, gevinv, gevlike, gevpdf, gevrnd, gevcdf
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Purpose Interactive line plot

Syntax gline(fig)
h = gline(fig)
gline

Description gline(fig) allows you to draw a line segment in the figure fig by
clicking the pointer at the two endpoints. A rubber band line tracks the
pointer movement.

h = gline(fig) returns the handle to the line in h.

gline with no input arguments draws in the current figure.

See Also refline, gname
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Purpose Demo of generalized linear models

Syntax glmdemo

Description glmdemo begins a slide show demonstration of generalized linear
models. The slides indicate when generalized linear models are useful,
how to fit generalized linear models using the glmfit function, and how
to make predictions using the glmval function.

Note To run this demo from the command line, type playshow glmdemo.

See Also glmfit, glmval
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Purpose Generalized linear model fit

Syntax b = glmfit(X,y,distr)
b = glmfit(X,y,distr,param1,val1,param2,val2,...)
[b,dev] = glmfit(...)
[b,dev,stats] = glmfit(...)

Description b = glmfit(X,y,distr) returns a p-by-1 vector b of coefficient
estimates for a generalized linear regression of the responses in y on the
predictors in X, using the distribution distr. X is an n-by-p matrix of p
predictors at each of n observations. distr can be any of the following
strings: 'binomial', 'gamma', 'inverse gaussian', 'normal' (the
default), and 'poisson'.

In most cases, y is an n-by-1 vector of observed responses. For the
binomial distribution, y can be a binary vector indicating success or
failure at each observation, or a two column matrix with the first
column indicating the number of successes for each observation and the
second column indicating the number of trials for each observation.

This syntax uses the canonical link (see below) to relate the distribution
to the predictors.

Note By default, glmfit adds a first column of ones to X, corresponding
to a constant term in the model. Do not enter a column of ones directly
into X. You can change the default behavior of glmfit using the
'constant' parameter, below.

glmfit treats NaNs in either X or y as missing values, and ignores them.

b = glmfit(X,y,distr,param1,val1,param2,val2,...) additionally
allows you to specify optional parameter name/value pairs to control the
model fit. Acceptable parameters are as follows:
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Parameter Value Meaning

'identity',
default for the
distribution
'normal'

µ = Xb

'log', default for
the distribution
'poisson'

log(µ) = Xb

'logit', default
for the distribution
'binomial'

log(µ/(1–µ)) = Xb

'probit' norminv(µ) = Xb

'comploglog' log(-log(1–µ)) = Xb

'reciprocal' 1/µ = Xb

'loglog', default
for the distribution
'gamma'

log(-log(µ)) = Xb

p (a number),
default for the
distribution
'inverse
gaussian' (with p
= -2)

µp = Xb

'link'

cell array of the
form {FL FD FI},
containing three
function handles,
created using @,
that define the link
(FL), the derivative
of the link (FD), and
the inverse link
(FI).

User-specified link
function
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Parameter Value Meaning

'on' Estimates a dispersion
parameter for the binomial
or Poisson distribution

'estdisp'

'off' (Default for
binomial or Poisson
distribution)

Uses the theoretical
value of 1.0 for those
distributions

'offset' Vector Used as an additional
predictor variable, but
with a coefficient value
fixed at 1.0

'weights' Vector of prior
weights, such as
the inverses of the
relative variance of
each observation

'on' (default) Includes a constant term in
the model. The coefficient
of the constant term is the
first element of b.

'constant'

'off' Omit the constant term

[b,dev] = glmfit(...)returns dev, the deviance of the fit at the
solution vector. The deviance is a generalization of the residual sum of
squares. It is possible to perform an analysis of deviance to compare
several models, each a subset of the other, and to test whether the model
with more terms is significantly better than the model with fewer terms.

[b,dev,stats] = glmfit(...) returns dev and stats.

stats is a structure with the following fields:

• beta — Coefficient estimates b

• dfe — Degrees of freedom for error
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• s — Theoretical or estimated dispersion parameter

• sfit — Estimated dispersion parameter

• se — Vector of standard errors of the coefficient estimates b

• coeffcorr — Correlation matrix for b

• covb — Estimated covariance matrix for B

• t — t statistics for b

• p — p-values for b

• resid — Vector of residuals

• residp — Vector of Pearson residuals

• residd — Vector of deviance residuals

• resida — Vector of Anscombe residuals

If you estimate a dispersion parameter for the binomial or Poisson
distribution, then stats.s is set equal to stats.sfit. Also, the
elements of stats.se differ by the factor stats.s from their theoretical
values.

Example Fit a probit regression model for y on x. Each y(i) is the number
of successes in n(i) trials.

x = [2100 2300 2500 2700 2900 3100 ...

3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

b = glmfit(x,[y n],'binomial','link','probit');

yfit = glmval(b, x,'probit','size', n);

plot(x, y./n,'o',x,yfit./n,'-','LineWidth',2)
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References [1] Dobson, A. J., An Introduction to Generalized Linear Models, CRC
Press, 1990.

[2] MuCullagh, P., and J. A. Nelder, Generalized Linear Models, 2nd
edition, Chapman & Hall, 1990.

[3] Collett, D., Modelling Binary Data, 2nd edition, Chapman &
Hall/CRC Press, 2002.

See Also glmval, regress, regstats
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Purpose Values and prediction intervals for generalized linear models

Syntax yhat = glmval(b,X,link)
[yhat,dylo,dyhi] = glmval(b,X,link,stats)
[...] = glmval(...,param1,val1,param2,val2,...)

Description yhat = glmval(b,X,link) computes predicted values for the
generalized linear model with link function link and predictors X.
Distinct predictor variables should appear in different columns of X. b
is a vector of coefficient estimates as returned by the glmfit function.
link can be any of the strings used as values for the link parameter in
the glmfit function.

Note By default, glmval adds a first column of ones to X, corresponding
to a constant term in the model. Do not enter a column of ones directly
into X. You can change the default behavior of glmval using the
'constant' parameter, below.

[yhat,dylo,dyhi] = glmval(b,X,link,stats) also computes 95%
confidence bounds for the predicted values. When the stats structure
output of the glmfit function is specified, dylo and dyhi are also
returned. dylo and dyhi define a lower confidence bound of yhat-dylo,
and an upper confidence bound of yhat+dyhi. Confidence bounds are
nonsimultaneous, and apply to the fitted curve, not to a new observation.

[...] = glmval(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs to control the predicted values.
Acceptable parameters are:

Parameter Value

'confidence' — the confidence
level for the confidence bounds

A scalar between 0 and 1

'size' — the size parameter (N)
for a binomial model

A scalar, or a vector with one
value for each row of X
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Parameter Value

'offset' — used as an additional
predictor variable, but with a
coefficient value fixed at 1.0

A vector

'constant' • 'on' — Includes a constant
term in the model. The
coefficient of the constant term
is the first element of b.

• 'off' — Omit the constant
term

Example Fit a probit regression model for y on x. Each y(i) is the number
of successes in n(i) trials.

x = [2100 2300 2500 2700 2900 3100 ...

3300 3500 3700 3900 4100 4300]';

n = [48 42 31 34 31 21 23 23 21 16 17 21]';

y = [1 2 0 3 8 8 14 17 19 15 17 21]';

b = glmfit(x,[y n],'binomial','link','probit');

yfit = glmval(b,x,'probit','size',n);

plot(x, y./n,'o',x,yfit./n,'-')
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References [1] Dobson, A. J., An Introduction to Generalized Linear Models, CRC
Press, 1990.

[2] MuCullagh, P., and J. A. Nelder, Generalized Linear Models, 2nd
edition, Chapman & Hall, 1990.

[3] Collett, D., Modelling Binary Data, 2nd edition, Chapman &
Hall/CRC Press, 2002.

See Also glmfit
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Purpose Plot stars or Chernoff faces for multivariate data

Syntax glyphplot(X)
glyphplot(X,'Glyph','face')
glyphplot(X,'Glyph','face','Features',F)
glyphplot(X,...,'Grid',[rows,cols])
glyphplot(X,...,'Grid',[rows,cols],'Page',page)
glyphplot(X,...,'Centers',C)
glyphplot,...,'Centers',C,'Radius',r)
glyphplot(X,...,'ObsLabels',labels)
glyphplot(X,...,'Standardize',method)
glyphplot(X,...,PropertyName,PropertyValue,...)
h = glyphplot(X,...)

Description glyphplot(X) creates a star plot from the multivariate data in the
n-by-p matrix X. Rows of X correspond to observations, columns to
variables. A star plot represents each observation as a “star” whose
ith spoke is proportional in length to the ith coordinate of that
observation. glyphplot standardizes X by shifting and scaling each
column separately onto the interval [0,1] before making the plot, and
centers the glyphs on a rectangular grid that is as close to square as
possible. glyphplot treats NaNs in X as missing values, and does not
plot the corresponding rows of X. glyphplot(X,'Glyph','star') is a
synonym for glyphplot(X).

glyphplot(X,'Glyph','face') creates a face plot from X. A face plot
represents each observation as a “face,” whose ith facial feature is
drawn with a characteristic proportional to the i-th coordinate of that
observation. The features are described in “Face Features” on page
14-312.

glyphplot(X,'Glyph','face','Features',F) creates a face plot
where the i-th element of the index vector F defines which facial feature
will represent the ith column of X. F must contain integers from 0 to 17,
where zeros indicate that the corresponding column of X should not be
plotted. See “Face Features” on page 14-312 for more information.
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glyphplot(X,...,'Grid',[rows,cols]) organizes the glyphs into a
rows-by-cols grid.

glyphplot(X,...,'Grid',[rows,cols],'Page',page) organizes the
glyph into one or more pages of a rows-by-cols grid, and displays the
page’th page. If page is a vector, glyphplot displays multiple pages in
succession. If page is 'all', glyphplot displays all pages. If page is
'scroll', glyphplot displays a single plot with a scrollbar.

glyphplot(X,...,'Centers',C) creates a plot with each glyph
centered at the locations in the n-by-2 matrix C.

glyphplot,...,'Centers',C,'Radius',r) creates a plot with glyphs
positioned using C, and scale the glyphs so the largest has radius r.

glyphplot(X,...,'ObsLabels',labels) labels each glyph with the
text in the character array or cell array of strings labels. By default,
the glyphs are labelled 1:N. Pass in '' for no labels.

glyphplot(X,...,'Standardize',method) standardizes X before
making the plot. Choices for method are

• 'column' — Maps each column of X separately onto the interval
[0,1]. This is the default.

• 'matrix' — Maps the entire matrix X onto the interval [0,1].

• 'PCA' — Transforms X to its principal component scores, in order of
decreasing eigenvalue, and maps each one onto the interval [0,1].

• 'off' — No standardization. Negative values in X may make a star
plot uninterpretable.

glyphplot(X,...,PropertyName,PropertyValue,...) sets properties
to the specified property values for all line graphics objects created
by glyphplot.

h = glyphplot(X,...) returns a matrix of handles to the graphics
objects created by glyphplot. For a star plot, h(:,1) and h(:,2)
contain handles to the line objects for each star’s perimeter and spokes,
respectively. For a face plot, h(:,1) and h(:,2) contain object handles
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to the lines making up each face and to the pupils, respectively. h(:,3)
contains handles to the text objects for the labels, if present.

Face Features

The following table describes the correspondence between the columns
of the vector F, the value of the 'Features' input parameter, and the
facial features of the glyph plot. If X has fewer than 17 columns, unused
features are displayed at their default value.

Column Facial Feature

1 Size of face

2 Forehead/jaw relative arc length

3 Shape of forehead

4 Shape of jaw

5 Width between eyes

6 Vertical position of eyes

7 Height of eyes

8 Width of eyes (this also affects eyebrow width)

9 Angle of eyes (this also affects eyebrow angle)

10 Vertical position of eyebrows

11 Width of eyebrows (relative to eyes)

12 Angle of eyebrows (relative to eyes)

13 Direction of pupils

14 Length of nose

15 Vertical position of mouth

16 Shape of mouth

17 Mouth arc length
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Examples load carsmall

X = [Acceleration Displacement Horsepower MPG Weight];

glyphplot(X,'Standardize','column','ObsLabels',Model,...

'grid',[2 2],'page','scroll');

glyphplot(X,'Glyph','face','ObsLabels',Model,...

'grid',[2 3],'page',9);
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See Also andrewsplot, parallelcoords
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Purpose Label plotted points with their case names or case number

Syntax gname(cases)
gname
h = gname(cases,line_handle)

Description gname(cases) displays a figure window and waits for you to press
a mouse button or a keyboard key. The input argument cases is a
character array or a cell array of strings, in which each row of the
character array or each element of the cell array contains the case
name of a point. Moving the mouse over the graph displays a pair of
cross-hairs. If you position the cross-hairs near a point with the mouse
and click once, the graph displays the name of the city corresponding to
that point. Alternatively, you can click and drag the mouse to create a
rectangle around several points. When you release the mouse button,
the graph displays the labels for all points in the rectangle. Right-click
a point to remove its label. When you are done labelling points, press
the Enter or Escape key to stop labeling.

gname with no arguments labels each case with its case number.

h = gname(cases,line_handle) returns a vector of handles to the text
objects on the plot. Use the scalar line_handle to identify the correct
line if there is more than one line object on the plot.

You can use gname to label plots created by the plot, scatter,
gscatter, plotmatrix, and gplotmatrix functions.

Example This example uses the city ratings data sets to find out which cities are
the best and worst for education and the arts.

load cities
education = ratings(:,6);
arts = ratings(:,7);
plot(education,arts,'+')
gname(names)
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Click the point at the top of the graph to display its label, “New York.”

See Also gplotmatrix, gscatter, gtext, plot, plotmatrix, scatter
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Purpose Generalized Pareto cumulative distribution function

Syntax P = gpcdf(X,K,sigma,theta)

Description P = gpcdf(X,K,sigma,theta) returns the cdf of the generalized
Pareto (GP) distribution with the tail index (shape) parameter K,
scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in X. The size of P is the common size of the
input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma, the GP is equivalent to
the Pareto distribution. The mean of the GP is not finite when K ≥ 1,
and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpinv, gplike, gppdf, gprnd, gpstat, cdf
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Purpose Parameter estimates and confidence intervals for generalized Pareto
distributed data

Syntax parmhat = gpfit(X)
[parmhat,parmci] = gpfit(X)
[parmhat,parmci] = gpfit(X,alpha)
[...] = gpfit(X,alpha,options)

Description parmhat = gpfit(X) returns maximum likelihood estimates of the
parameters for the two-parameter generalized Pareto (GP) distribution
given the data in X. parmhat(1) is the tail index (shape) parameter,
K and parmhat(2) is the scale parameter, sigma. gpfit does not fit
a threshold (location) parameter.

[parmhat,parmci] = gpfit(X) returns 95% confidence intervals for
the parameter estimates.

[parmhat,parmci] = gpfit(X,alpha) returns 100(1-alpha)%
confidence intervals for the parameter estimates.

[...] = gpfit(X,alpha,options) specifies control parameters for
the iterative algorithm used to compute ML estimates. This argument
can be created by a call to statset. See statset('gpfit') for
parameter names and default values.

Other functions for the generalized Pareto, such as gpcdf allow a
threshold parameter, theta. However, gpfit does not estimate theta. It
is assumed to be known, and subtracted from X before calling gpfit.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma, the GP is equivalent to
the Pareto distribution. The mean of the GP is not finite when K ≥ 1,
and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

0
1

≤
−

≤−
X

K
θ

σ
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References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpcdf, gpinv, gplike, gppdf, gprnd, gpstat, mle, statset
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Purpose Inverse of generalized Pareto cumulative distribution function

Syntax X = gpinv(P,K,sigma,theta)

Description X = gpinv(P,K,sigma,theta) returns the inverse cdf for a generalized
Pareto (GP) distribution with tail index (shape) parameter K, scale
parameter sigma, and threshold (location) parameter theta, evaluated
at the values in P. The size of X is the common size of the input
arguments. A scalar input functions as a constant matrix of the same
size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0, the GP is equivalent to the exponential distribution.
When K > 0, the GP is equivalent to the Pareto distribution shifted to
the origin. The mean of the GP is not finite when K ≥ 1, and the variance
is not finite when K ≥ 1/2. When K ≥ 0, the GP has positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpcdf, gplike, gppdf, gprnd, gpstat, icdf
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Purpose Negative log-likelihood for generalized Pareto distribution

Syntax nlogL = gplike(params,data)
[nlogL,ACOV] = gplike(params,data)

Description nlogL = gplike(params,data) returns the negative of the
log-likelihood nlogL for the two-parameter generalized Pareto (GP)
distribution, evaluated at parameters params(1) = K, params(2) =
sigma, and params(3) = mu, given data.

[nlogL,ACOV] = gplike(params,data) returns the inverse of Fisher’s
information matrix, ACOV. If the input parameter values in params are
the maximum likelihood estimates, the diagonal elements of ACOV are
their asymptotic variances. ACOV is based on the observed Fisher’s
information, not the expected information.

When K = 0, the GP is equivalent to the exponential distribution.
When K > 0, the GP is equivalent to the Pareto distribution shifted to
the origin. The mean of the GP is not finite when K ≥ 1, and the variance
is not finite when K ≥ 1/2. When K ≥ 0, the GP has positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpinv, gpcdf, gppdf, gprnd, gpstat
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Purpose Generalized Pareto probability density function

Syntax P = gppdf(X,K,sigma,theta)

Description P = gppdf(X,K,sigma,theta) returns the pdf of the generalized
Pareto (GP) distribution with the tail index (shape) parameter K,
scale parameter sigma, and threshold (location) parameter, theta,
evaluated at the values in X. The size of P is the common size of the
input arguments. A scalar input functions as a constant matrix of the
same size as the other inputs.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma, the GP is equivalent to
the Pareto distribution. The mean of the GP is not finite when K ≥ 1,
and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpinv, gplike, gpcdf, gprnd, gpstat, pdf
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Purpose Plot matrix of scatter plots, by group

Syntax gplotmatrix(x,y,group)
gplotmatrix(x,y,group,clr,sym,siz)
gplotmatrix(x,y,group,clr,sym,siz,doleg)
gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt)
gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam)
[h,ax,bigax] = gplotmatrix(...)

Description gplotmatrix(x,y,group) creates a matrix of scatter plots. Each
individual set of axes in the resulting figure contains a scatter plot of a
column of x against a column of y. All plots are grouped by the grouping
variable group. (See “Grouped Data” on page 2-41.)

x and y are matrices with the same number of rows. If x has p columns
and y has q columns, the figure contains a p-by-q matrix of scatter plots.
If you omit y or specify it as the empty matrix, [], gplotmatrix creates
a square matrix of scatter plots of columns of x against each other.

group is a grouping variable that can be a categorical variable, vector,
string array, or cell array of strings. group must have the same number
of rows as x and y. Points with the same value of group are placed
in the same group, and appear on the graph with the same marker
and color. Alternatively, group can be a cell array containing several
grouping variables (such as {g1 g2 g3}); in that case, observations are
in the same group if they have common values of all grouping variables.

gplotmatrix(x,y,group,clr,sym,siz) specifies the color, marker
type, and size for each group. clr is a string array of colors recognized
by the plot function. The default for clr is 'bgrcmyk'. sym is a string
array of symbols recognized by the plot command, with the default
value '.'. siz is a vector of sizes, with the default determined by
the DefaultLineMarkerSize property. If you do not specify enough
values for all groups, gplotmatrix cycles through the specified values
as needed.

gplotmatrix(x,y,group,clr,sym,siz,doleg) controls whether a
legend is displayed on the graph (doleg is 'on', the default) or not
(doleg is 'off').

14-323



gplotmatrix

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt) controls what
appears along the diagonal of a plot matrix of y versus x. Allowable
values are 'none', to leave the diagonals blank, 'hist' (the default), to
plot histograms, or 'variable', to write the variable names.

gplotmatrix(x,y,group,clr,sym,siz,doleg,dispopt,xnam,ynam)
specifies the names of the columns in the x and y arrays. These names
are used to label the x- and y-axes. xnam and ynam must be character
arrays or cell arrays of strings, with one name for each column of x
and y, respectively.

[h,ax,bigax] = gplotmatrix(...) returns three arrays of handles.
h is an array of handles to the lines on the graphs. The array’s third
dimension corresponds to groups in G. ax is a matrix of handles to the
axes of the individual plots. If dispopt is 'hist', ax contains one extra
row of handles to invisible axes in which the histograms are plotted.
bigax is a handle to big (invisible) axes framing the entire plot matrix.
bigax is fixed to point to the current axes, so a subsequent title,
xlabel, or ylabel command will produce labels that are centered with
respect to the entire plot matrix.

Example Load the cities data. The ratings array has ratings of the cities in
nine categories (category names are in the array categories). group
is a code whose value is 2 for the largest cities. You can make scatter
plots of the first three categories against the other four, grouped by
the city size code.

load discrim
gplotmatrix(ratings(:,1:3),ratings(:,4:7),group)

The output figure (not shown) has an array of graphs with each city
group represented by a different color. The graphs are a little easier to
read if you specify colors and plotting symbols, label the axes with the
rating categories, and move the legend off the graphs.

gplotmatrix(ratings(:,1:3),ratings(:,4:7),group,...
'br','.o',[],'on','',categories(1:3,:),...
categories(4:7,:))
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See Also grpstats, gscatter, plotmatrix
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Purpose Random numbers from generalized Pareto distribution

Syntax R = gprnd(K,sigma,theta)
R = gprnd(K,sigma,theta,M,N,...)
R = gprnd(K,sigma,theta,[M,N,...])

Description R = gprnd(K,sigma,theta) returns an array of random numbers
chosen from the generalized Pareto (GP) distribution with tail index
(shape) parameter K, scale parameter sigma, and threshold (location)
parameter, theta. The size of R is the common size of the input
arguments if all are arrays. If any parameter is a scalar, the size of R is
the size of the other parameters.

Default values for K, sigma, and theta are 0, 1, and 0, respectively.

R = gprnd(K,sigma,theta,M,N,...) or R =
gprnd(K,sigma,theta,[M,N,...]) returns an
m-by-n-by-... array.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma, the GP is equivalent to
the Pareto distribution. The mean of the GP is not finite when K ≥ 1,
and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for

X > theta, or, when

0
1

≤
−

≤−
X

K
θ

σ

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpinv, gplike, gppdf, gpcdf, gpstat, random
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Purpose Mean and variance of generalized Pareto distribution

Syntax [M,V] = gpstat(X,K,sigma,theta)

Description [M,V] = gpstat(X,K,sigma,theta) returns the mean of and variance
for the generalized Pareto (GP) distribution with the tail index
(shape) parameter K, scale parameter sigma, and threshold (location)
parameter, theta.

The default value for theta is 0.

When K = 0 and theta = 0, the GP is equivalent to the exponential
distribution. When K > 0 and theta = sigma, the GP is equivalent to
the Pareto distribution. The mean of the GP is not finite when K ≥ 1,
and the variance is not finite when K ≥ 1/2. When K ≥ 0, the GP has
positive density for X > theta, or when

K < 0, 0
1

≤
−

≤−
X

K
θ

σ
.

References [1] Embrechts, P., C. Klüppelberg, and T. Mikosch (1997) Modelling
Extremal Events for Insurance and Finance, Springer.

[2] Kotz, S. and S. Nadarajah (2001) Extreme Value Distributions:
Theory and Applications, World Scientific Publishing Company.

See Also gpfit, gpinv, gplike, gppdf, gprnd, gpcdf
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Purpose Create index vector from grouping variable

Syntax [G,GN]=grp2idx(group)

Description [G,GN]=grp2idx(group) creates an index vector G from the grouping
variable group. (See “Grouped Data” on page 2-41.) The variable group
can be a categorical variable, a numeric vector, a character matrix (with
each row representing a group name), or a cell array of strings stored as
a column vector. The result G is a vector taking integer values from 1 up
to the number of unique entries in group. GN is a cell array of names
such that GN(G) reproduces s (with the exception of any differences
in type).

See Also gscatter, grpstats
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Purpose Summary statistics by group

Syntax means = grpstats(X)
means = grpstats(X,group)
grpstats(x,group,alpha)
[A,B,...] = grpstats(x,group,whichstats)
[...] = grpstats(X,group,whichstats,alpha)

Description means = grpstats(X) computes the mean of the entire sample without
grouping, where X is a matrix of observations.

means = grpstats(X,group) returns the means of each column of X by
group. The array, group defines the grouping such that two elements
of X are in the same group if their corresponding group values are the
same. (See “Grouped Data” on page 2-41.) The grouping variable group
can be a categorical variable, vector, string array, or cell array of strings.
It can also be a cell array containing several grouping variables (such
as {g1 g2 g3}) to group the values in X by each unique combination of
grouping variable values.

grpstats(x,group,alpha) displays a plot of the means versus index
with 100(1-alpha)% confidence intervals around each mean.

[A,B,...] = grpstats(x,group,whichstats) returns the statistics
specified in whichstats. The input whichstats can be a single function
handle or name, or a cell array containing multiple function handles
or names. The number of outputs (A,B, ...) must match the number
function handles and names in whichstats. The names can be chosen
from among the following:

• 'mean' — mean

• 'sem' — standard error of the mean

• 'numel' — count, or number of non-NaN elements

• 'gname' — group name

• 'std' — standard deviation

• 'var' — variance
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• 'meanci' — 95% confidence interval for the mean

• 'predci' — 95% prediction interval for a new observation

Each function included in whichstats must accept a vector of data
and compute a descriptive statistic for it. For example, @median
and @skewness are suitable functions. The size of the output is
Ngroups-by-Nvals, where Ngroups is the number of groups and Nvals
is the number of values returned by the function for a single group.
The function may also accept a matrix of data and compute column
statistics. In this case the output size is Ngroups-by-Ncols-by-Nvals,
where Ncols is the number of columns of X.

[...] = grpstats(X,group,whichstats,alpha) specifies the
confidence level as 100(1-alpha)% for the 'meanci' and 'predci'
options. It does not display a plot.

Example load carsmall
[m,p,g] = grpstats(Weight,Model_Year,...

{'mean','predci','gname'})
n = length(m)
errorbar((1:n)',m,p(:,2)-m)
set(gca,'xtick',1:n,'xticklabel',g)
title('95% prediction intervals for mean weight by year')

See Also gscatter, grp2idx, grpstats (dataset)
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Purpose Summary statistics by group for dataset arrays

Syntax B = grpstats(A,groupvars)
B = grpstats(A,groupvars,whichstats)
B = grpstats(A,groupvars,whichstats,...,'DataVars',vars)
B = grpstats(A,groupvars,whichstats,...,'VarNames',names)

Description B = grpstats(A,groupvars) returns a dataset array B that contains
the means, computed by group, for variables in the dataset array A. The
optional input groupvars specifies the variables in A that define the
groups. groupvars can be a positive integer, a vector of positive integers,
a variable name, a cell array containing one or more variable names,
or a logical vector. groupvars can also be [] or omitted to compute the
means of the variables in A without grouping. Grouping variables can
be vectors of categorical, logical, or numeric values, a character array of
strings, or a cell vector of strings. (See “Grouped Data” on page 2-41.)

B contains the grouping variables, plus a variable giving the number
of observations in A for each group, plus a variable for each of the
remaining variables in A. B contains one observation for each group
of observations in A.

grpstats treats NaNs as missing values, and removes them.

B = grpstats(A,groupvars,whichstats) returns a dataset array B
with variables for each of the statistics specified in whichstats, applied
to each of the nongrouping variables in A. whichstats can be a single
function handle or name, or a cell array containing multiple function
handles or names. The names can be chosen from among the following:

• 'mean' — mean

• 'sem' — standard error of the mean

• 'numel' — count, or number of non-NaN elements

• 'gname' — group name

• 'std' — standard deviation

• 'var' — variance
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• 'meanci' — 95% confidence interval for the mean

• 'predci' — 95% prediction interval for a new observation

Each function included in whichstats must accept a subset of the rows
of a dataset variable, and compute column-wise descriptive statistics for
it. A function should typically return a value that has one row but is
otherwise the same size as its input data. For example, @median and
@skewness are suitable functions to apply to a numeric dataset variable.

A summary statistic function may also return values with more
than one row, provided the return values have the same number of
rows each time grpstats applies the function to different subsets of
data from a given dataset variable. For a dataset variable that is
nobs-by-m-by-... if a summary statistic function returns values that are
nvals-by-m-by-... then the corresponding summary statistic variable
in B is ngroups-by-m-by-...-by-nvals, where ngroups is the number of
groups in A.

B = grpstats(A,groupvars,whichstats,...,'DataVars',vars)
specifies the variables in A to which the functions in whichstats should
be applied. The output dataset arrays contain one summary statistic
variable for each of the specified variables. vars is a positive integer,
a vector of positive integers, a variable name, a cell array containing
one or more variable names, or a logical vector.

B = grpstats(A,groupvars,whichstats,...,'VarNames',names)
specifies the names of the variables in B. By default, grpstats uses
the names from A for the grouping variables, and constructs names for
the summary statistic variables based on the function name and the
data variable names. The number of variables in B is ngroupvars + 1
+ ndatavars*nfuns, where ngroupvars is the number of variables
specified in groupvars, ndatavars is the number of variables specified
in vars, and nfuns is the number of summary statistics specified in
whichstats.

Example Compute blood pressure statistics for the data in hospital.mat, by sex
and smoker status:
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load hospital
grpstats(hospital,...

{'Sex','Smoker'},...
{@median,@iqr},...
'DataVars','BloodPressure')

ans =
Sex Smoker GroupCount

Female_0 Female false 40
Female_1 Female true 13
Male_0 Male false 26
Male_1 Male true 21

median_BloodPressure
Female_0 119.5 79
Female_1 129 91
Male_0 119 79
Male_1 129 92

iqr_BloodPressure
Female_0 6.5 5.5
Female_1 8 5.5
Male_0 7 6
Male_1 10.5 4.5

See Also grpstats, summary (dataset)
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Purpose Scatter plot, by group

Syntax gscatter(x,y,group)
gscatter(x,y,group,clr,sym,siz)
gscatter(x,y,group,clr,sym,siz,doleg)
gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam)
h = gscatter(...)

Description gscatter(x,y,group) creates a scatter plot of x and y, grouped by
group. x and y are vectors of the same size. group is a grouping variable
in the form of a categorical variable, vector, string array, or cell array of
strings. (See “Grouped Data” on page 2-41.) Alternatively, group can be
a cell array containing several grouping variables (such as {g1 g2 g3}),
in which case observations are in the same group if they have common
values of all grouping variables. Points in the same group and appear
on the graph with the same marker and color.

gscatter(x,y,group,clr,sym,siz) specifies the color, marker type,
and size for each group. clr is a string array of colors recognized by
the plot function. The default for clr is 'bgrcmyk'. sym is a string
array of symbols recognized by the plot command, with the default
value '.'. siz is a vector of sizes, with the default determined by
the 'DefaultLineMarkerSize' property. If you do not specify enough
values for all groups, gscatter cycles through the specified values as
needed.

gscatter(x,y,group,clr,sym,siz,doleg) controls whether a
legend is displayed on the graph (doleg is 'on', the default) or not
(doleg is 'off').

gscatter(x,y,group,clr,sym,siz,doleg,xnam,ynam) specifies the
name to use for the x-axis and y-axis labels. If the x and y inputs are
simple variable names and xnam and ynam are omitted, gscatter labels
the axes with the variable names.

h = gscatter(...) returns an array of handles to the lines on the
graph.
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Example Load the cities data and look at the relationship between the ratings
for climate (first column) and housing (second column) grouped by city
size. We’ll also specify the colors and plotting symbols.

load discrim
gscatter(ratings(:,1),ratings(:,2),group,'br','xo')
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See Also gplotmatrix, grpstats, scatter
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Purpose Harmonic mean of sample

Syntax m = harmmean(X)
harmmean(X,dim)

Description m = harmmean(X) calculates the harmonic mean of a sample. For
vectors, harmmean(x) is the harmonic mean of the elements in x. For
matrices, harmmean(X) is a row vector containing the harmonic means
of each column. For N-dimensional arrays, harmmean operates along the
first nonsingleton dimension of X.

harmmean(X,dim) takes the harmonic mean along dimension dim of X.

The harmonic mean is

Examples The arithmetic mean is greater than or equal to the harmonic mean.

x = exprnd(1,10,6);

harmonic = harmmean(x)
harmonic =

0.3382 0.3200 0.3710 0.0540 0.4936 0.0907

average = mean(x)
average =

1.3509 1.1583 0.9741 0.5319 1.0088 0.8122

See Also mean, median, geomean, trimmean
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Purpose Plot histograms

Syntax hist(y)
hist(y,nb)
hist(y,x)
[n,x] = hist(y,...)

Description hist(y) draws a 10-bin histogram for the data in vector y. The bins are
equally spaced between the minimum and maximum values in y.

hist(y,nb) draws a histogram with nb bins.

hist(y,x) draws a histogram using the bins in the vector x.

[n,x] = hist(y,...) do not draw graphs, but return vectors n and
x containing the frequency counts and the bin locations such that
bar(x,n) plots the histogram. This is useful in situations where more
control is needed over the appearance of a graph, for example, to
combine a histogram into a more elaborate plot statement.

The hist function is a part of the standard MATLAB language.

Examples Generate bell-curve histograms from Gaussian data.

x = -2.9:0.1:2.9;
y = normrnd(0,1,1000,1);
hist(y,x)
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See Also hist3, histc
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Purpose Three-dimensional histogram of bivariate data

Syntax hist3(X)
hist3(X,nbins)
hist3(X,ctrs)
hist3(X,'Edges',edges)
N = hist3(X,...)
[N,C] = hist3(X,...)
hist3(...,param1,val1,param2,val2,...)

Description hist3(X) bins the elements of the m-by-2 matrix X into a 10-by-10 grid
of equally spaced containers, and plots a histogram. Each column of X
corresponds to one dimension in the bin grid.

hist3(X,nbins) plots a histogram using an nbins(1)-by-nbins(2) grid
of bins. hist3(X,'Nbins',nbins) is equivalent to hist3(X,nbins).

hist3(X,ctrs), where ctrs is a two-element cell array of
numeric vectors with monotonically non-decreasing values, uses a
two-dimensional grid of bins centered on ctrs{1} in the first dimension
and on ctrs{2} in the second. hist3 assigns rows of X falling outside
the range of that grid to the bins along the outer edges of the grid, and
ignores rows of X containing NaNs. hist3(X,'Ctrs',ctrs) is equivalent
to hist3(X,ctrs).

hist3(X,'Edges',edges), where edges is a two-element cell array
of numeric vectors with monotonically non-decreasing values, uses
a two-dimensional grid of bins with edges at edges{1} in the first
dimension and at edges{2} in the second. The (i, j)th bin includes the
value X(k,:) if

edges{1}(i) <= X(k,1) < edges{1}(i+1)
edges{2}(j) <= X(k,2) < edges{2}(j+1)

Rows of X that fall on the upper edges of the grid, edges{1}(end) or
edges{2}(end), are counted in the (I,j)th or (i,J)th bins, where I
and J are the lengths of edges{1} and edges{2}. hist3 does not count
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rows of X falling outside the range of the grid. Use -Inf and Inf in
edges to include all non-NaN values.

N = hist3(X,...) returns a matrix containing the number of elements
of X that fall in each bin of the grid, and does not plot the histogram.

[N,C] = hist3(X,...) returns the positions of the bin centers in a
1-by-2 cell array of numeric vectors, and does not plot the histogram.
hist3(ax,X,...) plots onto an axes with handle ax instead of the
current axes. See the axes reference page for more information about
handles to plots.

hist3(...,param1,val1,param2,val2,...) allows you to specify
graphics parameter name/value pairs to fine-tune the plot.

Example Example 1

Make a 3-D figure using a histogram with a density plot underneath:

figure;
load seamount
dat = [-y,x]; % Grid corrected for negative y-values
hold on
hist3(dat) % Draw histogram in 2D

n = hist3(dat); % Extract histogram data;
% default to 10x10 bins

n1 = n';
n1( size(n,1) + 1 ,size(n,2) + 1 ) = 0;

% Generate grid for 2-D projected view of intensities
xb = linspace(min(dat(:,1)),max(dat(:,1)),size(n,1)+1);
yb = linspace(min(dat(:,2)),max(dat(:,2)),size(n,1)+1);

% Make a pseudocolor plot on this grid
h = pcolor(xb,yb,n1);

% Set the z-level and colormap of the displayed grid
set(h, 'zdata', ones(size(n1)) * -max(max(n)))
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colormap(hot) % heat map
title('Seamount: ...

Data Point Density Histogram and Intensity Map');
grid on

% Display the default 3-D perspective view
view(3);

Example 2

Use the car data to make a histogram on a 7-by-7 grid of bins.

load carbig
X = [MPG,Weight];
hist3(X,[7 7]);
xlabel('MPG'); ylabel('Weight');

% Make a histogram with semi-transparent bars
hist3(X,[7 7],'FaceAlpha',.65);
xlabel('MPG'); ylabel('Weight');

14-341



hist3

set(gcf,'renderer','opengl');

% Specify bin centers, different in each direction.
% Get back counts, but don't make the plot.
cnt = hist3(X, {0:10:50 2000:500:5000});

See Also accumarray, bar, bar3, hist, histc
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Purpose Histogram with superimposed normal density

Syntax histfit(data,nbins)
histfit(data)
h = histfit(data,nbins)

Description histfit(data,nbins) plots a histogram of the values in the vector
data using nbins bars in the histogram. histfit(data) with nbins is
omitted, its value is set to the square root of the number of elements
in data.

h = histfit(data,nbins) returns a vector of handles to the plotted
lines, where h(1) is the handle to the histogram, h(2) is the handle
to the density curve.

Example r = normrnd(10,1,100,1);
histfit(r)
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See Also hist, hist3, normfit
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Purpose Posterior state probabilities of sequence

Syntax PSTATES = hmmdecode(seq,TRANS,EMIS)
[PSTATES,logpseq] = hmmdecode(...)
[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...)
hmmdecode(...,'Symbols',SYMBOLS)

Description PSTATES = hmmdecode(seq,TRANS,EMIS) calculates the posterior state
probabilities, PSTATES, of the sequence seq, from a hidden Markov
model. The posterior state probabilities are the conditional probabilities
of being at state k at step i, given the observed sequence of symbols, sym.
You specify the model by a transition probability matrix, TRANS, and an
emissions probability matrix, EMIS. TRANS(i,j) is the probability of
transition from state i to state j. EMIS(k,sym) is the probability that
symbol sym is emitted from state k.

PSTATES is an array with the same length as seq and one row for each
state in the model. The (i, j)th element of PSTATES gives the probability
that the model is in state i at the jth step, given the sequence seq.

Note The function hmmdecode begins with the model in state 1 at step
0, prior to the first emission. hmmdecode computes the probabilities
in PSTATES based on the fact that the model begins in state 1. See
“How the Toolbox Generates Random Sequences” on page 12-7 for more
information

[PSTATES,logpseq] = hmmdecode(...) returns logpseq, the
logarithm of the probability of sequence seq, given transition matrix
TRANS and emission matrix EMIS.

[PSTATES,logpseq,FORWARD,BACKWARD,S] = hmmdecode(...) returns
the forward and backward probabilities of the sequence scaled by S. See
“Reference” on page 14-346 for a reference that explains the forward
and backward probabilities.
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hmmdecode(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

See “Calculating Posterior State Probabilities” on page 12-12 for an
example of using hmmdecode.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis);
pStates = hmmdecode(seq,tr,e);
[seq,states] = hmmgenerate(100,trans,emis,...

'Symbols',{'one','two','three','four','five','six'})
pStates = hmmdecode(seq,trans,emis,...

'Symbols',{'one','two','three','four','five','six'});

Reference [1] Durbin, R., S. Eddy, A. Krogh, and G. Mitchison, Biological Sequence
Analysis, Cambridge University Press, 1998.

See Also hmmgenerate, hmmestimate, hmmviterbi, hmmtrain
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Purpose Estimate parameters for hidden Markov model

Syntax [TRANS,EMIS] = hmmestimate(seq,states)
hmmestimate(...,'Symbols',SYMBOLS)
hmmestimate(...,'Statenames',STATENAMES)
hmmestimate(...,'Pseudoemissions',PSEUDOE)
hmmestimate(...,'Pseudotransitions',PSEUDOTR)

Description [TRANS,EMIS] = hmmestimate(seq,states) calculates the maximum
likelihood estimate of the transition, TRANS, and emission, EMIS,
probabilities of a hidden Markov model for sequence, seq, with known
states, states.

hmmestimate(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmestimate(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.

hmmestimate(...,'Pseudoemissions',PSEUDOE) specifies
pseudocount emission values in the matrix PSEUDO. Use this argument
to avoid zero probability estimates for emissions with very low
probability that might not be represented in the sample sequence.
PSEUDOE should be a matrix of size m-by-n, where m is the number of
states in the hidden Markov model and n is the number of possible
emissions. If the emission does not occur in seq, you can set
PSEUDOE(i,k) to be a positive number representing an estimate of the
expected number of such emissions in the sequence seq.

hmmestimate(...,'Pseudotransitions',PSEUDOTR) specifies
pseudocount transition values. You can use this argument to avoid
zero probability estimates for transitions with very low probability that
might not be represented in the sample sequence. PSEUDOTR should be a
matrix of size m-by-m, where m is the number of states in the hidden
Markov model. If the transition does not occur in states, you can
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set PSEUDOTR(i,j) to be a positive number representing an estimate of
the expected number of such transitions in the sequence states.

See “Using hmmestimate” on page 12-10 for an example of using
hmmestimate.

Pseudotransitions and Pseudoemissions

If the probability of a specific transition or emission is very low, the
transition might never occur in the sequence states, or the emission
might never occur in the sequence seq. In either case, the algorithm
returns a probability of 0 for the given transition or emission in
TRANS or EMIS. You can compensate for the absence of transition with
the 'Pseudotransitions' and 'Pseudoemissions' arguments. The
simplest way to do this is to set the corresponding entry of PSEUDO or
PSEUDOTR to 1. For example, if the transition does not occur in
states, set PSEUOTR(i,j) = 1. This forces TRANS(i,j) to be positive.
If you have an estimate for the expected number of transitions
in a sequence of the same length as states, and the actual number
of transitions that occur in seq is substantially less than what
you expect, you can set PSEUOTR(i,j) to the expected number. This
increases the value of TRANS(i,j). For transitions that do occur in
states with the frequency you expect, set the corresponding entry of
PSEUDOTR to 0, which does not increase the corresponding entry of TRANS.

If you do not know the sequence of states, use hmmtrain to estimate the
model parameters.

Examples: trans = [0.95,0.05; 0.10,0.90];
emis = [1/6 1/6 1/6 1/6 1/6 1/6;

1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(1000,trans,emis);
[estimateTR,estimateE] = hmmestimate(seq,states);

See Also hmmgenerate, hmmdecode, hmmviterbi, hmmtrain
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Purpose Generate random sequences from Markov model

Syntax [seq,states] = hmmgenerate(len,TRANS,EMIS)
hmmgenerate(...,'Symbols',SYMBOLS)
hmmgenerate(...,'Statenames',STATENAMES)

Description [seq,states] = hmmgenerate(len,TRANS,EMIS) takes a known
Markov model, specified by transition probability matrix TRANS and
emission probability matrix EMIS, and uses it to generate

• A random sequence seq of emission symbols

• A random sequence states of states

The length of both seq and states is len. TRANS(i,j) is the probability
of transition from state i to state j. EMIS(k,l) is the probability that
symbol l is emitted from state k.

Note The function hmmgenerate begins with the model in state 1 at
step 0, prior to the first emission. The model then makes a transition
to state i1, with probability , and generates an emission with

probability . hmmgenerate returns i1 as the first entry of states,
and as the first entry of seq. See “How the Toolbox Generates
Random Sequences” on page 12-7 for more information

hmmgenerate(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmgenerate(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.
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Since the model always begins at state 1, whose transition probabilities
are in the first row of TRANS, in the following example, the first entry of
the output states is be 1 with probability 0.95 and 2 with probability
0.05.

See “Setting Up the Model and Generating Data” on page 12-8 for an
example of using hmmgenerate.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];

[seq,states] = hmmgenerate(100,trans,emis)
[seq,states] = hmmgenerate(100,trans,emis,...

'Symbols',{'one','two','three','four','five','six'},...
'Statenames',{'fair';'loaded'})

See Also hmmviterbi, hmmdecode, hmmestimate, hmmtrain
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Purpose Maximum likelihood estimate of model parameters for hidden Markov
model

Syntax [ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS)
hmmtrain(...,'Algorithm',algorithm)
hmmtrain(...,'Symbols',SYMBOLS)
hmmtrain(...,'Tolerance',tol)
hmmtrain(...,'Maxiterations',maxiter)
hmmtrain(...,'Verbose',true)
hmmtrain(...,'Pseudoemissions',PSEUDOE)
hmmtrain(...,'Pseudotransitions',PSEUDOTR)

Description [ESTTR,ESTEMIT] = hmmtrain(seq,TRGUESS,EMITGUESS) estimates
the transition and emission probabilities for a hidden Markov model
using the Baum-Welch algorithm. seq can be a row vector containing
a single sequence, a matrix with one row per sequence, or a cell array
with each cell containing a sequence. TRGUESS and EMITGUESS are
initial estimates of the transition and emission probability matrices.
TRGUESS(i,j) is the estimated probability of transition from state i to
state j. EMITGUESS(i,k) is the estimated probability that symbol k is
emitted from state i.

hmmtrain(...,'Algorithm',algorithm) specifies the training
algorithm. algorithm can be either 'BaumWelch' or 'Viterbi'. The
default algorithm is 'BaumWelch'.

hmmtrain(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmtrain(...,'Tolerance',tol) specifies the tolerance used for
testing convergence of the iterative estimation process. The default
tolerance is 1e-4.

hmmtrain(...,'Maxiterations',maxiter) specifies the maximum
number of iterations for the estimation process. The default maximum
is 100.
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hmmtrain(...,'Verbose',true) returns the status of the algorithm at
each iteration.

hmmtrain(...,'Pseudoemissions',PSEUDOE) specifies pseudocount
emission values for the Viterbi training algorithm. Use this argument to
avoid zero probability estimates for emissions with very low probability
that might not be represented in the sample sequence. PSEUDOE should
be a matrix of size m-by-n, where m is the number of states in the
hidden Markov model and n is the number of possible emissions. If the

emission does not occur in seq, you can set PSEUDOE(i,k) to be
a positive number representing an estimate of the expected number of
such emissions in the sequence seq.

hmmtrain(...,'Pseudotransitions',PSEUDOTR) specifies
pseudocount transition values for the Viterbi training algorithm. Use
this argument to avoid zero probability estimates for transitions with
very low probability that might not be represented in the sample
sequence. PSEUDOTR should be a matrix of size m-by-m, where m is the
number of states in the hidden Markov model. If the transition
does not occur in states, you can set PSEUDOTR(i,j) to be a positive
number representing an estimate of the expected number of such
transitions in the sequence states.

See “Pseudotransitions and Pseudoemissions” on page 14-348 for more
information.

If you know the states corresponding to the sequences, use hmmestimate
to estimate the model parameters.

Tolerance

The input argument ’tolerance' controls how many steps the
hmmtrain algorithm executes before the function returns an answer.
The algorithm terminates when all of the following three quantities are
less than the value that you specify for tolerance:

• The log likelihood that the input sequence seq is generated by the
currently estimated values of the transition and emission matrices
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• The change in the norm of the transition matrix, normalized by the
size of the matrix

• The change in the norm of the emission matrix, normalized by the
size of the matrix

The default value of 'tolerance' is .0001. Increasing the tolerance
decreases the number of steps the hmmtrain algorithm executes before
it terminates.

maxiterations

The maximum number of iterations, 'maxiterations', controls the
maximum number of steps the algorithm executes before it terminates.
If the algorithm executes maxiter iterations before reaching the
specified tolerance, the algorithm terminates and the function returns a
warning. If this occurs, you can increase the value of 'maxiterations'
to make the algorithm reach the desired tolerance before terminating.

See “Using hmmtrain” on page 12-10 for an example of using hmmtrain.

Examples: trans = [0.95,0.05;
0.10,0.90];

emis = [1/6, 1/6, 1/6, 1/6, 1/6, 1/6;
1/10, 1/10, 1/10, 1/10, 1/10, 1/2];

seq1 = hmmgenerate(100,trans,emis);
seq2 = hmmgenerate(200,trans,emis);
seqs = {seq1,seq2};
[estTR,estE] = hmmtrain(seqs,trans,emis);

See Also hmmgenerate, hmmdecode, hmmestimate, hmmviterbi
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Purpose Most probable state path for hidden Markov model sequence

Syntax STATES = hmmvitervi(seq,TRANS,EMIS)
hmmviterbi(...,'Symbols',SYMBOLS)
hmmviterbi(...,'Statenames',STATENAMES)

Description STATES = hmmvitervi(seq,TRANS,EMIS) given a sequence, seq,
calculates the most likely path through the hidden Markov model
specified by transition probability matrix, TRANS, and emission
probability matrix EMIS. TRANS(i,j) is the probability of transition
from state i to state j. EMIS(i,k) is the probability that symbol k is
emitted from state i.

Note The function hmmviterbi begins with the model in state 1 at step
0, prior to the first emission. hmmviterbi computes the most likely path
based on the fact that the model begins in state 1. See “How the Toolbox
Generates Random Sequences” on page 12-7 for more information.

hmmviterbi(...,'Symbols',SYMBOLS) specifies the symbols that are
emitted. SYMBOLS can be a numeric array or a cell array of the names of
the symbols. The default symbols are integers 1 through N, where N is
the number of possible emissions.

hmmviterbi(...,'Statenames',STATENAMES) specifies the names of
the states. STATENAMES can be a numeric array or a cell array of the
names of the states. The default state names are 1 through M, where
M is the number of states.

See “Computing the Most Likely Sequence of States” on page 12-9 for
an example of using hmmviterbi.

Examples trans = [0.95,0.05;
0.10,0.90];

emis = [1/6 1/6 1/6 1/6 1/6 1/6;
1/10 1/10 1/10 1/10 1/10 1/2];
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[seq,states] = hmmgenerate(100,trans,emis);
estimatedStates = hmmviterbi(seq,trans,emis);
[seq,states] = ...

hmmgenerate(100,trans,emis,'Statenames',{'fair';'loaded'});
estimatesStates = ...

hmmviterbi(seq,trans,eemis,'Statenames',{'fair';'loaded'});

See Also hmmgenerate, hmmdecode, hmmestimate, hmmtrain
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Purpose Hougen-Watson model for reaction kinetics

Syntax yhat = hougen(beta,x)

Description yhat = hougen(beta,x) returns the predicted values of the reaction
rate, yhat, as a function of the vector of parameters, beta, and the
matrix of data, X. beta must have 5 elements and X must have three
columns.

hougen is a utility function for rsmdemo.

The model form is:

Reference [1] Bates, D., and D. Watts, Nonlinear Regression Analysis and Its
Applications. Wiley, 1988, pp. 271-272.

See Also rsmdemo
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Purpose Hypergeometric cumulative distribution function

Syntax hygecdf(X,M,K,N)

Description hygecdf(X,M,K,N) computes the hypergeometric cdf at each of the
values in X using the corresponding parameters in M, K, and N. Vector or
matrix inputs for X, M, K, and N must all have the same size. A scalar
input is expanded to a constant matrix with the same dimensions as
the other inputs.

The hypergeometric cdf is

The result, p, is the probability of drawing up to x of a possible K items
in N drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them
are defective. What is the probability of drawing zero to two defective
floppies if you select 10 at random?

p = hygecdf(2,100,20,10)
p =

0.6812

See Also hygepdf, hygeinv
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Purpose Inverse of hypergeometric cumulative distribution function

Syntax hygeinv(P,M,K,N)

Description hygeinv(P,M,K,N) returns the smallest integer X such that the
hypergeometric cdf evaluated at X equals or exceeds P. You can think of
P as the probability of observing X defective items in N drawings without
replacement from a group of M items where K are defective.

Examples Suppose you are the Quality Assurance manager for a floppy disk
manufacturer. The production line turns out floppy disks in batches of
1,000. You want to sample 50 disks from each batch to see if they have
defects. You want to accept 99% of the batches if there are no more
than 10 defective disks in the batch. What is the maximum number of
defective disks should you allow in your sample of 50?

x = hygeinv(0.99,1000,10,50)
x =

3

What is the median number of defective floppy disks in samples of 50
disks from batches with 10 defective disks?

x = hygeinv(0.50,1000,10,50)
x =

0

See Also hygecdf
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Purpose Hypergeometric probability density function

Syntax Y = hygepdf(X,M,K,N)

Description Y = hygepdf(X,M,K,N) computes the hypergeometric pdf at each of the
values in X using the corresponding parameters in M, K, and N. X, M, K,
and N can be vectors, matrices, or multidimensional arrays that all have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other inputs.

The parameters in M, K, and N must all be positive integers, with N ≤ M.
The values in X must be less than or equal to all the parameter values.

The hypergeometric pdf is

The result, y, is the probability of drawing exactly x of a possible K
items in n drawings without replacement from a group of M objects.

Examples Suppose you have a lot of 100 floppy disks and you know that 20 of them
are defective. What is the probability of drawing 0 through 5 defective
floppy disks if you select 10 at random?

p = hygepdf(0:5,100,20,10)
p =

0.0951 0.2679 0.3182 0.2092 0.0841 0.0215

See Also hygecdf, hygernd
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Purpose Random numbers from hypergeometric distribution

Syntax R = hygernd(M,K,N)
R = hygernd(M,K,N,v)
R = hygernd(M,K,N,m,n)

Description R = hygernd(M,K,N) generates random numbers from the
hypergeometric distribution with parameters M, K, and N. M, K, and N can
be vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of R. A scalar input for M, K, or N is expanded
to a constant array with the same dimensions as the other inputs.

R = hygernd(M,K,N,v) generates random numbers from the
hypergeometric distribution with parameters M, K, and N, where v is a
row vector. If v is a 1-by-2 vector, R is a matrix with v(1) rows and v(2)
columns. If v is 1-by-n, R is an n-dimensional array.

R = hygernd(M,K,N,m,n) generates random numbers from the
hypergeometric distribution with parameters M, K, and N, where scalars
m and n are the row and column dimensions of R.

Example numbers = hygernd(1000,40,50)
numbers =

1

See Also hygepdf
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Purpose Mean and variance of hypergeometric distribution

Syntax [MN,V] = hygestat(M,K,N)

Description [MN,V] = hygestat(M,K,N) returns the mean of and variance for the
hypergeometric distribution with parameters specified by M, K, and N.
Vector or matrix inputs for M, K, and N must have the same size, which is
also the size of MN and V. A scalar input for M, K, or N is expanded to a
constant matrix with the same dimensions as the other inputs.

The mean of the hypergeometric distribution with parameters M, K,
and N is NK/M, and the variance is

Examples The hypergeometric distribution approaches the binomial distribution,
where p = K / M as M goes to infinity.

[m,v] = hygestat(10.^(1:4),10.^(0:3),9)
m =

0.9000 0.9000 0.9000 0.9000
v =

0.0900 0.7445 0.8035 0.8094

[m,v] = binostat(9,0.1)
m =

0.9000
v =

0.8100

See Also hygepdf
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Purpose Inverse cumulative distribution function for specified distribution

Syntax Y = icdf(name,X,A)
Y = icdf(name,X,A,B)
Y = icdf(name,X,A,B,C)

Description Y = icdf(name,X,A) computes the inverse cumulative distribution
function for the one-parameter family of distributions specified by
name. Parameter values for the distribution are given in A. The inverse
cumulative distribution function is evaluated at the values in X and its
values are returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = icdf(name,X,A,B) computes the inverse cumulative distribution
function for two-parameter families of distributions, where parameter
values are given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = icdf(name,X,A,B,C) computes the inverse cumulative distribution
function for three-parameter families of distributions, where parameter
values are given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples x = icdf('Normal',0.1:0.2:0.9,0,1)
x =
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-1.2816 -0.5244 0 0.5244 1.2816

x = icdf('Poisson',0.1:0.2:0.9,1:5)
x =

0 1 3 5 8

See Also cdf, mle, pdf, random
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Purpose Inverse cumulative distribution function for piecewise distribution

Syntax X = icdf(obj,P)

Description X = icdf(obj,P) returns an array X of values of the inverse cumulative
distribution function for the piecewise distribution object obj, evaluated
at the values in the array P.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

icdf(obj,p)
ans =

-1.7766
1.8432

See Also paretotails, cdf (piecewisedistribution)
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Purpose Inconsistency coefficient of cluster tree

Syntax Y = inconsistent(Z)
Y = inconsistent(Z,d)

Description Y = inconsistent(Z) computes the inconsistency coefficient for each
link of the hierarchical cluster tree Z, where Z is an (m-1)-by-3 matrix
generated by the linkage function. The inconsistency coefficient
characterizes each link in a cluster tree by comparing its length with
the average length of other links at the same level of the hierarchy.
The higher the value of this coefficient, the less similar the objects
connected by the link.

Y = inconsistent(Z,d) computes the inconsistency coefficient for
each link in the hierarchical cluster tree Z to depth d, where d is an
integer denoting the number of levels of the cluster tree that are
included in the calculation. By default, d=2.

The output, Y, is an (m-1)-by-4 matrix formatted as follows.

Column Description

1 Mean of the lengths of all the links included in the
calculation.

2 Standard deviation of all the links included in the
calculation.

3 Number of links included in the calculation.

4 Inconsistency coefficient.

For each link, k, the inconsistency coefficient is calculated as:

For leaf nodes, nodes that have no further nodes under them, the
inconsistency coefficient is set to 0.
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Example rand('state',12);
X = rand(10,2);
Y = pdist(X);
Z = linkage(Y,'centroid');
W = inconsistent(Z,3)
W =

0.1313 0 1.0000 0
0.1386 0 1.0000 0
0.1727 0.0482 2.0000 0.7071
0.2391 0 1.0000 0
0.2242 0.0955 3.0000 1.0788
0.2357 0.1027 3.0000 0.9831
0.3222 0.1131 3.0000 0.9772
0.3376 0.1485 6.0000 1.4883
0.4920 0.1341 4.0000 1.1031

References [1] Jain, A., and R. Dubes, Algorithms for Clustering Data,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[2] Zahn, C.T., "Graph-theoretical methods for detecting and describing
Gestalt clusters," IEEE Transactions on Computers, C 20, pp. 68-86,
1971.

See Also cluster, cophenet, clusterdata, dendrogram, linkage, pdist,
squareform
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Purpose Interaction plot for grouped data

Syntax interactionplot(Y,GROUP)
interactionplot(Y,GROUP,'varnames',VARNAMES)
[h,AX,bigax] = interactionplot(...)

Description interactionplot(Y,GROUP) displays the two-factor interaction plot for
the group means of matrix Y with groups defined by entries in the cell
array GROUP. Y is a numeric matrix or vector. If Y is a matrix, the rows
represent different observations and the columns represent replications
of each observation. If Y is a vector, the rows give the means of each
entry in the cell array GROUP. Each cell of GROUP must contain a grouping
variable that can be a categorical variable, numeric vector, character
matrix, or a single-column cell array of strings. (See “Grouped Data”
on page 2-41.) GROUP can also be a matrix whose columns represent
different grouping variables. Each grouping variable must have the
same number of rows as Y. The number of grouping variables must be
greater than 1.

The interaction plot is a matrix plot, with the number of rows and
columns both equal to the number of grouping variables. The grouping
variable names are printed on the diagonal of the plot matrix. The
plot at off-diagonal position (i,j) is the interaction of the two variables
whose names are given at row diagonal (i,i) and column diagonal (j,j),
respectively.

interactionplot(Y,GROUP,'varnames',VARNAMES) displays the
interaction plot with user-specified grouping variable names VARNAMES.
VARNAMES is a character matrix or a cell array of strings, one per
grouping variable. Default names are 'X1', 'X2', ... .

[h,AX,bigax] = interactionplot(...) returns a handle h to the
figure window, a matrix AX of handles to the subplot axes, and a handle
bigax to the big (invisible) axes framing the subplots.

Example Display interaction plots for data with four 3-level factors named 'A',
'B','C', and 'D':
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y = randn(1000,1); % response
group = ceil(3*rand(1000,4)); % four 3-level factors
interactionplot(y,group,'varnames',{'A','B','C','D'})

See Also maineffectsplot, multivarichart
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Purpose Inverse prediction for simple linear regression

Syntax X0 = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0)
[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)

Description X0 = invpred(X,Y,Y0) accepts vectors X and Y of the same length, fits
a simple regression, and returns the estimated value X0 for which the
height of the line is equal to Y0. The output, X0, has the same size as Y0,
and Y0 can be an array of any size.

[X0,DXLO,DXUP] = invpred(X,Y,Y0) also computes 95% inverse
prediction intervals. DXLO and DXUP define intervals with lower bound
X0 DXLO and upper bound X0+DXUP. Both DXLO and DXUP have the same
size as Y0.

The intervals are not simultaneous and are not necessarily finite. Some
intervals may extend from a finite value to -Inf or +Inf, and some may
extend over the entire real line.

[X0,DXLO,DXUP] = invpred(X,Y,Y0,name1,val1,name2,val2,...)
specifies optional argument name/value pairs chosen from the following
list. Argument names are case insensitive and partial matches are
allowed.

Name Value

'alpha' A value between 0 and 1 specifying a
confidence level of 100*(1-alpha)%. Default
is alpha=0.05 for 95% confidence.

'predopt' Either 'observation', the default value to
compute the intervals for X0 at which a new
observation could equal Y0, or 'curve' to
compute intervals for the X0 value at which
the curve is equal to Y0.
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Example x = 4*rand(25,1);
y = 10 + 5*x + randn(size(x));
scatter(x,y)
x0 = invpred(x,y,20)

See Also polyfit, polytool, polyconf
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Purpose Interquartile range of sample

Syntax y = iqr(X)
iqr(X,dim)

Description y = iqr(X) returns the interquartile range of the values in X. For vector
input, y is the difference between the 75th and the 25th percentiles
of the sample in X. For matrix input, y is a row vector containing the
interquartile range of each column of X. For N-dimensional arrays, iqr
operates along the first nonsingleton dimension of X.

iqr(X,dim) calculates the interquartile range along the dimension
dim of X.

Remarks The IQR is a robust estimate of the spread of the data, since changes in
the upper and lower 25% of the data do not affect it. If there are outliers
in the data, then the IQR is more representative than the standard
deviation as an estimate of the spread of the body of the data. The IQR
is less efficient than the standard deviation as an estimate of the spread
when the data is all from the normal distribution.

Multiply the IQR by 0.7413 to estimate σ (the second parameter of the
normal distribution.)

Examples This Monte Carlo simulation shows the relative efficiency of the IQR to
the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_IQR = 0.7413*iqr(x);
efficiency = (norm(s-1)./norm(s_IQR-1)).^2
efficiency =

0.3297

See Also std, mad, range
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Purpose Test tree node for branch

Syntax ib = isbranch(t)
ib = isbranch(t,nodes)

Description ib = isbranch(t) returns an n-element logical vector ib that is true
for each branch node and false for each leaf node.

ib = isbranch(t,nodes) takes a vector nodes of node numbers and
returns a vector of logical values for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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ib = isbranch(t)
ib =

1
0
1
1
0
1
0
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0
0

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, cutvar
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Purpose Test for categorical array levels

Syntax I = islevel(levels,A)

Description I = islevel(levels,A) returns a logical array I the same size as
the string, cell array of strings, or two-dimensional character matrix
levels. I is true (1) where the corresponding element of levels is the
label of a level in the categorical array A, even if the level contains no
elements. I is false (0) otherwise.

Example Display age levels in the data in hospitl.mat, before and after dropping
occupied levels:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
disp(labels')
'0s' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'

AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
1 1 1 1 1 1 1 1 1 1

AgeGroup = droplevels(AgeGroup);
I = islevel(labels,AgeGroup);
disp(I')
0 0 1 1 1 1 0 0 0 0

See Also ismember, isundefined
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Purpose Test for categorical array membership

Syntax I = ismember(A,levels)
[I,IDX] = ismember(A,levels)

Description I = ismember(A,levels) returns a logical array I the same size as the
categorical array A. I is true (1) where the corresponding element of
A is one of the levels specified by the labels in the categorical array,
cell array of strings, or two-dimensional character array levels. I is
false (0) otherwise.

[I,IDX] = ismember(A,levels) also returns an array of indices IDX
containing the highest absolute index in levels for each element in A
whose level is a member of levels, and 0 if there is no such index.

Examples Example 1

For nominal data:

load hospital
sex = hospital.Sex; % Nominal
smokers = hospital.Smoker; % Logical
I = ismember(sex(smokers),'Female');
I(1:5)
ans =

0
1
0
0
0

The use of ismember above is equivalent to:

I = (sex(smokers) == 'Female');

Example 2

For ordinal data:

load hospital
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edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = ismember(AgeGroup(1:5),{'20s','30s'})
I =

1
0
1
0
0

See Also islevel, isundefined
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Purpose Test for undefined elements of categorical array

Syntax I = isundefined(A)

Description I = isundefined(A) returns a logical array I the same size as the
categorical array A. I is true (1) where the corresponding element of
A is not assigned to any level. I is false (0) where the corresponding
element of A is assigned to a level.

Example Create and display undefined levels in an ordinal array:

A = ordinal([1 2 3 2 1],{'lo','med','hi'})
A =

lo med hi med lo

A = droplevels(A,{'med','hi'})
Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to
have undefined levels.
A =

lo <undefined> <undefined> <undefined> lo

I = isundefined(A)
I =

0 1 1 1 0

See Also islevel, ismember
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Purpose Random numbers from inverse Wishart distribution

Syntax W = iwishrnd(sigma,df)
W = iwishrnd(sigma,df,DI)
[W,DI] = iwishrnd(sigma,df)

Description W = iwishrnd(sigma,df) generates a random matrix W from the
inverse Wishart distribution with parameters sigma and df. The
inverse of W has the Wishart distribution with covariance matrix
inv(sigma) and with df degrees of freedom. sigma can be a vector, a
matrix, or a multidimensional array.

W = iwishrnd(sigma,df,DI) expects DI to be the Cholesky factor of
the inverse of sigma. DI is an array of the same size as sigma. If you
call iwishrnd multiple times using the same value of sigma, it is more
efficient to supply DI instead of computing it each time.

[W,DI] = iwishrnd(sigma,df) returns DI so you can use it as input in
future calls to iwishrnd.

Note that different sources use different parameterizations for the
inverse Wishart distribution. This function defines the parameter
sigma so that the mean of the output matrix is sigma/(df–k–1), where k
is the number of rows and columns in sigma.

See Also wishrnd
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Purpose Jackknife statistics

Syntax jackstat = jackknife(jackfun,...)

Description jackstat = jackknife(jackfun,...) draws jackknife data samples,
computes statistics on each sample using the function jackfun, and
returns the results in the matrix jackstat. jackfun is a function
handle specified with @. Each row of jackstat contains the results of
applying jackfun to one jackknife sample. If jackfun returns a matrix
or array, this output is converted to a row vector for storage in jackstat.

The third and later input arguments to jackknife are scalars,
column vectors, or matrices that are used to create inputs to jackfun.
jackknife creates each jackknife sample by sampling with replacement
from the rows of the nonscalar data arguments (these must have the
same number of rows). Scalar data are passed to jackfun unchanged.

Example Estimate the bias of the MLE variance estimator of random samples
taken from the vector y using jackknife. The bias has a known
formula in this problem, so you can compare the jackknife value to
this formula.

y = exprnd(5,100,1);
m = jackknife(@var,y,1);
n = length(y);

bias = var(y,1)-var(y,0) % Bias formula
bias =

-0.2069

jbias = (n-1)*(mean(m)-var(y,1)) % Jackknife estimate
jbias =

-0.2069

See Also bootstrp, random, randsample, hist, ksdensity
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Purpose Jarque-Bera test

Syntax h = jbtest(x)
h = jbtest(x,alpha)
[h,p] = jbtest(...)
[h,p,jbstat] = jbtest(...)
[h,p,jbstat,critval] = jbtest(...)
[h,p,...] = jbtest(x,alpha,mctol)

Description h = jbtest(x) performs a Jarque-Bera test of the null hypothesis that
the sample in vector x comes from a normal distribution with unknown
mean and variance, against the alternative that it does not come from a
normal distribution. The test is specifically designed for alternatives in
the Pearson system of distributions. The test returns the logical value
h = 1 if it rejects the null hypothesis at the 5% significance level, and
h = 0 if it cannot. The test treats NaN values in x as missing values,
and ignores them.

The Jarque-Bera test is a two-sided goodness-of-fit test suitable when a
fully-specified null distribution is unknown and its parameters must
be estimated. The test statistic is

JB
n

s
k= + −

6
3

4
2

2
(

( )
)

where n is the sample size, s is the sample skewness, and k is the sample
kurtosis. For large sample sizes, the test statistic has a chi-square
distribution with two degrees of freedom.

Jarque-Bera tests often use the chi-square distribution to estimate
critical values for large samples, deferring to the Lilliefors test (see
lillietest) for small samples. jbtest, by contrast, uses a table of
critical values computed using Monte-Carlo simulation for sample sizes
less than 2000 and significance levels between 0.001 and 0.50. Critical
values for a test are computed by interpolating into the table, using the
analytic chi-square approximation only when extrapolating for larger
sample sizes.
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h = jbtest(x,alpha) performs the test at significance level alpha.
alpha is a scalar in the range [0.001, 0.50]. To perform the test at a
significance level outside of this range, use the mctol input argument.

[h,p] = jbtest(...) returns the p-value p, computed using inverse
interpolation into the table of critical values. Small values of p cast
doubt on the validity of the null hypothesis. jbtest warns when p is not
found within the tabulated range of [0.001, 0.50], and returns either the
smallest or largest tabulated value. In this case, you can use the mctol
input argument to compute a more accurate p-value.

[h,p,jbstat] = jbtest(...) returns the test statistic jbstat.

[h,p,jbstat,critval] = jbtest(...) returns the critical value
critval for the test. When jbstat > critval, the null hypothesis is
rejected at significance level alpha.

[h,p,...] = jbtest(x,alpha,mctol) computes a Monte-Carlo
approximation for p directly, rather than interpolating into the table
of pre-computed values. This is useful when alpha or p lie outside
the range of the table. jbtest chooses the number of Monte Carlo
replications, mcreps, large enough to make the Monte Carlo standard
error for p, sqrt(p*(1-p)/mcreps), less than mctol.

Example Use jbtest to determine if car mileage, in miles per gallon (MPG),
follows a normal distribution across different makes of cars:

load carbig
[h,p] = jbtest(MPG)
h =

1
p =

0.0022

The p-value is below the default significance level of 5%, and the test
rejects the null hypothesis that the distribution is normal.

With a log transformation, the distribution becomes closer to normal,
but the p-value is still well below 5%:
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[h,p] = jbtest(log(MPG))
h =

1
p =

0.0078

Decreasing the significance level makes it harder to reject the null
hypothesis:

[h,p] = jbtest(log(MPG),0.0075)
h =

0
p =

0.0078

References [1] Jarque, C.M., and A.K. Bera, A test for normality of observations
and regression residuals, International Statistical Review, Vol. 55, No.
2, 1987, pp. 1-10. This paper proposed the original test.

[2] Deb, P., and M. Sefton, The distribution of a Lagrange multiplier
test of normality, Economics Letters, Vol. 51, 1996, pp. 123-130.
This paper proposed a Monte Carlo simulation for determining the
distribution of the test statistic. The results of this function are based
on an independent Monte Carlo simulation, not the results in this paper.
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Purpose Random numbers from Johnson system of distributions

Syntax r = johnsrnd(quantiles,m,n)
r = johnsrnd(quantiles)
[r,type] = johnsrnd(...)
[r,type,coefs] = johnsrnd(...)

Description r = johnsrnd(quantiles,m,n) returns an m-by-n matrix of random
numbers drawn from the distribution in the Johnson system that
satisfies the quantile specification given by quantiles. quantiles is
a four-element vector of quantiles for the desired distribution that
correspond to the standard normal quantiles [-1.5 -0.5 0.5 1.5]. In other
words, you specify a distribution from which to draw random values by
designating quantiles that correspond to the cumulative probabilities
[0.067 0.309 0.691 0.933]. quantiles may also be a 2-by-4 matrix whose
first row contains four standard normal quantiles, and whose second
row contains the corresponding quantiles of the desired distribution.
The standard normal quantiles must be spaced evenly.

Note Because r is a random sample, its sample quantiles typically
differ somewhat from the specified distribution quantiles.

r = johnsrnd(quantiles) returns a scalar value.

r = johnsrnd(quantiles,m,n,...) or r =
johnsrnd(quantiles,[m,n,...]) returns an m-by-n-by-... array.

[r,type] = johnsrnd(...) returns the type of the specified
distribution within the Johnson system. type is 'SN', 'SL', 'SB',
or 'SU'. Set m and n to zero to identify the distribution type without
generating any random values.

The four distribution types in the Johnson system correspond to the
following transformations of a normal random variate:
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'SN' Identity transformation (normal distribution)

'SL' Exponential transformation (lognormal
distribution)

'SB' Logistic transformation (bounded)

'SU' Hyperbolic sine transformation (unbounded)

[r,type,coefs] = johnsrnd(...) returns coefficients of the
transformation that defines the distribution. coefs is [gamma,
eta, epsilon, lambda]. If z is a standard normal random
variable and h is one of the transformations defined above, r =
lambda*h((z-gamma)/eta)+epsilon is a random variate from the
distribution type corresponding to h.

Example Generate random values with longer tails than a standard normal.

r = johnsrnd([-1.7 -.5 .5 1.7],1000,1);
qqplot(r);

Generate random values skewed to the right.
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r = johnsrnd([-1.3 -.5 .5 1.7],1000,1);
qqplot(r);

Generate random values that match some sample data well in the
right-hand tail.

load carbig;
qnorm = [.5 1 1.5 2];
q = quantile(Acceleration, normcdf(qnorm));
r = johnsrnd([qnorm;q],1000,1);
[q;quantile(r,normcdf(qnorm))]
ans =

16.7000 18.2086 19.5376 21.7263
16.8190 18.2474 19.4492 22.4156

Determine the distribution type and the coefficients.

[r,type,coefs] = johnsrnd([qnorm;q],0)
r =

[]
type =
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SU
coefs =

1.0920 0.5829 18.4382 1.4494

See Also random, pearsrnd
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Purpose Merge observations from two dataset arrays

Syntax C = join(A,B)
C = join(A,B,key)
C = join(A,B,param1,val1,param2,val2,...)
[C,idx] = join(...)

Description C = join(A,B) creates a dataset array C by merging observations from
the two dataset arrays A and B. join performs the merge by first finding
key variables, that is, a pair of dataset variables, one in A and one in
B, that share the same name. The key from B must contain unique
values, and must contain all the values that are present in the key
from A. join then uses these key variables to define a many-to-one
correspondence between observations in A and those in B. join uses this
correspondence to replicate the observations in B and combine them
with the observations in A to create C.

C contains one observation for each observation in A. Variables in C
include all of the variables from A, as well as one variable corresponding
to each variable in B (except for the key from B).

C = join(A,B,key) performs the merge using the variable specified
by key as the key variable in both A and B. key is a positive integer, a
variable name, a cell array containing a variable name, or a logical
vector with one true entry.

C = join(A,B,param1,val1,param2,val2,...) specifies optional
parameter name/value pairs to control how the dataset variables in A
and B are used in the merge. Parameters are:

• 'Key' — Specifies the variable to use as a key in both A and B.

• 'LeftKey' — Specifies the variable to use as a key in A.

• 'RightKey' — Specifies the variable to use as a key in B.

You may provide either the 'Key' parameter, or both the 'LeftKey' and
'RightKey' parameters. The value for these parameters is a positive
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integer, a variable name, a cell array containing a variable name, or a
logical vector with one true entry.

• 'LeftVars' — Specifies the variables from A to include in C. By
default, join includes all variables from A.

• 'RightVars' — Specifies the variables from B to include in C. By
default, join includes all variables from B except the key variable.

The value for these parameters is a positive integer, a vector of positive
integers, a variable name, a cell array containing one or more variable
names, or a logical vector.

[C,idx] = join(...) returns an index vector idx, where the
observations in C are constructed by horizontally concatenating
A(:,leftvars) and B(idx,rightvars).

Example Create a dataset array from Fisher’s iris data:

load fisheriris
NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

Create a separate dataset array with the diploid chromosome counts for
each species of iris:

snames = nominal({'setosa';'versicolor';'virginica'});
CC = dataset({snames,'species'},{[38;108;70],'cc'})
CC =

species cc
setosa 38
versicolor 108
virginica 70
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Broadcast the data in CC to the rows of iris using the key variable
species in each dataset:

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)
ans =

species SL SW PL PW cc
Obs1 setosa 5.1 3.5 1.4 0.2 38
Obs2 setosa 4.9 3 1.4 0.2 38
Obs51 versicolor 7 3.2 4.7 1.4 108
Obs52 versicolor 6.4 3.2 4.5 1.5 108
Obs101 virginica 6.3 3.3 6 2.5 70
Obs102 virginica 5.8 2.7 5.1 1.9 70

See Also sortrows (dataset)
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Purpose K-means clustering

Syntax IDX = kmeans(X,k)
[IDX,C] = kmeans(X,k)
[IDX,C,sumd] = kmeans(X,k)
[IDX,C,sumd,D] = kmeans(X,k)
[...] = kmeans(...,param1,val1,param2,val2,...)

Description IDX = kmeans(X,k) partitions the points in the n-by-p data matrix X
into k clusters. This iterative partitioning minimizes the sum, over
all clusters, of the within-cluster sums of point-to-cluster-centroid
distances. Rows of X correspond to points, columns correspond to
variables. kmeans returns an n-by-1 vector IDX containing the cluster
indices of each point. By default, kmeans uses squared Euclidean
distances.

[IDX,C] = kmeans(X,k) returns the k cluster centroid locations in
the k-by-p matrix C.

[IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of
point-to-centroid distances in the 1-by-k vector sumd.

[IDX,C,sumd,D] = kmeans(X,k) returns distances from each point to
every centroid in the n-by-k matrix D.

[...] = kmeans(...,param1,val1,param2,val2,...) enables
you to specify optional parameter/value pairs to control the iterative
algorithm used by kmeans. Valid parameter strings are the following.

Parameter Value

'distance' Distance measure, in p-dimensional space. kmeans
minimizes with respect to this parameter. kmeans
computes centroid clusters differently for the
different supported distance measures:

'sqEuclidean' Squared Euclidean distance
(default). Each centroid is the
mean of the points in that cluster.
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Parameter Value

’cityblock' Sum of absolute differences, i.e.,
the L1 distance. Each centroid
is the component-wise median of
the points in that cluster.

'cosine' One minus the cosine of the
included angle between points
(treated as vectors). Each
centroid is the mean of the points
in that cluster, after normalizing
those points to unit Euclidean
length.

'correlation' One minus the sample correlation
between points (treated as
sequences of values). Each
centroid is the component-wise
mean of the points in that cluster,
after centering and normalizing
those points to zero mean and
unit standard deviation.

'Hamming' Percentage of bits that differ (only
suitable for binary data). Each
centroid is the component-wise
median of points in that cluster.
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Parameter Value

Method used to choose the initial cluster centroid
positions, sometimes known as seeds. Valid starting
values are:

'sample' Select k observations from X at
random (default).

'uniform' Select k points uniformly at
random from the range of X. Not
valid with Hamming distance.

'cluster' Perform a preliminary clustering
phase on a random 10%
subsample of X. This preliminary
phase is itself initialized using
’sample’.

'start'

Matrix k-by-p matrix of centroid starting
locations. In this case, you can
pass in [] for k, and kmeans
infers k from the first dimension
of the matrix. You can also supply
a 3-dimensional array, implying
a value for the 'replicates'
parameter from the array’s third
dimension.

'replicates' Number of times to repeat the clustering, each
with a new set of initial cluster centroid positions.
kmeans returns the solution with the lowest value
for sumd. You can supply 'replicates' implicitly
by supplying a 3-dimensional array as the value for
the 'start' parameter.

'maxiter' Maximum number of iterations. Default is 100.
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Parameter Value

Action to take if a cluster loses all its member
observations. Can be one of:

'error' Treat an empty cluster as an
error. (default)

'drop' Remove any clusters that
become empty. kmeans sets the
corresponding return values in C
and D to NaN.

'emptyaction'

'singleton' Create a new cluster consisting
of the one point furthest from its
centroid.

Controls display of output.

'off' Display no output.

'iter' Display information about each
iteration during minimization,
including the iteration number,
the optimization phase (see
“Algorithm” on page 14-395), the
number of points moved, and the
total sum of distances.

'final' Display a summary of each
replication.

'display'

'notify' Display only warning and error
messages. (default)

Algorithm kmeans uses a two-phase iterative algorithm to minimize the sum of
point-to-centroid distances, summed over all k clusters:
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• The first phase uses what the literature often describes as batch
updates, where each iteration consists of reassigning points to their
nearest cluster centroid, all at once, followed by recalculation of
cluster centroids. You can think of this phase as providing a fast
but potentially only approximate solution as a starting point for the
second phase.

• The second phase uses what the literature often describes as online
updates, where points are individually reassigned if doing so will
reduce the sum of distances, and cluster centroids are recomputed
after each reassignment. Each iteration during this second phase
consists of one pass though all the points.

kmeans can converge to a local optimum, in this case, a partition
of points in which moving any single point to a different cluster
increases the total sum of distances. This problem can only be solved
by a clever (or lucky, or exhaustive) choice of starting points.

See Also clusterdata, linkage, silhouette

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

[2] Spath, H., Cluster Dissection and Analysis: Theory, FORTRAN
Programs, Examples, translated by J. Goldschmidt, Halsted Press,
1985, 226 pp.
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Purpose Kruskal-Wallis nonparametric one-way analysis of variance

Syntax p = kruskalwallis(X)
p = kruskalwallis(X,group)
p = kruskalwallis(X,group,displayopt)
[p,table] = kruskalwallis(...)
[p,table,stats] = kruskalwallis(...)

Description p = kruskalwallis(X) performs a Kruskal-Wallis test to compare
samples from two or more groups. Each column of the m-by-n matrix X
represents an independent sample containing m mutually independent
observations. The function compares the medians of the samples in
X, and returns the p-value for the null hypothesis that all samples
are drawn from the same population (or equivalently, from different
populations with the same distribution). Note that the Kruskal-Wallis
test is a nonparametric version of the classical one-way ANOVA, and an
extension of the Wilcoxon rank sum test to more than two groups.

If the p-value is near zero, this casts doubt on the null hypothesis and
suggests that at least one sample median is significantly different
from the others. The choice of a critical p-value to determine whether
the result is judged statistically significant is left to the researcher.
It is common to declare a result significant if the p-value is less than
0.05 or 0.01.

The kruskalwallis function displays two figures. The first figure is a
standard ANOVA table, calculated using the ranks of the data rather
than their numeric values. Ranks are found by ordering the data from
smallest to largest across all groups, and taking the numeric index of
this ordering. The rank for a tied observation is equal to the average
rank of all observations tied with it. For example, the following table
shows the ranks for a small sample.

X value 1.4 2.7 1.6 1.6 3.3 0.9 1.1

Rank 3 6 4.5 4.5 7 1 2
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The entries in the ANOVA table are the usual sums of squares, degrees
of freedom, and other quantities calculated on the ranks. The usual F
statistic is replaced by a chi-square statistic. The p-value measures the
significance of the chi-square statistic.

The second figure displays box plots of each column of X (not the ranks
of X).

p = kruskalwallis(X,group) uses the values in group (a character
array or cell array) as labels for the box plot of the samples in X, when
X is a matrix. Each row of group contains the label for the data in the
corresponding column of X, so group must have length equal to the
number of columns in X. (See “Grouped Data” on page 2-41.)

When X is a vector, kruskalwallis performs a Kruskal-Wallis test on
the samples contained in X, as indexed by input group (a categorical
variable, vector, character array, or cell array). Each element in group
identifies the group (i.e., sample) to which the corresponding element in
vector X belongs, so group must have the same length as X. The labels
contained in group are also used to annotate the box plot.

It is not necessary to label samples sequentially (1, 2, 3, ...). For example,
if X contains measurements taken at three different temperatures, -27°,
65°, and 110°, you could use these numbers as the sample labels in
group. If a row of group contains an empty cell or empty string, that
row and the corresponding observation in X are disregarded. NaNs in
either input are similarly ignored.

p = kruskalwallis(X,group,displayopt) enables the table and box
plot displays when displayopt is 'on' (default) and suppresses the
displays when displayopt is 'off'.

[p,table] = kruskalwallis(...) returns the ANOVA table
(including column and row labels) in cell array table.

[p,table,stats] = kruskalwallis(...) returns a stats structure
that you can use to perform a follow-up multiple comparison test. The
kruskalwallis test evaluates the hypothesis that all samples come
from populations that have the same median, against the alternative
that the medians are not all the same. Sometimes it is preferable to
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perform a test to determine which pairs are significantly different, and
which are not. You can use the multcompare function to perform such
tests by supplying the stats structure as input.

Assumptions

The Kruskal-Wallis test makes the following assumptions about the
data in X:

• All samples come from populations having the same continuous
distribution, apart from possibly different locations due to group
effects.

• All observations are mutually independent.

The classical one-way ANOVA test replaces the first assumption with
the stronger assumption that the populations have normal distributions.

Example This example compares the material strength study used with the
anova1 function, to see if the nonparametric Kruskal-Wallis procedure
leads to the same conclusion. The example studies the strength of
beams made from three alloys:

strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

This example uses both classical and Kruskal-Wallis ANOVA, omitting
displays:

anova1(strength,alloy,'off')
ans =
1.5264e-004

kruskalwallis(strength,alloy,'off')
ans =
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0.0018

Both tests find that the three alloys are significantly different, though
the result is less significant according to the Kruskal-Wallis test. It
is typical that when a data set has a reasonable fit to the normal
distribution, the classical ANOVA test is more sensitive to differences
between groups.

To understand when a nonparametric test may be more appropriate,
let’s see how the tests behave when the distribution is not normal. You
can simulate this by replacing one of the values by an extreme value
(an outlier).

strength(20)=120;
anova1(strength,alloy,'off')
ans =

0.2501

kruskalwallis(strength,alloy,'off')
ans =

0.0060

Now the classical ANOVA test does not find a significant difference, but
the nonparametric procedure does. This illustrates one of the properties
of nonparametric procedures - they are often not severely affected by
changes in a small portion of the data.

Reference [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition,
M. Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods,
Wiley, 1973.

See Also anova1, boxplot, friedman, multcompare, ranksum
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Purpose Compute density estimate using kernel-smoothing method

Syntax [f,xi] = ksdensity(x)
f = ksdensity(x,xi)
ksdensity(...)
ksdensity(ax,...)
[f,xi,u] = ksdensity(...)
[...] = ksdensity(...,param1,val1,param2,val2,...)

Description [f,xi] = ksdensity(x) computes a probability density estimate of
the sample in the vector x. f is the vector of density values evaluated
at the points in xi. The estimate is based on a normal kernel function,
using a window parameter ('width') that is a function of the number of
points in x. The density is evaluated at 100 equally spaced points that
cover the range of the data in x.

f = ksdensity(x,xi) specifies the vector xi of values, where the
density estimate is to be evaluated.

ksdensity(...) without output arguments produces a plot of the
results.

ksdensity(ax,...) plots into axes ax instead of gca.

[f,xi,u] = ksdensity(...) also returns the width of the
kernel-smoothing window.

[...] = ksdensity(...,param1,val1,param2,val2,...) specifies
parameter/value pairs to control the density estimation. Valid
parameter strings and their possible values are as follows:
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'censoring' A logical vector of the same length as x, indicating
which entries are censoring times. Default is no
censoring.

'kernel' The type of kernel smoother to use. Choose the
value as 'normal' (default), 'box', 'triangle', or
'epanechnikov'.

Alternatively, you can specify some other function,
as a function handle or as a string, e.g., @normpdf
or 'normpdf'. The function must take a single
argument that is an array of distances between data
values and places where the density is evaluated. It
must return an array of the same size containing
corresponding values of the kernel function.

'npoints' The number of equally spaced points in xi. Default
is 100.

'support' • 'unbounded' allows the density to extend over the
whole real line (default).

• 'positive' restricts the density to positive
values.

• A two-element vector gives finite lower and upper
bounds for the support of the density.

'weights' Vector of the same length as x, assigning weight to
each x value.

'width' The bandwidth of the kernel-smoothing window. The
default is optimal for estimating normal densities,
but you may want to choose a smaller value to reveal
features such as multiple modes.
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'width' The bandwidth of the kernel-smoothing window. The
default is optimal for estimating normal densities,
but you may want to choose a smaller value to reveal
features such as multiple modes.

'function' The function type to estimate, chosen from among
'pdf', 'cdf', 'icdf', 'survivor', or 'cumhazard'
for the density, cumulative probability, inverse
cumulative probability, survivor, or cumulative
hazard functions, respectively.

In place of the kernel functions listed above, you can specify another
kernel function by using @ (such as @normpdf) or quotes (such as
'normpdf'). The function must take a single argument that is
an array of distances between data values and places where the
density is evaluated, and return an array of the same size containing
corresponding values of the kernel function. When the 'function'
parameter value is 'pdf', this kernel function should return density
values; otherwise, it should return cumulative probability values.
Specifying a custom kernel when the 'function' parameter value is
'icdf' is an error.

If the 'support' parameter is 'positive', ksdensity transforms x
using a log function, estimates the density of the transformed values,
and transforms back to the original scale. If 'support' is a vector
[L U], ksdensity uses the transformation log((X-L)/(U-X)). The
'width' parameter and u outputs are on the scale of the transformed
values.

Examples This example generates a mixture of two normal distributions and plots
the estimated density.

x = [randn(30,1); 5+randn(30,1)];
[f,xi] = ksdensity(x);
plot(xi,f);
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References [1] Bowman, A. W., and A. Azzalini, Applied Smoothing Techniques for
Data Analysis, Oxford University Press, 1997.

See Also hist, @ (function handle)
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Purpose One-sample Kolmogorov-Smirnov test

Syntax H = kstest(X)
H = kstest(X,cdf)
H = kstest(X,cdf,alpha)
H = kstest(X,cdf,alpha,tail)
[H,P,KSSTAT,CV] = kstest(X,cdf,alpha,tail)

Description H = kstest(X) performs a Kolmogorov-Smirnov test to compare the
values in the data vector X with a standard normal distribution (that
is, a normal distribution having mean 0 and variance 1). The null
hypothesis for the Kolmogorov-Smirnov test is that X has a standard
normal distribution. The alternative hypothesis that X does not have
that distribution. The result H is 1 if you can reject the hypothesis
that X has a standard normal distribution, or 0 if you cannot reject
that hypothesis. You reject the hypothesis if the test is significant at
the 5% level.

For each potential value x, the Kolmogorov-Smirnov test compares
the proportion of values less than x with the expected number
predicted by the standard normal distribution. The kstest function
uses the maximum difference over all x values is its test statistic.
Mathematically, this can be written as

where is the proportion of X values less than or equal to x and
is the standard normal cumulative distribution function evaluated at x.

H = kstest(X,cdf) compares the distribution of X to the hypothesized
continuous distribution defined by the two-column matrix cdf. Column
one contains a set of possible x values, and column two contains the
corresponding hypothesized cumulative distribution function values

. If possible, you should define cdf so that column one contains the
values in X. If there are values in X not found in column one of cdf,
kstest will approximate by interpolation. All values in X must
lie in the interval between the smallest and largest values in the first
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column of cdf. If the second argument is empty (cdf = []), kstest uses
the standard normal distribution as if there were no second argument.

The Kolmogorov-Smirnov test requires that cdf be predetermined. It
is not accurate if cdf is estimated from the data. To test X against a
normal distribution without specifying the parameters, use lillietest
instead.

H = kstest(X,cdf,alpha) specifies the significance level alpha for the
test. The default is 0.05.

H = kstest(X,cdf,alpha,tail) specifies the type of test in the string
tail. tail can have one of the following values:

• 'unequal'

• 'larger'

• 'smaller'

The tests specified by these values are described in “Tests Specified by
tail” on page 14-406.

[H,P,KSSTAT,CV] = kstest(X,cdf,alpha,tail) also returns the
observed p-value P, the observed Kolmogorov-Smirnov statistic KSSTAT,
and the cutoff value CV for determining if KSSTAT is significant. If the
return value of CV is NaN, then kstest determined the significance
calculating a p-value according to an asymptotic formula rather than by
comparing KSSTAT to a critical value.

Tests Specified by tail

Let S(x) be the empirical c.d.f. estimated from the sample vector X, let
F(x) be the corresponding true (but unknown) population c.d.f., and
let CDF be the known input c.d.f. specified under the null hypothesis.
The one-sample Kolmogorov-Smirnov test tests the null hypothesis
that F(x) = CDF for all x against the alternative specified by one of the
following possible values of tail:
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tail Alternative Hypothesis Test Statistic

'unequal' F(x) does not equal CDF
(two-sided test)

max|S(x) –
CDF|

'larger' F(x) > CDF (one-sided test) max[S(x) – CDF]

'smaller' F(x) < CDF (one-sided test) max[S(x) – CDF]

Examples Example 1

Let’s generate some evenly spaced numbers and perform a
Kolmogorov-Smirnov test to see how well they fit to a standard normal
distribution:

x = -2:1:4
x =

-2 -1 0 1 2 3 4

[h,p,k,c] = kstest(x,[],0.05,0)
h =

0
p =

0.13632
k =

0.41277
c =

0.48342

You cannot reject the null hypothesis that the values come from a
standard normal distribution. Although intuitively it seems that these
evenly-spaced integers could not follow a normal distribution, this
example illustrates the difficulty in testing normality in small samples.

To understand the test, it is helpful to generate an empirical cumulative
distribution plot and overlay the theoretical normal distribution.

xx = -3:.1:5;
cdfplot(x)
hold on
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plot(xx,normcdf(xx),'r-')
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The Kolmogorov-Smirnov test statistic is the maximum difference
between these curves. It appears that this maximum of 0.41277 occurs
as the data approaches x = 1.0 from below. You can see that the
empirical curve has the value 3/7 here, and you can easily verify that
the difference between the curves is 0.41277.

normcdf(1) - 3/7
ans =

0.41277

You can also perform a one-sided test. Setting tail = -1 indicates that
the alternative is , so the test statistic counts only points where
this inequality is true.

[h,p,k] = kstest(x,[],.05,-1)
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h =
0

p =
0.068181

k =
0.41277

The test statistic is the same as before because in fact at x = 1.0.
However, the p-value is smaller for the one-sided test. If you carry out
the other one-sided test, you see that the test statistic changes, and is
the difference between the two curves near x = -1.0.

[h,p,k] = kstest(x,[],0.05,1)
h =

0
p =

0.77533
k =

0.12706

2/7-normcdf(-1)
ans =

0.12706

Example 2

Now let’s generate random numbers from a Weibull distribution, and
test against that Weibull distribution and an exponential distribution.

x = wblrnd(1,2,100,1);

kstest(x,[x wblcdf(x,1,2)])
ans =

0

kstest(x,[x expcdf(x,1)])
ans =

1
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See Also kstest2, lillietest
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Purpose Two-sample Kolmogorov-Smirnov test

Syntax H = kstest2(X1,X2)
H = kstest2(X1,X2,alpha,tail)
[H,P] = kstest2(...)
[H,P,ksstat] = KSTEST2(...)

Description H = kstest2(X1,X2) performs a two-sample Kolmogorov-Smirnov test
to compare the distributions of values in the two data vectors X1 and X2
of length n1 and n2, respectively, representing random samples from
some underlying distribution(s). The null hypothesis for this test is
that X1 and X2 are drawn from the same continuous distribution. The
alternative hypothesis is that they are drawn from different continuous
distributions. The result H is 1 if you can reject the hypothesis that the
distributions are the same, or 0 if you cannot reject that hypothesis. You
reject the hypothesis if the test is significant at the 5% level.

For each potential value x, the Kolmogorov-Smirnov test compares the
proportion of X1 values less than x with proportion of X2 values less
than x. The kstest2 function uses the maximum difference over all x
values is its test statistic. Mathematically, this can be written as

where is the proportion of X1 values less than or equal to x and
is the proportion of X2 values less than or equal to x. Missing

observations, indicated by NaNs are ignored.

H = kstest2(X1,X2,alpha) performs the test at the (100*alpha)%
significance level.

The decision to reject the null hypothesis occurs when the significance
level, alpha, equals or exceeds the P-value.

H = kstest2(X1,X2,alpha,tail) accepts a string tail that specifies
the type of test. tail can have one of the following values:

• 'unequal'
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• 'larger'

• 'smaller'

The tests specified by these values are described in “Tests Specified by
tail” on page 14-412

[H,P] = kstest2(...) also returns the asymptotic p-value P. The
asymptotic p-value becomes very accurate for large sample sizes, and
is believed to be reasonably accurate for sample sizes n1 and n2 such
that (n1*n2)/(n1 + n2) >= 4.

[H,P,ksstat] = KSTEST2(...) also returns the Kolmogorov-Smirnov
test statistic KSSTAT defined above for the test type indicated by tail.

Tests Specified by tail

Let S1(x) and S2(x) be the empirical distribution functions from the
sample vectors X1 and X2, respectively, and F1(x) and F2(x) be the
corresponding true (but unknown) population CDFs. The two-sample
Kolmogorov-Smirnov test tests the null hypothesis that FF1(x) =
F2(x), for all x, against the alternative hypothesis specified by tail, as
described in the following table.

tail Alternative Hypothesis Test Statistic

'unequal' F1(x) does not equal F2(x)
(two-sided test)

max|S1(x) – S2(x)|

'larger' F1(x) > F2(x) (one-sided test) max[S1(x) – S2(x)]

'smaller' F1(x) < F2(x) (one-sided test) max[S2(x) – S1(x))]

Examples The following commands compare the distributions of a small
evenly-spaced sample and a larger normal sample:

x = -1:1:5
y = randn(20,1);
[h,p,k] = kstest2(x,y)
h =

1
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p =
0.0403

k =
0.5714

The difference between their distributions is significant at the 5% level
(p = 4%). To visualize the difference, you can overlay plots of the two
empirical cumulative distribution functions. The Kolmogorov-Smirnov
statistic is the maximum difference between these functions. After
changing the color and line style of one of the two curves, you can see
that the maximum difference appears to be near x = 1.9. You can also
verify that the difference equals the k value that kstest2 reports:

cdfplot(x)
hold on
cdfplot(y)
h = findobj(gca,'type','line');
set(h(1),'linestyle',':','color','r')

1 - 3/7
ans =

0.5714
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See Also kstest, lillietest
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Purpose Sample kurtosis

Syntax k = kurtosis(X)
k = kurtosis(X,flag)
k = kurtosis(X,flag,dim)

Description k = kurtosis(X) returns the sample kurtosis of X. For vectors,
kurtosis(x) is the kurtosis of the elements in the vector x. For
matrices kurtosis(X) returns the sample kurtosis for each column
of X. For N-dimensional arrays, kurtosis operates along the first
nonsingleton dimension of X.

k = kurtosis(X,flag) specifies whether to correct for bias (flag is
0) or not (flag is 1, the default). When X represents a sample from a
population, the kurtosis of X is biased, that is, it will tend to differ from
the population kurtosis by a systematic amount that depends on the size
of the sample. You can set flag to 0 to correct for this systematic bias.

k = kurtosis(X,flag,dim) takes the kurtosis along dimension dim
of X.

kurtosis treats NaNs as missing values and removes them.

Remarks Kurtosis is a measure of how outlier-prone a distribution is. The
kurtosis of the normal distribution is 3. Distributions that are more
outlier-prone than the normal distribution have kurtosis greater than 3;
distributions that are less outlier-prone have kurtosis less than 3.

The kurtosis of a distribution is defined as

where is the mean of x, is the standard deviation of x, and E(t)
represents the expected value of the quantity t.
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Note Some definitions of kurtosis subtract 3 from the computed value,
so that the normal distribution has kurtosis of 0. The kurtosis function
does not use this convention.

Example X = randn([5 4])
X =

1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591 -0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390 -1.2704
-0.6965 0.8717 0.5774 0.9846

k = kurtosis(X)
k =

2.1658 1.2967 1.6378 1.9589

See Also mean, moment, skewness, std, var
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Purpose Element counts by level for categorical array

Syntax C = levelcounts(A)
C = levelcounts(A,dim)

Description C = levelcounts(A) for a categorical vector A counts the number of
elements in A equal to each of the possible levels in A. The output is a
vector C containing those counts, and has as many elements as A has
levels. For matrix A, C is a matrix of column counts. For N-dimensional
arrays, levelcounts operates along the first nonsingleton dimension.

C = levelcounts(A,dim) operates along the dimension dim.

Example Count the number of patients in each age group in the data in
hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
disp(labels')
'0s' '10s' '20s' '30s' '40s' '50s' '60s' '70s' '80s' '90s'

AgeGroup = ordinal(hospital.Age,labels,[],edges);
I = islevel(labels,AgeGroup);
disp(I')
1 1 1 1 1 1 1 1 1 1

c = levelcounts(AgeGroup);
disp(c')
0 0 15 41 42 2 0 0 0 0

AgeGroup = droplevels(AgeGroup);
I = islevel(labels,AgeGroup);
disp(I')
0 0 1 1 1 1 0 0 0 0

c = levelcounts(AgeGroup);
disp(c')
15 41 42 2

14-417



levelcounts

See Also islevel, ismember, summary (categorical)
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Purpose Leverage values for regression

Syntax h = leverage(data)
h = leverage(data,model)

Description h = leverage(data) finds the leverage of each row (point) in the
matrix data for a linear additive regression model.

h = leverage(data,model) finds the leverage on a regression, using a
specified model type, where model can be one of these strings:

• 'linear' - includes constant and linear terms

• 'interaction' - includes constant, linear, and cross product terms

• 'quadratic' - includes interactions and squared terms

• 'purequadratic' - includes constant, linear, and squared terms

Leverage is a measure of the influence of a given observation on a
regression due to its location in the space of the inputs.

Example One rule of thumb is to compare the leverage to 2p/n where n is the
number of observations and p is the number of parameters in the model.
For the Hald data set this value is 0.7692.

load hald
h = max(leverage(ingredients,'linear'))
h =

0.7004

Since 0.7004 < 0.7692, there are no high leverage points using this rule.

Algorithm [Q,R] = qr(x2fx(data,'model'));

leverage = (sum(Q'.*Q'))'

Reference [1] Goodall, C. R., “Computation Using the QR Decomposition,”
Handbook in Statistics, Volume 9. Elsevier/North-Holland, 1993.
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See Also regstats
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Purpose Generate latin hypercube sample

Syntax X = lhsdesign(n,p)
X = lhsdesign(...,'smooth','off')
X = lhsdesign(...,'criterion',criterion)
X = lhsdesign(...,'iterations',k)

Description X = lhsdesign(n,p) generates a latin hypercube sample X containing
n values on each of p variables. For each column, the n values are
randomly distributed with one from each interval (0,1/n), (1/n,2/n),
..., (1-1/n,1), and they are randomly permuted.

X = lhsdesign(...,'smooth','off') produces points at the
midpoints of the above intervals: 0.5/n, 1.5/n, ..., 1-0.5/n. The
default is 'on'.

X = lhsdesign(...,'criterion',criterion) iteratively generates
latin hypercube samples to find the best one according to the criterion
criterion, which can be one of the following strings:

'none' No iteration

'maximin' Maximize minimum distance between points

'correlation' Reduce correlation

X = lhsdesign(...,'iterations',k) iterates up to k times in an
attempt to improve the design according to the specified criterion.
Default is K = 5.

Latin hypercube designs are useful when you need a sample that is
random but that is guaranteed to be relatively uniformly distributed
over each dimension.

See Also lhsnorm, unifrnd
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Purpose Generate latin hypercube sample with normal distribution

Syntax X = lhsnorm(mu,sigma,n)
X = lhsnorm(mu,sigma,n,flag)

Description X = lhsnorm(mu,sigma,n) generates a latin hypercube sample X of
size n from the multivariate normal distribution with mean vector mu
and covariance matrix sigma. X is similar to a random sample from the
multivariate normal distribution, but the marginal distribution of each
column is adjusted so that its sample marginal distribution is close to
its theoretical normal distribution.

X = lhsnorm(mu,sigma,n,flag) controls the amount of smoothing in
the sample. If flag is 'off', each column has points equally spaced on
the probability scale. In other words, each column is a permutation
of the values G(0.5/n), G(1.5/n), ..., G(1-0.5/n) where G is
the inverse normal cumulative distribution for that column’s marginal
distribution. If flag is 'on' (the default), each column has points
uniformly distributed on the probability scale. For example, in place of
0.5/n you use a value having a uniform distribution on the interval
(0/n,1/n).

See Also lhsdesign, mvnrnd
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Purpose Lilliefors test

Syntax h = lillietest(x)
h = lillietest(x,alpha)
h = lillietest(x,alpha,distr)
[h,p] = lillietest(...)
[h,p,kstat] = lillietest(...)
[h,p,kstat,critval] = lillietest(...)
[h,p,...] = lillietest(x,alpha,distr,mctol)

Description h = lillietest(x) performs a Lillilifors test of the default null
hypothesis that the sample in vector x comes from a distribution in the
normal family, against the alternative that it does not come from a
normal distribution. The test returns the logical value h = 1 if it rejects
the null hypothesis at the 5% significance level, and h = 0 if it cannot.
The test treats NaN values in x as missing values, and ignores them.

The Lilliefors test is a 2-sided goodness-of-fit test suitable when a
fully-specified null distribution is unknown and its parameters must be
estimated. This is in contrast to the one-sample Kolmogorov-Smirnov
test (see kstest), which requires that the null distribution be
completely specified. The Lilliefors test statistic is the same as for the
Kolmogorov-Smirnov test:

KS SCDF x CDF x
x

= −max ( ) ( )

where SCDF is the empirical cdf estimated from the sample and CDF is
the normal cdf with mean and standard deviation equal to the mean
and standard deviation of the sample.

lillietest uses a table of critical values computed using Monte-Carlo
simulation for sample sizes less than 1000 and significance levels
between 0.001 and 0.50. The table is larger and more accurate than the
table introduced by Lilliefors. Critical values for a test are computed
by interpolating into the table, using an analytic approximation when
extrapolating for larger sample sizes.
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h = lillietest(x,alpha) performs the test at significance level
alpha. alpha is a scalar in the range [0.001, 0.50]. To perform the test at
a significance level outside of this range, use the mctol input argument.

h = lillietest(x,alpha,distr) performs the test of the null
hypothesis that x came from the location-scale family of distributions
specified by distr. Acceptable values for distr are 'norm' (normal, the
default), 'exp' (exponential), and 'ev' (extreme value). The Lilliefors
test can not be used when the null hypothesis is not a location-scale
family of distributions.

[h,p] = lillietest(...) returns the p-value p, computed using
inverse interpolation into the table of critical values. Small values of
p cast doubt on the validity of the null hypothesis. lillietest warns
when p is not found within the tabulated range of [0.001, 0.50], and
returns either the smallest or largest tabulated value. In this case, you
can use the mctol input argument to compute a more accurate p-value.

[h,p,kstat] = lillietest(...) returns the test statistic kstat.

[h,p,kstat,critval] = lillietest(...) returns the critical value
critval for the test. When kstat > critval, the null hypothesis is
rejected at significance level alpha

[h,p,...] = lillietest(x,alpha,distr,mctol) computes a
Monte-Carlo approximation for p directly, rather than interpolating
into the table of pre-computed values. This is useful when alpha or p
lie outside the range of the table. lillietest chooses the number of
Monte Carlo replications, mcreps, large enough to make the Monte
Carlo standard error for p, sqrt(p*(1-p)/mcreps), less than mctol.

Example Use lillietest to determine if car mileage, in miles per gallon (MPG),
follows a normal distribution across different makes of cars:

[h,p] = lillietest(MPG)

Warning: P is less than the smallest tabulated value, returning 0.001.

h =

1

p =
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1.0000e-003

This is clear evidence for rejecting the null hypothesis of normality,
but the p-value returned is just the smallest value in the table of
pre-computed values. To find a more accurate p-value for the test, run a
Monte Carlo approximation using the mctol input argument:

[h,p] = lillietest(MPG,0.05,'norm',1e-4)
h =

1
p =

8.3333e-006

References [1] Conover, W.J., Practical Nonparametric Statistics, Wiley, 1980

[2] Lilliefors, H.W., “On the Komogorov-Smirnov test for normality with
mean and variance unknown,” Journal of the American Statistical
Association, vol. 62, 1967, pp. 399-402.

[3] Lilliefors, H.W., “On the Kolmogorov-Smirnov test for the
exponential distribution with mean unknown,” Journal of the American
Statistical Association, vol. 64, 1969, pp. 387-389.

See Also jbtest, kstest, kstest2, cdfplot
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Purpose Linear hypothesis test on parameter estimates

Syntax p = linhyptest(beta,SIGMA,c,H,dfe)
[p,t,r] = linhyptest(...)

Description p = linhyptest(beta,SIGMA,c,H,dfe) returns the p-value p of
a hypothesis test on a vector of parameters. beta is a vector of k
parameter estimates. SIGMA is the k-by-k estimated covariance matrix
of the parameter estimates. c and H specify the null hypothesis in the
form H*b = c, where b is the vector of unknown parameters estimated
by beta. dfe is the degrees of freedom for the SIGMA estimate, or Inf if
SIGMA is known rather than estimated.

beta is required. The remaining arguments have default values:

• SIGMA = eye(k)

• c = zeros(k,1)

• H = eye(K)

• dfe = Inf

If H is omitted, c must have k elements and it specifies the null
hypothesis values for the entire parameter vector.

Note The nlinfit function returns a SIGMA output argument suitable
for use as the SIGMA input argument to linhyptest. The following
functions return covb, which can also be used as the SIGMA input to
linhyptest: coxphfit, glmfit, mnrfit, regstats, robustfit. Except
for regstats, covb is returned as a field in a stats output structure.

[p,t,r] = linhyptest(...) also returns the test statistic t and the
rank r of the hypothesis matrix H. If dfe is Inf or is not given, t is a
chi-square statistic with r degrees of freedom . If dfe is specified as a
finite value, t is an F statistic with r and dfe degrees of freedom.
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linhyptest performs a test based on an asymptotic normal distribution
for the parameter estimates. It can be used after any estimation
procedure for which the parameter covariances are available, such as
regstats or glmfit. For linear regression, the p-values are exact.
For other procedures, the p-values are approximate, and may be less
accurate than other procedures such as those based on a likelihood ratio.

Example Fit a multiple linear model to the data in hald.mat:

load hald
stats = regstats(heat,ingredients,'linear');
beta = stats.beta
beta =

62.4054
1.5511
0.5102
0.1019

-0.1441

Perform an F-test that the last two coefficients are both 0:

SIGMA = stats.covb;
dfe = stats.fstat.dfe;
H = [0 0 0 1 0;0 0 0 0 1];
c = [0;0];
[p,F] = linhyptest(beta,SIGMA,c,H,dfe)
p =

0.4668
F =

0.8391

See Also regstats, glmfit, robustfit, mnrfit, nlinfit, coxphfit
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Purpose Create hierarchical cluster tree

Syntax Z = linkage(Y)
Z = linkage(Y,method)

Description Z = linkage(Y) creates a hierarchical cluster tree, using the Single
Linkage algorithm. The input Y is a distance vector of length

-by-1, where m is the number of objects in the original
data set. You can generate such a vector with the pdist function. Y can
also be a more general dissimilarity matrix conforming to the output
format of pdist.

Z = linkage(Y,method) computes a hierarchical cluster tree using the
algorithm specified by method, where method can be any of the following
character strings, whose definitions are explained in “Mathematical
Definitions” on page 14-429.

'single' Shortest distance (default)

'complete' Furthest distance

'average' Unweighted average distance (UPGMA) (also known
as group average)

'weighted' Weighted average distance (WPGMA)

'centroid' Centroid distance (UPGMC)

'median' Weighted center of mass distance (WPGMC)

'ward' Inner squared distance (minimum variance
algorithm)

Note When 'method' is 'centroid', 'median', or 'ward', the output
of linkage is meaningful only if the input Y contains Euclidean
distances.
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The output, Z, is an (m-1)-by-3 matrix containing cluster tree
information. The leaf nodes in the cluster hierarchy are the objects in
the original data set, numbered from 1 to m. They are the singleton
clusters from which all higher clusters are built. Each newly formed
cluster, corresponding to row i in Z, is assigned the index m+i, where m
is the total number of initial leaves.

Columns 1 and 2, Z(i,1:2), contain the indices of the objects that were
linked in pairs to form a new cluster. This new cluster is assigned the
index value m+i. There are m-1 higher clusters that correspond to the
interior nodes of the hierarchical cluster tree.

Column 3, Z(i,3), contains the corresponding linkage distances
between the objects paired in the clusters at each row i.

For example, consider a case with 30 initial nodes. If the tenth cluster
formed by the linkage function combines object 5 and object 7 and
their distance is 1.5, then row 10 of Z will contain the values (5, 7, 1.5).
This newly formed cluster will have the index 10+30=40. If cluster 40
shows up in a later row, that means this newly formed cluster is being
combined again into some bigger cluster.

Mathematical Definitions

The method argument is a character string that specifies the algorithm
used to generate the hierarchical cluster tree information. These
linkage algorithms are based on different ways of measuring the
distance between two clusters of objects. If nr is the number of objects
in cluster r and ns is the number of objects in cluster s, and xri is the
ith object in cluster r, the definitions of these various measurements
are as follows:

• Single linkage, also called nearest neighbor, uses the smallest
distance between objects in the two clusters.

• Complete linkage, also called furthest neighbor, uses the largest
distance between objects in the two clusters.
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• Average linkage uses the average distance between all pairs of objects
in cluster r and cluster s.

• Centroid linkage uses the Euclidean distance between the centroids
of the two clusters,

where

is defined similarly. The input Y should contain Euclidean
distances.

• Median linkage uses the Euclidean distance between weighted
centroids of the two clusters,

where and are weighted centroids for the clusters r and s. If
cluster r was created by combining clusters p and q, is defined
recursively as

is defined similarly. The input Y should contain Euclidean
distances.

• Ward’s linkage uses the incremental sum of squares; that is, the
increase in the total within-cluster sum of squares as a result of
joining clusters r and s. The within-cluster sum of squares is defined
as the sum of the squares of the distances between all objects in
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the cluster and the centroid of the cluster. The equivalent distance
is given by

where is Euclidean distance, and and are the centroids of
clusters r and s, as defined in the Centroid linkage, respectively. The
input Y should contain Euclidean distances.

The centroid and median methods can produce a cluster tree that
is not monotonic. This occurs when the distance from the union
of two clusters, r and s, to a third cluster is less than the distance
from either r or s to that third cluster. In this case, sections of the
dendrogram change direction. This is an indication that you should
use another method.

Example X = [3 1.7; 1 1; 2 3; 2 2.5; 1.2 1; 1.1 1.5; 3 1];
Y = pdist(X);
Z = linkage(Y)
Z =

2.0000 5.0000 0.2000
3.0000 4.0000 0.5000
8.0000 6.0000 0.5099
1.0000 7.0000 0.7000

11.0000 9.0000 1.2806
12.0000 10.0000 1.3454

See Also cluster, clusterdata, cophenet, dendrogram, inconsistent, kmeans,
pdist, silhouette, squareform
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Purpose Lognormal cumulative distribution function

Syntax P = logncdf(X,mu,sigma)
[P,PLO,PUP] = logncdf(X,mu,sigma,pcov,alpha)

Description P = logncdf(X,mu,sigma) returns values at X of the lognormal
cdf with distribution parameters mu and sigma. mu and sigma are
the mean and standard deviation, respectively, of the associated
normal distribution. X, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input
for X, mu, or sigma is expanded to a constant array with the same
dimensions as the other inputs.

[P,PLO,PUP] = logncdf(X,mu,sigma,pcov,alpha) returns confidence
bounds for P when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
specifies 100(1 - alpha)% confidence bounds. The default value of alpha
is 0.05. PLO and PUP are arrays of the same size as P containing the
lower and upper confidence bounds.

logncdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The lognormal cdf is

14-432



logncdf

Example x = (0:0.2:10);
y = logncdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p');

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, p. 102-105.

See Also cdf, logninv, lognpdf, lognrnd, lognstat
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Purpose Parameter estimates and confidence intervals for lognormally
distributed data

Syntax parmhat = lognfit(data)
[parmhat,parmci] = lognfit(data)
[parmhat,parmci] = lognfit(data,alpha)
[...] = lognfit(data,alpha,censoring)
[...] = lognfit(data,alpha,censoring,freq)
[...] = lognfit(data,alpha,censoring,freq,options)

Description parmhat = lognfit(data) returns a vector of maximum likelihood
estimates parmhat(1) = mu and parmhat(2) = sigma of parameters
for a lognormal distribution fitting data. mu and sigma are the mean and
standard deviation, respectively, of the associated normal distribution.

[parmhat,parmci] = lognfit(data) returns 95% confidence intervals
for the parameter estimates mu and sigma in the 2-by-2 matrix parmci.
The first column of the matrix contains the lower and upper confidence
bounds for parameter mu, and the second column contains the confidence
bounds for parameter sigma.

[parmhat,parmci] = lognfit(data,alpha) returns 100(1 - alpha) %
confidence intervals for the parameter estimates, where alpha is a value
in the range (0 1) specifying the width of the confidence intervals. By
default, alpha is 0.05, which corresponds to 95% confidence intervals.

[...] = lognfit(data,alpha,censoring) accepts a Boolean vector
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = lognfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use
their default values.

[...] = lognfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates
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when there is censoring. The lognormal fit function accepts an options
structure which can be created using the function statset. Enter
statset('lognfit') to see the names and default values of the
parameters that lognfit accepts in the options structure. See the
reference page for statset for more information about these options.

Example This example generates 100 independent samples of lognormally
distributed data with µ = 0 and σ = 3. parmhat estimates µ and σ and
parmci gives 99% confidence intervals around parmhat. Notice that
parmci contains the true values of µ and σ.

data = lognrnd(0,3,100,1);
[parmhat,parmci] = lognfit(data,0.01)
parmhat =

-0.2480 2.8902
parmci =

-1.0071 2.4393
0.5111 3.5262

See Also logncdf, logninv, lognlike, lognpdf, lognrnd, lognstat, mle,
statset
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Purpose Inverse of lognormal cumulative distribution function

Syntax X = logninv(P,mu,sigma)
[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha)

Description X = logninv(P,mu,sigma) returns values at P of the inverse lognormal
cdf with distribution parameters mu and sigma. mu and sigma are the
mean and standard deviation, respectively, of the associated normal
distribution. mu and sigma can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of X. A scalar
input for P, mu, or sigma is expanded to a constant array with the same
dimensions as the other inputs.

[X,XLO,XUP] = logninv(P,mu,sigma,pcov,alpha) returns confidence
bounds for X when the input parameters mu and sigma are estimates.
pcov is the covariance matrix of the estimated parameters. alpha
specifies 100(1 - alpha)% confidence bounds. The default value of alpha
is 0.05. XLO and XUP are arrays of the same size as X containing the
lower and upper confidence bounds.

logninv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the
desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the
confidence bounds might be more accurate.

The lognormal inverse function is defined in terms of the lognormal
cdf as

where
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Example p = (0.005:0.01:0.995);
crit = logninv(p,1,0.5);
plot(p,crit)
xlabel('Probability'); ylabel('Critical Value'); grid

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd edition, John Wiley and Sons, 1993, pp. 102-105.

See Also icdf, logncdf, lognpdf, lognrnd, lognstat

14-437



lognlike

Purpose Negative log-likelihood for lognormal distribution

Syntax nlogL = lognlike(params,data)
[nlogL,avar] = lognlike(params,data)
[...] = lognlike(params,data,censoring)
[...] = lognlike(params,data,censoring,freq)

Description nlogL = lognlike(params,data) returns the negative log-likelihood
of data for the lognormal distribution with parameters params(1) =
mu and params(2) = sigma. mu and sigma are the mean and standard
deviation, respectively, of the associated normal distribution. The
values of mu and sigma are scalars, and the output nlogL is a scalar.

[nlogL,avar] = lognlike(params,data) returns the inverse of
Fisher’s information matrix. If the input parameter value in params
is the maximum likelihood estimate, avar is its asymptotic variance.
avar is based on the observed Fisher’s information, not the expected
information.

[...] = lognlike(params,data,censoring) accepts a Boolean
vector, censoring, of the same size as data, which is 1 for observations
that are right-censored and 0 for observations that are observed exactly.

[...] = lognlike(params,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. The vector freq
typically contains integer frequencies for the corresponding elements in
data, but can contain any nonnegative values. Pass in [] for censoring
to use its default value.

See Also logncdf, lognfit, logninv, lognpdf, lognrnd
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Purpose Lognormal probability density function

Syntax Y = lognpdf(X,mu,sigma)

Description Y = lognpdf(X,mu,sigma) returns values at X of the lognormal
pdf with distribution parameters mu and sigma. mu and sigma are
the mean and standard deviation, respectively, of the associated
normal distribution. X, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of Y. A scalar input for X, mu, or sigma is expanded to a constant
array with the same dimensions as the other inputs.

The lognormal pdf is

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:

m

v

= +

= + −
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A lognormal distribution with mean m and variance v has parameters

μ

σ

= +

= +

log( / )

log( / )

m v m

v m

2 2

2 1

The lognormal distribution is applicable when the quantity of interest
must be positive, since log(X) exists only when X is positive.
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Example x = (0:0.02:10);
y = lognpdf(x,0,1);
plot(x,y); grid;
xlabel('x'); ylabel('p')
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Reference [1] Mood, A. M., F. A. Graybill, and D. C. Boes, Introduction to the
Theory of Statistics, 3rd edition, McGraw-Hill, 1974, pp. 540-541.

See Also logncdf, logninv, lognrnd, lognstat, pdf
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Purpose Random numbers from lognormal distribution

Syntax R = lognrnd(mu,sigma)
R = lognrnd(mu,sigma,v)
R = lognrnd(mu,sigma,m,n)

Description R = lognrnd(mu,sigma) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma. mu and sigma are the mean and standard deviation, respectively,
of the associated normal distribution. mu and sigma can be vectors,
matrices, or multidimensional arrays that have the same size, which
is also the size of R. A scalar input for mu or sigma is expanded to a
constant array with the same dimensions as the other input.

R = lognrnd(mu,sigma,v) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

R = lognrnd(mu,sigma,m,n) returns an array of random numbers
generated from the lognormal distribution with parameters mu and
sigma, where scalars m and n are the row and column dimensions of R.

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:

m
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A lognormal distribution with mean m and variance v has parameters
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Example Generate one million lognormally distributed random numbers with
mean 1 and variance 2:

m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));

[M,V]= lognstat(mu,sigma)
M =

1
V =

2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)
MX =

0.9974
VX = var(X)
VX =

1.9776

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd edition, John Wiley and Sons, 1993, pp. 102-105.

See Also random, logncdf, logninv, lognpdf, lognstat
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Purpose Mean and variance of lognormal distribution

Syntax [M,V] = lognstat(mu,sigma)

Description [M,V] = lognstat(mu,sigma) returns the mean of and variance of the
lognormal distribution with parameters mu and sigma. mu and sigma
are the mean and standard deviation, respectively, of the associated
normal distribution. mu and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of M and V. A scalar input for mu or sigma is expanded to a constant
array with the same dimensions as the other input.

The normal and lognormal distributions are closely related. If X
is distributed lognormally with parameters µ and σ, then log(X) is
distributed normally with mean µ and standard deviation σ.

The mean m and variance v of a lognormal random variable are
functions of µ and σ that can be calculated with the lognstat function.
They are:

m
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A lognormal distribution with mean m and variance v has parameters
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Example Generate one million lognormally distributed random numbers with
mean 1 and variance 2:

m = 1;
v = 2;
mu = log((m^2)/sqrt(v+m^2));
sigma = sqrt(log(v/(m^2)+1));
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[M,V]= lognstat(mu,sigma)
M =

1
V =

2.0000

X = lognrnd(mu,sigma,1,1e6);

MX = mean(X)
MX =

0.9974
VX = var(X)
VX =

1.9776

Reference [1] Mood, A. M., F. A. Graybill, and D.C. Boes, Introduction to the Theory
of Statistics, 3rd edition, McGraw-Hill 1974, pp. 540-541.

See Also logncdf, logninv, lognrnd, lognrnd
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Purpose Parameters of generalized Pareto distribution lower tail

Syntax params = lowerparams(obj)

Description params = lowerparams(obj) returns the 2-element vector params of
shape and scale parameters, respectively, of the lower tail of the Pareto
tails object obj. lowerparams does not return a location parameter.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

lowerparams(obj)
ans =

-0.1901 1.1898
upperparams(obj)
ans =

0.3646 0.5103

See Also paretotails, upperparams
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Purpose Plot least squares lines

Syntax lsline
h = lsline

Description lsline superimposes the least squares line on each line object in the
current axes (except LineStyles '-', '--', '.-').

h = lsline returns the handles to the line objects.

Example y = [2 3.4 5.6 8 11 12.3 13.8 16 18.8 19.9]';
plot(y,'+');
lsline;

See Also polyfit, polyval
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Purpose Mean or median absolute deviation of sample

Syntax y = mad(X)
Y = mad(X,1)
Y = mad(X,0)

Description y = mad(X) returns the mean absolute deviation of the values in X. For
vector input, y is mean(abs(X - mean(X)). For a matrix input, y is a
row vector containing the mean absolute deviation of each column of
X. For N-dimensional arrays, mad operates along the first nonsingleton
dimension of X.

Y = mad(X,1) computes Y based on medians, that is,
median(abs(X-median(X)).

Y = mad(X,0) is the same as mad(X), and uses means.

mad(X,flag,dim) takes the MAD along dimension dim of X.

mad treats NaNs as missing values and removes them.

Remarks The MAD is less efficient than the standard deviation as an estimate of
the spread when all the data is from the normal distribution.

For normal data, multiply the MAD by 1.3 as a robust estimate of σ
(the scale parameter of the normal distribution).

Note The default version of MAD, based on means, is also commonly
referred to as the average absolute deviation (AAD).

Examples This example shows a Monte Carlo simulation of the relative efficiency
of the MAD to the sample standard deviation for normal data.

x = normrnd(0,1,100,100);
s = std(x);
s_MAD = 1.3 * mad(x);
efficiency = (norm(s - 1)./norm(s_MAD - 1)).^2
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efficiency =
0.5972

Reference [1] Sachs, L., Applied Statistics: A Handbook of Techniques,
Springer-Verlag, 1984, p. 253.

See Also std, range, iqr
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Purpose Mahalanobis distance

Syntax mahal(Y,X)

Description mahal(Y,X) computes the Mahalanobis distance (in squared units) of
each point (row) of the matrix Y from the sample in the matrix X.

The number of columns of Y must equal the number of columns in X, but
the number of rows may differ. The number of rows in X must exceed
the number of columns.

The Mahalanobis distance is a multivariate measure of the separation
of a data set from a point in space. It is the criterion minimized in
linear discriminant analysis.

Example The Mahalanobis distance of a matrix r when applied to itself is a way
to find outliers.

r = mvnrnd([0 0],[1 0.9;0.9 1],100);
r = [r;10 10];
d = mahal(r,r);
last6 = d(96:101)
last6 =

1.1036
2.2353
2.0219
0.3876
1.5571
52.7381

The last element is clearly an outlier.

See Also classify
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Purpose Main effects plot for grouped data

Syntax maineffectsplot(Y,GROUP)
maineffectsplot(Y,GROUP,param1,val1,param2,val2,...)
[figh,AXESH] = maineffectsplot(...)

Description maineffectsplot(Y,GROUP) displays main effects plots for the group
means of matrix Y with groups defined by entries in the cell array
GROUP. Y is a numeric matrix or vector. If Y is a matrix, the rows
represent different observations and the columns represent replications
of each observation. Each cell of GROUP must contain a grouping variable
that can be a categorical variable, numeric vector, character matrix, or
single-column cell array of strings. (See “Grouped Data” on page 2-41.)
GROUP can also be a matrix whose columns represent different grouping
variables. Each grouping variable must have the same number of rows
as Y. The number of grouping variables must be greater than 1.

The display has one subplot per grouping variable, with each subplot
showing the group means of Y as a function of one grouping variable.

maineffectsplot(Y,GROUP,param1,val1,param2,val2,...) specifies
one or more of the following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix or a
cell array of strings, one per grouping variable. Default names are
'X1', 'X2', ... .

• 'statistic' — String values that indicate whether the group mean
or the group standard deviation should be plotted. Use 'mean' or
'std'. The default is 'mean'. If the value is 'std', Y is required
to have multiple columns.

• 'parent' — A handle to the figure window for the plots. The default
is the current figure window.

[figh,AXESH] = maineffectsplot(...) returns the handle figh to
the figure window and an array of handles AXESH to the subplot axes.
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Example Display main effects plots for car weight with two grouping variables,
model year and number of cylinders:

load carsmall;
maineffectsplot(Weight,{Model_Year,Cylinders}, ...

'varnames',{'Model Year','# of Cylinders'})

See Also interactionplot, multivarichart
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Purpose One-way multivariate analysis of variance

Syntax d = manova1(X,group)
d = manova1(X,group,alpha)
[d,p] = manova1(...)
[d,p,stats] = manova1(...)

Description d = manova1(X,group) performs a one-way Multivariate Analysis
of Variance (MANOVA) for comparing the multivariate means of the
columns of X, grouped by group. X is an m-by-n matrix of data values,
and each row is a vector of measurements on n variables for a single
observation. group is a grouping variable defined as a categorical
variable, vector, string array, or cell array of strings. Two observations
are in the same group if they have the same value in the group array.
(See “Grouped Data” on page 2-41.) The observations in each group
represent a sample from a population.

The function returns d, an estimate of the dimension of the space
containing the group means. manova1 tests the null hypothesis that the
means of each group are the same n-dimensional multivariate vector,
and that any difference observed in the sample X is due to random
chance. If d = 0, there is no evidence to reject that hypothesis. If d = 1,
then you can reject the null hypothesis at the 5% level, but you cannot
reject the hypothesis that the multivariate means lie on the same line.
Similarly, if d = 2 the multivariate means may lie on the same plane in
n-dimensional space, but not on the same line.

d = manova1(X,group,alpha) gives control of the significance level,
alpha. The return value d will be the smallest dimension having
p > alpha, where p is a p-value for testing whether the means lie in a
space of that dimension.

[d,p] = manova1(...) also returns a p, a vector of p-values for testing
whether the means lie in a space of dimension 0, 1, and so on. The
largest possible dimension is either the dimension of the space, or one
less than the number of groups. There is one element of p for each
dimension up to, but not including, the largest.
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If the ith p-value is near zero, this casts doubt on the hypothesis that
the group means lie on a space of i-1 dimensions. The choice of a
critical p-value to determine whether the result is judged statistically
significant is left to the researcher and is specified by the value of the
input argument alpha. It is common to declare a result significant if
the p-value is less than 0.05 or 0.01.

[d,p,stats] = manova1(...) also returns stats, a structure
containing additional MANOVA results. The structure contains the
following fields.

Field Contents

W Within-groups sum of squares and cross-products
matrix

B Between-groups sum of squares and cross-products
matrix

T Total sum of squares and cross-products matrix

dfW Degrees of freedom for W

dfB Degrees of freedom for B

dfT Degrees of freedom for T

lambda Vector of values of Wilk’s lambda test statistic for
testing whether the means have dimension 0, 1, etc.

chisq Transformation of lambda to an approximate
chi-square distribution

chisqdf Degrees of freedom for chisq

eigenval Eigenvalues of

eigenvec Eigenvectors of ; these are the coefficients for
the canonical variables C, and they are scaled so the
within-group variance of the canonical variables is 1
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Field Contents

canon Canonical variables C, equal to XC*eigenvec, where XC
is X with columns centered by subtracting their means

mdist A vector of Mahalanobis distances from each point
to the mean of its group

gmdist A matrix of Mahalanobis distances between each pair
of group means

The canonical variables C are linear combinations of the original
variables, chosen to maximize the separation between groups.
Specifically, C(:,1) is the linear combination of the X columns that has
the maximum separation between groups. This means that among all
possible linear combinations, it is the one with the most significant F
statistic in a one-way analysis of variance. C(:,2) has the maximum
separation subject to it being orthogonal to C(:,1), and so on.

You may find it useful to use the outputs from manova1 along with other
functions to supplement your analysis. For example, you may want to
start with a grouped scatter plot matrix of the original variables using
gplotmatrix. You can use gscatter to visualize the group separation
using the first two canonical variables. You can use manovacluster to
graph a dendrogram showing the clusters among the group means.

Assumptions

The MANOVA test makes the following assumptions about the data in X:

• The populations for each group are normally distributed.

• The variance-covariance matrix is the same for each population.

• All observations are mutually independent.

Example you can use manova1 to determine whether there are differences in
the averages of four car characteristics, among groups defined by the
country where the cars were made.
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load carbig
[d,p] = manova1([MPG Acceleration Weight Displacement],...

Origin)
d =

3
p =

0
0.0000
0.0075
0.1934

There are four dimensions in the input matrix, so the group means must
lie in a four-dimensional space. manova1 shows that you cannot reject
the hypothesis that the means lie in a three-dimensional subspace.

References [1] Krzanowski, W. J., Principles of Multivariate Analysis. Oxford
University Press, 1988.

See Also anova1, canoncorr, gscatter, gplotmatrix, manovacluster
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Purpose Dendrogram of group mean clusters following MANOVA

Syntax manovacluster(stats)
manovacluster(stats,method)
H = manovacluster(stats,method)

Description manovacluster(stats) generates a dendrogram plot of the group
means after a multivariate analysis of variance (MANOVA). stats is
the output stats structure from manova1. The clusters are computed
by applying the single linkage method to the matrix of Mahalanobis
distances between group means.

See dendrogram for more information on the graphical output from this
function. The dendrogram is most useful when the number of groups
is large.

manovacluster(stats,method) uses the specified method in place of
single linkage. method can be any of the following character strings that
identify ways to create the cluster hierarchy. See linkage for further
explanation.

'single' Shortest distance (default)

'complete' Largest distance

'average' Average distance

'centroid' Centroid distance

'ward' Incremental sum of squares

H = manovacluster(stats,method) returns a vector of handles to the
lines in the figure.

Example Let’s analyze the larger car data set to determine which countries
produce cars with the most similar characteristics.

load carbig
X = [MPG Acceleration Weight Displacement];
[d,p,stats] = manova1(X,Origin);
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manovacluster(stats)

Japan  Germany Italy  France Sweden England USA    
0

0.5

1

1.5

2

2.5

3

See Also cluster, dendrogram, linkage, manova1
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Purpose Nonmetric and metric multidimensional scaling

Syntax Y = mdscale(D,p)
[Y,stress] = mdscale(D,p)
[Y,stress,disparities] = mdscale(D,p)
[...] = mdscale(...,param1,val1,param2,val2,...)

Description Y = mdscale(D,p) performs nonmetric multidimensional scaling on
the n-by-n dissimilarity matrix D, and returns Y, a configuration of
n points (rows) in p dimensions (columns). The Euclidean distances
between points in Y approximate a monotonic transformation of the
corresponding dissimilarities in D. By default, mdscale uses Kruskal’s
normalized stress1 criterion.

You can specify D as either a full n-by-n matrix, or in upper triangle
form such as is output by pdist. A full dissimilarity matrix must be real
and symmetric, and have zeros along the diagonal and non-negative
elements everywhere else. A dissimilarity matrix in upper triangle
form must have real, non-negative entries. mdscale treats NaNs in D as
missing values, and ignores those elements. Inf is not accepted.

You can also specify D as a full similarity matrix, with ones along the
diagonal and all other elements less than one. mdscale transforms a
similarity matrix to a dissimilarity matrix in such a way that distances
between the points returned in Y approximate sqrt(1-D). To use a
different transformation, transform the similarities prior to calling
mdscale.

[Y,stress] = mdscale(D,p) returns the minimized stress, i.e., the
stress evaluated at Y.

[Y,stress,disparities] = mdscale(D,p) returns the disparities,
that is, the monotonic transformation of the dissimilarities D.

[...] = mdscale(...,param1,val1,param2,val2,...) enables you
to specify optional parameter name/value pairs that control further
details of mdscale. The parameters are

14-458



mdscale

• 'Criterion'— The goodness-of-fit criterion to minimize. This also
determines the type of scaling, either non-metric or metric, that
mdscale performs. Choices for non-metric scaling are:

- 'stress' — Stress normalized by the sum of squares of the
inter-point distances, also known as stress1. This is the default.

- 'sstress' — Squared stress, normalized with the sum of 4th
powers of the inter-point distances.

Choices for metric scaling are:

- 'metricstress' — Stress, normalized with the sum of squares of
the dissimilarities.

- 'metricsstress' — Squared stress, normalized with the sum of
4th powers of the dissimilarities.

- 'sammon' — Sammon’s nonlinear mapping criterion. Off-diagonal
dissimilarities must be strictly positive with this criterion.

- 'strain' — A criterion equivalent to that used in classical
multidimensional scaling.

• 'Weights' — A matrix or vector the same size as D, containing
nonnegative dissimilarity weights. You can use these to weight the
contribution of the corresponding elements of D in computing and
minimizing stress. Elements of D corresponding to zero weights are
effectively ignored.

• 'Start' — Method used to choose the initial configuration of points
for Y. The choices are

- 'cmdscale' — Use the classical multidimensional scaling solution.
This is the default. 'cmdscale' is not valid when there are zero
weights.

- 'random' — Choose locations randomly from an appropriately
scaled p-dimensional normal distribution with uncorrelated
coordinates.

- An n-by-p matrix of initial locations, where n is the size of the
matrix D and p is the number of columns of the output matrix

14-459



mdscale

Y. In this case, you can pass in [] for p and mdscale infers p
from the second dimension of the matrix. You can also supply a
three-dimensional array, implying a value for 'Replicates' from
the array’s third dimension.

• 'Replicates' — Number of times to repeat the scaling, each with a
new initial configuration. The default is 1.

• 'Options' — Options for the iterative algorithm used to minimize
the fitting criterion. Pass in an options structure created by statset.
For example,

opts = statset(param1,val1,param2,val2, ...);
[...] = mdscale(...,'Options',opts)

The choices of statset parameters are

- 'Display' — Level of display output. The choices are 'off' (the
default), 'iter', and 'final'.

- 'MaxIter' — Maximum number of iterations allowed. The default
is 200.

- 'TolFun' — Termination tolerance for the stress criterion and its
gradient. The default is 1e-4.

- 'TolX'— Termination tolerance for the configuration location step
size. The default is 1e-4.

Example load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...

Carbo Sugars Shelf Potass Vitamins];

% Take a subset from a single manufacturer.
X = X(strmatch('K',Mfg),:);

% Create a dissimilarity matrix.
dissimilarities = pdist(X);

% Use non-metric scaling to recreate the data in 2D,
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% and make a Shepard plot of the results.
[Y,stress,disparities] = mdscale(dissimilarities,2);
distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...
dissimilarities(ord),disparities(ord),'r.-');
xlabel('Dissimilarities'); ylabel('Distances/Disparities')
legend({'Distances' 'Disparities'},'Location','NW');

% Do metric scaling on the same dissimilarities.
[Y,stress] = ...
mdscale(dissimilarities,2,'criterion','metricsstress');
distances = pdist(Y);
plot(dissimilarities,distances,'bo', ...
[0 max(dissimilarities)],[0 max(dissimilarities)],'k:');
xlabel('Dissimilarities'); ylabel('Distances')

See Also cmdscale, pdist, statset
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Purpose Mean values of vectors and matrices

Syntax m = mean(X)
m = mean(X,dim)

Description m = mean(X) calculates the sample mean

For vectors, mean(x) is the mean value of the elements in vector x.
For matrices, mean(X) is a row vector containing the mean value of
each column.

m = mean(X,dim) returns the mean values for elements along the
dimension of X specified by scalar dim. For matrices, mean(X,2) is a
column vector containing the mean value of each row. The default of
dim is 1.

The mean function is part of the standard MATLAB language.

Example These commands generate five samples of 100 normal random numbers
with mean, zero, and standard deviation, one. The sample means in
xbar are much less variable (0.00 ± 0.10).

x = normrnd(0,1,100,5);
xbar = mean(x)
xbar =

0.0727 0.0264 0.0351 0.0424 0.0752

See Also median, std, cov, corrcoef, var
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Purpose Median values of vectors and matrices

Syntax m = median(X)

Description m = median(X) calculates the median value, which is the 50th
percentile of a sample. The median is a robust estimate of the center of
a sample of data, since outliers have little effect on it.

For vectors, median(x) is the median value of the elements in vector x.
For matrices, median(X) is a row vector containing the median value
of each column. Since median is implemented using sort, it can be
costly for large matrices.

The median function is part of the standard MATLAB language.

Examples xodd = 1:5;
modd = median(xodd)
modd =

3

xeven = 1:4;
meven = median(xeven)
meven =

2.5000

This example shows robustness of the median to outliers.

xoutlier = [(1:4) 10000];
moutlier = median(xoutlier)
moutlier =

3

See Also mean, std, cov, corrcoef

14-463



mergelevels

Purpose Merge levels of categorical array

Syntax B = mergelevels(A,oldlevels,newlevel)
B = mergelevels(A,oldlevels)

Description B = mergelevels(A,oldlevels,newlevel) merges two or more levels
of the categorical array A into a single new level. oldlevels is a cell
array of strings or a two-dimensional character matrix that specifies the
levels to be merged. Any elements of A that have levels in oldlevels are
assigned the new level in the corresponding elements of B. newlevel is
a character string that specifies the label for the new level. For ordinal
arrays, the levels of A specified by oldlevels must be consecutive, and
mergelevels inserts the new level to preserve the order of the levels.

B = mergelevels(A,oldlevels) merges two or more levels of A. For
nominal arrays, mergelevels uses the first label in oldlevels as the
label for the new level. For ordinal arrays, mergelevels uses the label
corresponding to the lowest level in oldlevels as the label for the new
level.

Examples Example 1

For nominal data:

load fisheriris
species = nominal(species);
species = mergelevels(species,...

{'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =

'hybrid' 'parent'
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Example 2

For ordinal data:

A = ordinal([1 2 3 2 1],{'lo','med','hi'})
A =

lo med hi med lo

A = mergelevels(A,{'lo','med'},'bad')
A =

bad bad hi bad bad

See Also addlevels, droplevels, islevel, reorderlevels, getlabels
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Purpose Markov chain Metropolis-Hastings sampler

Syntax smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
'proprnd',proprnd)

smpl = mhsample(...,'symmetric',sym)
smpl = mhsample(...,'burnin',K)
smpl = mhsample(...,'thin',m)
smpl = mhsample(...,'nchain',n)
[smpl,accept] = mhsample(...)

Description smpl = mhsample(start,nsamples,'pdf',pdf,'proppdf',proppdf,
'proprnd',proprnd) draws nsamples random samples from a target
stationary distribution pdf using the Metropolis-Hastings algorithm.

start is a row vector containing the start value of the Markov
Chain, nsamples is an integer specifying the number of samples to be
generated, and pdf, proppdf, and proprnd are function handles created
using @. proppdf defines the proposal distribution density, and proprnd
defines the random number generator for the proposal distribution. pdf
and proprnd take one argument as an input with the same type and
size as start. proppdf takes two arguments as inputs with the same
type and size as start.

smpl is a column vector or matrix containing the samples. If the
log density function is preferred, 'pdf' and 'proppdf' can be
replaced with 'logpdf' and 'proppdf'. The density functions used
in Metropolis-Hastings algorithm are not necessarily normalized. If
the proppdf or logpdf q(x,y) satisfies q(x,y) = q(y,x), for example,
the proposal distribution is symmetric, mhsample implements the
Random Walk Metropolis-Hastings sampling. If the proppdf or logpdf
q(x,y) satisfies q(x,y) = q(x), for example, the proposal distribution is
independent of current values, mhsample implements the Independent
Metropolis-Hastings sampling.

smpl = mhsample(...,'symmetric',sym) draws nsamples random
samples from a target stationary distribution pdf using the
Metropolis-Hastings algorithm. sym is a logical value that indicates
whether the proposal distribution is symmetric. The default value is
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false, which corresponds to the asymmetric proposal distribution. If sym
is true, for example, the proposal distribution is symmetric, proppdf
and logproppdf are optional.

smpl = mhsample(...,'burnin',K) generates a Markov chain with
values between the starting point and the kth point omitted in the
generated sequence. Values beyond the kth point are kept. k is a
nonnegative integer with default value of 0.

smpl = mhsample(...,'thin',m) generates a Markov chain with m-1
out of m values omitted in the generated sequence. m is a positive integer
with default value of 1.

smpl = mhsample(...,'nchain',n) generates n Markov chains using
the Metropolis-Hastings algorithm. n is a positive integer with a default
value of 1. smpl is a matrix containing the samples. The last dimension
contains the indices for individual chains.

[smpl,accept] = mhsample(...) also returns accept, the acceptance
rate of the proposed distribution. accept is a scalar if a single chain is
generated and is a vector if multiple chains are generated.

Examples Estimate the second order moment of a Gamma distribution using the
Independent Metropolis-Hastings sampling.

alpha = 2.43;
beta = 1;
pdf = @(x)gampdf(x,alpha,beta); %target distribution
proppdf = @(x,y)gampdf(x,floor(alpha),floor(alpha)/alpha);
proprnd = @(x)sum(...

exprnd(floor(alpha)/alpha,floor(alpha),1));
nsamples = 5000;
smpl = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,...

'proppdf',proppdf);
xxhat = cumsum(smpl.^2)./(1:nsamples)';
plot(1:nsamples,xxhat)
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Generate random samples from N(0,1) using the Random Walk
Metropolis-Hastings sampling.

delta = .5;

pdf = @(x) normpdf(x);

proppdf = @(x,y) unifpdf(y-x,-delta,delta);

proprnd = @(x) x + rand*2*delta - delta;

nsamples = 15000;

x = mhsample(1,nsamples,'pdf',pdf,'proprnd',proprnd,'symmetric',1);

histfit(x,50)
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See Also slicesample, rand

14-469



mle

Purpose Maximum likelihood estimation

Syntax phat = mle(data)
[phat,pci] = mle(data)
[...] = mle(data,'distribution',dist)
[...] = mle(data,...,name1,val1,name2,val2,...)
[...] = mle(data,'pdf',pdf,'cdf',cdf,'start',start,...)
[...] = mle(data,'logpdf',logpdf,'logsf',logsf,'start',start,

...)
[...] = mle(data,'nloglf',nloglf,'start',start,...)

Description phat = mle(data) returns maximum likelihood estimates (MLEs) for
the parameters of a normal distribution, computed using the sample
data in the vector data.

[phat,pci] = mle(data) returns MLEs and 95% confidence intervals
for the parameters.

[...] = mle(data,'distribution',dist) computes parameter
estimates for the distribution specified by dist. The following table
lists acceptable values for dist.

Distribution Value of dist

Beta 'beta'

Bernoulli 'bernoulli'

Binomial 'binomial'

Discrete uniform 'discrete uniform' or 'unid'

Exponential 'exponential'

Extreme value 'extreme value' or 'ev'

Gamma 'gamma'

Generalized
extreme value

'generalized extreme value' or 'gev'

Generalized Pareto 'generalized pareto' or 'gp'
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Distribution Value of dist

Geometric 'geometric'

Lognormal 'lognormal'

Negative binomial 'negative binomial' or 'nbin'

Normal 'normal'

Poisson 'poisson'

Rayleigh 'rayleigh'

Uniform 'uniform'

Weibull 'weibull' or 'wbl'

[...] = mle(data,...,name1,val1,name2,val2,...) specifies
optional argument name/value pairs chosen from the following list.

Name Value

'censoring' A boolean vector of the same size as data,
containing ones when the corresponding
elements of data are right-censored
observations and zeros when the corresponding
elements are exact observations. The default
is that all observations are observed exactly.
Censoring is not supported for all distributions.

'frequency' A vector of the same size as data, containing
non-negative integer frequencies for the
corresponding elements in data. The default is
one observation per element of data.

'alpha' A value between 0 and 1 specifying a confidence
level of 100(1-alpha)% for pci. The default is
0.05 for 95% confidence.
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Name Value

'ntrials' A scalar, or a vector of the same size as data,
containing the total number of trials for the
corresponding element of data. Applies only to
the binomial distribution.

'options' A structure created by a call to statset,
containing numerical options for the fitting
algorithm. Not applicable to all distributions.

mle can also fit custom distributions that you define using distribution
functions, in one of three ways.

[...] = mle(data,'pdf',pdf,'cdf',cdf,'start',start,...)
returns MLEs for the parameters of the distribution defined by the
probability density and cumulative distribution functions pdf and
cdf. pdf and cdf are function handles created using the @ sign. They
accept as inputs a vector data and one or more individual distribution
parameters, and return vectors of probability density values and
cumulative probability values, respectively. If the 'censoring'
name/value pair is not present, you can omit the 'cdf' name/value
pair. mle computes the estimates by numerically maximizing the
distribution’s log-likelihood, and start is a vector containing initial
values for the parameters.

[...] =
mle(data,'logpdf',logpdf,'logsf',logsf,'start',start,...)
returns MLEs for the parameters of the distribution defined by the log
probability density and log survival functions logpdf and logsf.
logpdf and logsf are function handles created using the @ sign. They
accept as inputs a vector data and one or more individual distribution
parameters, and return vectors of logged probability density values and
logged survival function values, respectively. This form is sometimes
more robust to the choice of starting point than using pdf and cdf
functions. If the 'censoring' name/value pair is not present, you can
omit the 'logsf' name/value pair. start is a vector containing initial
values for the distribution’s parameters.
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[...] = mle(data,'nloglf',nloglf,'start',start,...)
returns MLEs for the parameters of the distribution whose negative
log-likelihood is given by nloglf. nloglf is a function handle, specified
using the @ sign, that accepts the four input arguments:

• params - a vector of distribution parameter values

• data - a vector of data

• cens - a boolean vector of censoring values

• freq - a vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see above). However,
nloglf can safely ignore its cens and freq arguments in that case.
nloglf returns a scalar negative log-likelihood value and, optionally,
a negative log-likelihood gradient vector (see the 'GradObj' statset
parameter below). start is a vector containing initial values for the
distribution’s parameters.

pdf, cdf, logpdf, logsf, or nloglf can also be cell arrays whose first
element is a function handle as defined above, and whose remaining
elements are additional arguments to the function. mle places these
arguments at the end of the argument list in the function call.

The following optional argument name/value pairs are valid only when
'pdf' and 'cdf', 'logpdf' and 'logcdf', or 'nloglf' are given:

• 'lowerbound' — A vector the same size as start containing lower
bounds for the distribution parameters. The default is -Inf.

• 'upperbound' — A vector the same size as start containing upper
bounds for the distribution parameters. The default is Inf.

• 'optimfun' — A string, either 'fminsearch' or 'fmincon', naming
the optimization function to be used in maximizing the likelihood.
The default is 'fminsearch'. You can only specify 'fmincon' if the
Optimization Toolbox is available.
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When fitting a custom distribution, use the 'options' parameter
to control details of the maximum likelihood optimization. See
statset('mlecustom') for parameter names and default values. mle
interprets the following statset parameters for custom distribution
fitting as follows:

Parameter Value

'GradObj' 'on' or 'off', indicating whether or not fmincon
can expect the function provided with the 'nloglf'
name/value pair to return the gradient vector of
the negative log-likelihood as a second output. The
default is 'off'. Ignored when using fminsearch.

'DerivStep' The relative difference used in finite difference
derivative approximations when using fmincon, and
'GradObj' is 'off'. 'DerivStep' can be a scalar, or
the same size as 'start'. The default is eps^(1/3).
Ignored when using fminsearch.

'FunValCheck' 'on' or 'off', indicating whether or not mle should
check the values returned by the custom distribution
functions for validity. The default is 'on'. A poor
choice of starting point can sometimes cause these
functions to return NaNs, infinite values, or out of
range values if they are written without suitable
error-checking.

'TolBnd' An offset for upper and lower bounds when using
fmincon. mle treats upper and lower bounds as
strict inequalities (i.e., open bounds). With fmincon,
this is approximated by creating closed bounds
inset from the specified upper and lower bounds by
TolBnd. The default is 1e-6.

Example rv = binornd(20,0.75)
rv =

16
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[p,pci] = mle('binomial',rv,0.05,20)
p =

0.8000
pci =

0.5634
0.9427

See Also betafit, binofit, evfit, expfit, gamfit, gevfit, gpfit, lognfit,
nbinfit, normfit, mlecov, poissfit, raylfit, statset, unifit,
wblfit
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Purpose Asymptotic covariance matrix of maximum likelihood estimators

Syntax ACOV = mlecov(params,data,...)
ACOV = mlecov(params,data,'pdf',pdf,'cdf',cdf)
ACOV = mlecov(params,data,'logpdf',logpdf,'logsf',logsf)
ACOV = mlecov(params,data,'nloglf',nloglf)
[...] = mlecov(params,data,...,param1,val1,param2,val2,...)

Description ACOV = mlecov(params,data,...) returns an approximation to the
asymptotic covariance matrix of the maximum likelihood estimators of
the parameters for a specified distribution. The following paragraphs
describe how to specify the distribution. mlecov computes a finite
difference approximation to the Hessian of the log-likelihood at the
maximum likelihood estimates params, given the observed data, and
returns the negative inverse of that Hessian. ACOV is a p-by-p matrix,
where p is the number of elements in params.

You must specify a distribution after the input argument data, as
follows.

ACOV = mlecov(params,data,'pdf',pdf,'cdf',cdf) enables you
to define a distribution by its probability density and cumulative
distribution functions, pdf and cdf, respectively. pdf and cdf are
function handles that you create using the @ sign. They accept a vector
of data and one or more individual distribution parameters as inputs
and return vectors of probability density function values and cumulative
distribution values, respectively. If the 'censoring' name/value pair
(see below) is not present, you can omit the 'cdf' name/value pair.

ACOV = mlecov(params,data,'logpdf',logpdf,'logsf',logsf)
enables you to define a distribution by its log probability density and
log survival functions, logpdf and logsf, respectively. logpdf and
logsf are function handles that you create using the @ sign. They
accept as inputs a vector of data and one or more individual distribution
parameters, and return vectors of logged probability density values
and logged survival function values, respectively. If the 'censoring'
name/value pair (see below) is not present, you can omit the 'logsf'
name/value pair.
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ACOV = mlecov(params,data,'nloglf',nloglf) enables you to define
a distribution by its log-likelihood function. nloglf is a function
handle, specified using the @ sign, that accepts the following four input
arguments:

• params — Vector of distribution parameter values

• data — Vector of data

• cens — Boolean vector of censoring values

• freq — Vector of integer data frequencies

nloglf must accept all four arguments even if you do not supply the
'censoring' or 'frequency' name/value pairs (see below). However,
nloglf can safely ignore its cens and freq arguments in that case.
nloglf returns a scalar negative log-likelihood value and, optionally,
the negative log-likelihood gradient vector (see the 'gradient'
name/value pair below).

pdf, cdf, logpdf, logsf, and nloglf can also be cell arrays whose first
element is a function handle, as defined above, and whose remaining
elements are additional arguments to the function. The mle function
places these arguments at the end of the argument list in the function
call.

[...] =
mlecov(params,data,...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs chosen from the following:

Name Value

'censoring' Boolean vector of the same size as data, containing
1’s when the corresponding elements of data are
right-censored observations and 0’s when the
corresponding elements are exact observations. The
default is that all observations are observed exactly.
Censoring is not supported for all distributions.

14-477



mlecov

Name Value

'frequency' A vector of the same size as data containing
nonnegative frequencies for the corresponding
elements in data. The default is one observation per
element of data.

'options' A structure opts containing numerical options for
the finite difference Hessian calculation. You create
opts by calling statset. The applicable statset
parameters are:

• 'GradObj' — 'on' or 'off', indicating whether
or not the function provided with the 'nloglf'
name/value pair can return the gradient vector of
the negative log-likelihood as its second output. The
default is 'off'.

• 'DerivStep' — Relative step size used in finite
difference for Hessian calculations. Can be a
scalar, or the same size as params. The default is
eps^(1/4). A smaller value might be appropriate if
'GradObj' is 'on'.

Example Create the following M-file function:

function logpdf = betalogpdf(x,a,b)
logpdf = (a-1)*log(x)+(b-1)*log(1-x)-betaln(a,b);

Fit a beta distribution to some simulated data, and compute the
approximate covariance matrix of the parameter estimates:

x = betarnd(1.23,3.45,25,1);
phat = mle(x,'dist','beta')
acov = mlecov(phat,x,'logpdf',@betalogpdf)

See Also mle
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Purpose Multinomial probability density function

Syntax Y = mnpdf(X,PROB)

Description Y = mnpdf(X,PROB) returns the pdf for the multinomial distribution
with probabilities PROB, evaluated at each row of X. X and PROB are
m-by-k matrices or 1-by-k vectors, where k is the number of multinomial
bins or categories. Each row of PROB must sum to one, and the sample
sizes for each observation (rows of X) are given by the row sums
sum(X,2). Y is an m-by-k matrix, and mnpdf computes each row of Y
using the corresponding rows of the inputs, or replicates them if needed.

Example % Compute the distribution
p = [1/2 1/3 1/6]; % Outcome probabilities
n = 10; % Sample size
x1 = 0:n;
x2 = 0:n;
[X1,X2] = meshgrid(x1,x2);
X3 = n-(X1+X2);
Y = mnpdf([X1(:),X2(:),X3(:)],repmat(p,(n+1)^2,1));

% Plot the distribution
Y = reshape(Y,n+1,n+1);
bar3(Y)
set(gca,'XTickLabel',0:n)
set(gca,'YTickLabel',0:n)
xlabel('x_1')
ylabel('x_2')
zlabel('Probability Mass')
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Note that the visualization does not show x3, which is determined by
the constraint x1 + x2 + x3 = n.

See Also mnrfit, mnrval, mnrnd
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Purpose Multinomial logistic regression

Syntax B = mnrfit(X,Y)
B = mnrfit(X,Y,param1,val1,param2,val2,...)
[B,dev] = mnrfit(...)
[B,dev,stats] = mnrfit(...)

Description B = mnrfit(X,Y) returns a matrix B of coefficient estimates for a
multinomial logistic regression of the responses in Y on the predictors
in X. X is an n-by-p matrix of p predictors at each of n observations.
Y is an n-by-k matrix, where Y(i,j) is the number of outcomes of
the multinomial category j for the predictor combinations given by
X(i,:). The sample sizes for each observation are given by the row
sums sum(Y,2).

Alternatively, Y can be an n-by-1 column vector of scalar integers from
1 to k indicating the value of the response for each observation, and
all sample sizes are taken to be 1.

The result B is a (p+1)-by-(k–1) matrix of estimates, where each column
corresponds to the estimated intercept term and predictor coefficients,
one for each of the first k–1 multinomial categories. The estimates for
the kth category are taken to be zero.

Note mnrfit automatically includes a constant term in all models. Do
not enter a column of ones directly into X.

mnrfit treats NaNs in either X or Y as missing values, and ignores them.

B = mnrfit(X,Y,param1,val1,param2,val2,...) allows you to
specify optional parameter name/value pairs to control the model fit.
Parameters are:

• 'model' — The type of model to fit; one of the text strings 'nominal'
(the default), 'ordinal', or 'hierarchical'
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• 'interactions' — Determines whether the model includes an
interaction between the multinomial categories and the coefficients.
Specify as 'off' to fit a model with a common set of coefficients
for the predictor variables, across all multinomial categories. This
is often described as parallel regression. Specify as 'on' to fit a
model with different coefficients across categories. In all cases,
the model has different intercepts across categories. Thus, B is a
vector containing k–1+p coefficient estimates when 'interaction'
is 'off', and a (p+1)-by-(k–1) matrix when it is 'on'. The default
is 'off' for ordinal models, and 'on' for nominal and hierarchical
models.

• 'link' — The link function to use for ordinal and hierarchical
models. The link function defines the relationship g(μ ij) = xibj between
the mean response for the ith observation in the jth category, μ ij , and
the linear combination of predictors xibj. Specify the link parameter
value as one of the text strings 'logit'(the default), 'probit',
'comploglog', or 'loglog'. You may not specify the 'link'
parameter for nominal models; these always use a multivariate
logistic link.

• 'estdisp' — Specify as 'on' to estimate a dispersion parameter for
the multinomial distribution in computing standard errors, or 'off'
(the default) to use the theoretical dispersion value of 1.

[B,dev] = mnrfit(...) returns the deviance of the fit dev.

[B,dev,stats] = mnrfit(...) returns a structure stats that
contains the following fields:

• dfe — Degrees of freedom for error

• s — Theoretical or estimated dispersion parameter

• sfit — Estimated dispersion parameter

• se — Standard errors of coefficient estimates B

• coeffcorr — Estimated correlation matrix for B

• covb — Estimated covariance matrix for B
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• t — t statistics for B

• p — p-values for B

• resid — Residuals

• residp — Pearson residuals

• residd — Deviance residuals

References [1] McCullagh, P., J.A. Nelder, Generalized Linear Models, 2nd edition,
Chapman & Hall/CRC Press, 1990.

See Also mnrval, glmfit, glmval, regress, regstats
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Purpose Random numbers from multinomial distribution

Syntax R = mnrnd(n,PROB)
R = mnrnd(n,PROB,m)

Description R = mnrnd(n,PROB) returns random vectors chosen from the
multinomial distribution with sample sizes n and probabilities PROB.
PROB is an m-by-k matrix or a 1-by-k vector of multinomial probabilities,
where k is the number of multinomial bins or categories. Each row of
PROB must sum to one. n is an m-by-1 vector of positive integers or a
positive scalar integer. R is an m-by-k matrix, and mnrnd generates
each row of Y using the corresponding rows of the inputs, or replicates
them if needed.

R = mnrnd(n,PROB,m) returns an m-by-k matrix of random vectors.

See Also mnpdf, mnrfit, mnrval, randsample
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Purpose Values and prediction intervals for multinomial logistic regression

Syntax PHAT = mnrval(B,X)
YHAT = mnrval(B,X,ssize)
[...,DLO,DHI] = mnrval(B,X,...,stats)
[...] = mnrval(...,param1,val1,param2,val2,...)

Description PHAT = mnrval(B,X) computes predicted probabilities for the
multinomial logistic regression model with predictors X. B contains
intercept and coefficient estimates as returned by the mnrfit function.
X is an n-by-p matrix of p predictors at each of n observations. PHAT is an
n-by-k matrix of predicted probabilities for each multinomial category.

Note mnrval automatically includes a constant term in all models. Do
not enter a column of ones directly into X.

YHAT = mnrval(B,X,ssize) computes predicted category counts for
sample sizes ssize. ssize is an n-by-1 column vector of positive
integers.

[...,DLO,DHI] = mnrval(B,X,...,stats) also computes 95%
confidence bounds on the predicted probabilities PHAT or counts YHAT.
stats is the structure returned by the mnrfit function. DLO and DHI
define a lower confidence bound of PHAT or YHAT minus DLO and an
upper confidence bound of PHAT or YHAT plus DHI. Confidence bounds
are nonsimultaneous and they apply to the fitted curve, not to new
observations.

[...] = mnrval(...,param1,val1,param2,val2,...) allows you to
specify optional parameter name/value pairs to control the predicted
values. These parameters must be set to the corresponding values used
with the mnrfit function to compute B. Parameters are:

• 'model' — The type of model that was fit by mnrfit; one of the text
strings 'nominal' (the default), 'ordinal', or 'hierarchical'.
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• 'interactions' — Determines whether the model fit by mnrfit
included an interaction between the multinomial categories and the
coefficients. The default is 'off' for ordinal models, and 'on' for
nominal and hierarchical models.

• 'link' — The link function that was used by mnrfit for ordinal
and hierarchical models. Specify the link parameter value as one of
the text strings 'logit'(the default), 'probit', 'comploglog', or
'loglog'. You may not specify the 'link' parameter for nominal
models; these always use a multivariate logistic link.

• 'type' — Set to 'category' (the default) to return predictions
and confidence bounds for the probabilities (or counts) of the k
multinomial categories. Set to 'cumulative' to return predictions
and confidence bounds for the cumulative probabilities (or counts) of
the first k–1 multinomial categories, as an n-by-(k–1) matrix. The
predicted cumulative probability for the kth category is 1. Set to
'conditional' to return predictions and confidence bounds in terms
of the first k–1 conditional category probabilities, i.e., the probability
for category j, given an outcome in category j or higher. When
'type' is 'conditional', and you supply the sample size argument
ssize, the predicted counts at each row of X are conditioned on the
corresponding element of ssize, across all categories.

• 'confidence' — The confidence level for the confidence bounds; a
value between 0 and 1. The default is 0.95.

References [1] McCullagh, P., J.A. Nelder, Generalized Linear Models, 2nd edition,
Chapman & Hall/CRC Press, 1990.

See Also mnrfit, glmfit, glmval
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Purpose Central moment of all orders

Syntax m = moment(X,order)
moment(X,order,dim)

Description m = moment(X,order) returns the central sample moment of X specified
by the positive integer order. For vectors, moment(x,order) returns
the central moment of the specified order for the elements of x. For
matrices, moment(X,order) returns central moment of the specified
order for each column. For N-dimensional arrays, moment operates
along the first nonsingleton dimension of X.

moment(X,order,dim) takes the moment along dimension dim of X.

Remarks Note that the central first moment is zero, and the second central
moment is the variance computed using a divisor of n rather than
n-1, where n is the length of the vector x or the number of rows in the
matrix X.

The central moment of order k of a distribution is defined as

m E xk
k= −( )μ

where E(x) is the expected value of x.

Example X = randn([6 5])
X =

1.1650 0.0591 1.2460 -1.2704 -0.0562
0.6268 1.7971 -0.6390 0.9846 0.5135
0.0751 0.2641 0.5774 -0.0449 0.3967
0.3516 0.8717 -0.3600 -0.7989 0.7562

-0.6965 -1.4462 -0.1356 -0.7652 0.4005
1.6961 -0.7012 -1.3493 0.8617 -1.3414

m = moment(X,3)
m =

-0.0282 0.0571 0.1253 0.1460 -0.4486
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See Also kurtosis, mean, skewness, std, var
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Purpose Multiple comparison test

Syntax c = multcompare(stats)
c = multcompare(stats,param1,val1,param2,val2,...)
[c,m] = multcompare(...)
[c,m,h] = multcompare(...)
[c,m,h,gnames] = multcompare(...)

Description c = multcompare(stats) performs a multiple comparison test using
the information in the stats structure, and returns a matrix c of
pairwise comparison results. It also displays an interactive graph of the
estimates with comparison intervals around them. See “Examples”
on page 14-494.

In a one-way analysis of variance, you compare the means of several
groups to test the hypothesis that they are all the same, against the
general alternative that they are not all the same. Sometimes this
alternative may be too general. You may need information about which
pairs of means are significantly different, and which are not. A test that
can provide such information is called a multiple comparison procedure.

When you perform a simple t-test of one group mean against another,
you specify a significance level that determines the cutoff value of the
t statistic. For example, you can specify the value alpha = 0.05 to
insure that when there is no real difference, you will incorrectly find
a significant difference no more than 5% of the time. When there are
many group means, there are also many pairs to compare. If you applied
an ordinary t-test in this situation, the alpha value would apply to each
comparison, so the chance of incorrectly finding a significant difference
would increase with the number of comparisons. Multiple comparison
procedures are designed to provide an upper bound on the probability
that any comparison will be incorrectly found significant.

The output c contains the results of the test in the form of a five-column
matrix. Each row of the matrix represents one test, and there is one
row for each pair of groups. The entries in the row indicate the means
being compared, the estimated difference in means, and a confidence
interval for the difference.
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For example, suppose one row contains the following entries.

2.0000 5.0000 1.9442 8.2206 14.4971

These numbers indicate that the mean of group 2 minus the mean of
group 5 is estimated to be 8.2206, and a 95% confidence interval for
the true mean is [1.9442, 14.4971].

In this example the confidence interval does not contain 0.0, so the
difference is significant at the 0.05 level. If the confidence interval did
contain 0.0, the difference would not be significant at the 0.05 level.

The multcompare function also displays a graph with each group mean
represented by a symbol and an interval around the symbol. Two means
are significantly different if their intervals are disjoint, and are not
significantly different if their intervals overlap. You can use the mouse
to select any group, and the graph will highlight any other groups that
are significantly different from it.

c = multcompare(stats,param1,val1,param2,val2,...) specifies
one or more of the parameter name/value pairs described in the
following table.

Parameter Name Parameter Values

'alpha' Scalar between 0 and 1 that determines the
confidence levels of the intervals in the matrix
c and in the figure (default is 0.05). The
confidence level is 100(1-alpha)%.

'displayopt' Either 'on' (the default) to display a graph
of the estimates with comparison intervals
around them, or 'off' to omit the graph. See
“Examples” on page 14-494.

ctype Specifies the type of critical value to use for the
multiple comparison. “Values of ctype” on page
14-491 describes the allowed values for ctype.
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Parameter Name Parameter Values

'dimension' A vector specifying the dimension or dimensions
over which the population marginal means
are to be calculated. Use only if you create
stats with the function anovan. The default
is 1 to compute over the first dimension. See
“Dimension Parameter” on page 14-493 for more
information.

'estimate' Specifies the estimate to be compared. The
allowable values of estimate depend on the
function that was the source of the stats
structure, as described in “Values of estimate”
on page 14-493

[c,m] = multcompare(...) returns an additional matrix m. The first
column of m contains the estimated values of the means (or whatever
statistics are being compared) for each group, and the second column
contains their standard errors.

[c,m,h] = multcompare(...) returns a handle h to the comparison
graph. Note that the title of this graph contains instructions for
interacting with the graph, and the x-axis label contains information
about which means are significantly different from the selected mean.
If you plan to use this graph for presentation, you may want to omit
the title and the x-axis label. You can remove them using interactive
features of the graph window, or you can use the following commands.

title('')
xlabel('')

[c,m,h,gnames] = multcompare(...) returns gnames, a cell array
with one row for each group, containing the names of the groups.

Values of ctype

The following table describes the allowed values for the parameter
ctype.
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Values ctype Meaning

'hsd' or
'tukey-kramer'

Use Tukey’s honestly significant difference
criterion. This is the default, and it is based on the
Studentized range distribution. It is optimal for
balanced one-way ANOVA and similar procedures
with equal sample sizes. It has been proven
to be conservative for one-way ANOVA with
different sample sizes. According to the unproven
Tukey-Kramer conjecture, it is also accurate for
problems where the quantities being compared
are correlated, as in analysis of covariance with
unbalanced covariate values.

'lsd' Use Tukey’s least significant difference procedure.
This procedure is a simple t-test. It is reasonable
if the preliminary test (say, the one-way ANOVA
F statistic) shows a significant difference. If it
is used unconditionally, it provides no protection
against multiple comparisons.

'bonferroni' Use critical values from the t distribution, after a
Bonferroni adjustment to compensate for multiple
comparisons. This procedure is conservative, but
usually less so than the Scheffé procedure.

'dunn-sidak' Use critical values from the t distribution, after
an adjustment for multiple comparisons that was
proposed by Dunn and proved accurate by Sidák.
This procedure is similar to, but less conservative
than, the Bonferroni procedure.

'scheffe' Use critical values from Scheffé’s S procedure,
derived from the F distribution. This procedure
provides a simultaneous confidence level for
comparisons of all linear combinations of the
means, and it is conservative for comparisons of
simple differences of pairs.
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Values of estimate

The allowable values of the parameter 'estimate' depend on the
function that was the source of the stats structure, according to the
following table.

Source Allowable Values of ’estimate’

'anova1' Ignored. Always compare the group means.

'anova2' Either 'column' (the default) or 'row' to
compare column or row means.

'anovan' Ignored. Always compare the population
marginal means as specified by the dim
argument.

'aoctool' Either 'slope', 'intercept', or 'pmm' to
compare slopes, intercepts, or population
marginal means. If the analysis of covariance
model did not include separate slopes, then
'slope' is not allowed. If it did not include
separate intercepts, then no comparisons are
possible.

'friedman' Ignored. Always compare average column ranks.

'kruskalwallis' Ignored. Always compare average group ranks.

Dimension Parameter

The dimension parameter is a vector specifying the dimension or
dimensions over which the population marginal means are to be
calculated. For example, if dim = 1, the estimates that are compared
are the means for each value of the first grouping variable, adjusted by
removing effects of the other grouping variables as if the design were
balanced. If dim = [1 3], population marginal means are computed for
each combination of the first and third grouping variables, removing
effects of the second grouping variable. If you fit a singular model, some
cell means may not be estimable and any population marginal means
that depend on those cell means will have the value NaN.
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Population marginal means are described by Milliken and Johnson
(1992) and by Searle, Speed, and Milliken (1980). The idea behind
population marginal means is to remove any effect of an unbalanced
design by fixing the values of the factors specified by dim, and
averaging out the effects of other factors as if each factor combination
occurred the same number of times. The definition of population
marginal means does not depend on the number of observations at each
factor combination. For designed experiments where the number of
observations at each factor combination has no meaning, population
marginal means can be easier to interpret than simple means ignoring
other factors. For surveys and other studies where the number of
observations at each combination does have meaning, population
marginal means may be harder to interpret.

Examples Example 1

The following example performs a 1-way analysis of variance (ANOVA)
and displays group means with their names.

load carsmall
[p,t,st] = anova1(MPG,Origin,'off');
[c,m,h,nms] = multcompare(st,'display','off');
[nms num2cell(m)]
ans =

'USA' [21.1328] [0.8814]
'Japan' [31.8000] [1.8206]
'Germany' [28.4444] [2.3504]
'France' [23.6667] [4.0711]
'Sweden' [22.5000] [4.9860]
'Italy' [28.0000] [7.0513]

multcompare also displays the following graph of the estimates with
comparison intervals around them.
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10 15 20 25 30 35 40 45

Italy

Sweden

France

Germany

Japan

USA

Click on the group you want to test

The means of groups USA and Japan are significantly different

You can click the graphs of each country to compare its mean to those of
other countries.

Example 2

The following continues the example described in the anova1 reference
page, which is related to testing the material strength in structural
beams. From the anova1 output you found significant evidence that
the three types of beams are not equivalent in strength. Now you can
determine where those differences lie. First you create the data arrays
and you perform one-way ANOVA.

strength = [82 86 79 83 84 85 86 87 74 82 ...
78 75 76 77 79 79 77 78 82 79];

alloy = {'st','st','st','st','st','st','st','st',...
'al1','al1','al1','al1','al1','al1',...
'al2','al2','al2','al2','al2','al2'};

[p,a,s] = anova1(strength,alloy);
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Among the outputs is a structure that you can use as input to
multcompare.

[c,m,h,nms] = multcompare(s);
[nms num2cell(c)]
ans =

'st' [1] [2] [ 3.6064] [ 7] [10.3936]
'al1' [1] [3] [ 1.6064] [ 5] [ 8.3936]
'al2' [2] [3] [-5.6280] [-2] [ 1.6280]

74 76 78 80 82 84 86

al2

al1

st

Click on the group you want to test

2 groups have means significantly different from st

The third row of the output matrix shows that the differences in
strength between the two alloys is not significant. A 95% confidence
interval for the difference is [-5.6, 1.6], so you cannot reject the
hypothesis that the true difference is zero.

The first two rows show that both comparisons involving the first group
(steel) have confidence intervals that do not include zero. In other
words, those differences are significant. The graph shows the same
information.
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See Also anova1, anova2, anovan, aoctool, friedman, kruskalwallis

References [1] Hochberg, Y., and A. C. Tamhane, Multiple Comparison Procedures,
Wiley, 1987.

[2] Milliken, G. A., and D. E. Johnson, Analysis of Messy Data, Volume
1: Designed Experiments, Chapman & Hall, 1992.

[3] Searle, S. R., F. M. Speed, and G. A. Milliken, “Population marginal
means in the linear model: an alternative to least squares means,”
American Statistician, 1980, pp. 216-221.
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Purpose Multivari chart for grouped data

Syntax multivarichart(y,GROUP)
multivarichart(Y)
multivarichart(...,param1,val1,param2,val2,...)
[charthandle,AXESH] = multivarichart(...)

Description multivarichart(y,GROUP) displays the multivari chart for the vector
y grouped by entries in the cell array GROUP. Each cell of GROUP must
contain a grouping variable that can be a categorical variable, numeric
vector, character matrix, or single-column cell array of strings. (See
“Grouped Data” on page 2-41.) GROUP can also be a matrix whose
columns represent different grouping variables. Each grouping variable
must have the same number of elements as y. The number of grouping
variables must be 2, 3, or 4.

Each subplot of the plot matrix contains a multivari chart for the first
and second grouping variables. The x-axis in each subplot indicates
values of the first grouping variable. The legend at the bottom of the
figure window indicates values of the second grouping variable. The
subplot at position (i,j) is the multivari chart for the subset of y at the
ith level of the third grouping variable and the jth level of the fourth
grouping variable. If the third or fourth grouping variable is absent, it
is considered to have only one level.

multivarichart(Y) displays the multivari chart for a matrix Y. The
data in different columns represent changes in one factor. The data in
different rows represent changes in another factor.

multivarichart(...,param1,val1,param2,val2,...) specifies one
or more of the following name/value pairs:

• 'varnames' — Grouping variable names in a character matrix or a
cell array of strings, one per grouping variable. Default names are
'X1', 'X2', ... .

• 'plotorder' — A string with the value 'sorted' or a vector
containing a permutation of the integers from 1 to the number of
grouping variables.
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If 'plotorder' is a string with value 'sorted', the grouping
variables are rearranged in descending order according to the
number of levels in each variable.

If 'plotorder' is a vector, it indicates the order in which each
grouping variable should be plotted. For example, [2,3,1,4]
indicates that the second grouping variable should be used as the
x-axis of each subplot, the third grouping variable should be used as
the legend, the first grouping variable should be used as the columns
of the plot, and the fourth grouping variable should be used as the
rows of the plot.

[charthandle,AXESH] = multivarichart(...) returns a handle
charthandle to the figure window and a matrix AXESH of handles to
the subplot axes.

Example Display a multivari chart for data with two grouping variables:

y = randn(100,1); % response
group = [ceil(3*rand(100,1)) ceil(2*rand(100,1))];
multivarichart(y,group)
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Display a multivari chart for data with four grouping variables:

y = randn(1000,1); % response
group = {ceil(2*rand(1000,1)),ceil(3*rand(1000,1)), ...

ceil(2*rand(1000,1)),ceil(3*rand(1000,1))};
multivarichart(y,group)
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See Also maineffectsplot, interactionplot
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Purpose Multivariate normal cumulative distribution function

Syntax y = mvncdf(X)
y = mvncdf(X,mu,SIGMA)
y = mvncdf(xl,xu,mu,SIGMA)
[y,err] = mvncdf(...)
[...] = mvncdf(...,options)

Description y = mvncdf(X) returns the cumulative probability of the multivariate
normal distribution with zero mean and identity covariance matrix,
evaluated at each row of X. Rows of the n-by-d matrix X correspond
to observations or points, and columns correspond to variables or
coordinates. y is an n-by-1 vector.

y = mvncdf(X,mu,SIGMA) returns the cumulative probability of the
multivariate normal distribution with mean mu and covariance SIGMA,
evaluated at each row of X. mu is a 1-by-d vector, and SIGMA is a d-by-d
symmetric, positive definite matrix. mu can also be a scalar value, which
mvncdf replicates to match the size of X. Pass in the empty matrix [] for
mu to use as its default value when you want to only specify SIGMA.

The multivariate normal cumulative probability at X is defined as the
probability that a random vector V, distributed as multivariate normal,
will fall within the semi-infinite rectangle with upper limits defined by
X, for example, Pr{V(1)≤X(1),V(2)≤X(2),...,V(d)≤X(d)}.

y = mvncdf(xl,xu,mu,SIGMA) returns the multivariate normal
cumulative probability evaluated over the rectangle with lower and
upper limits defined by xl and xu, respectively.

[y,err] = mvncdf(...) returns an estimate of the error in y. For
bivariate and trivariate distributions, mvncdf uses adaptive quadrature
on a transformation of the t density, based on methods developed by
Drezner and Wesolowsky and by Genz, as described in the references.
The default absolute error tolerance for these cases is 1e-8. For four
or more dimensions, mvncdf uses a quasi-Monte Carlo integration
algorithm based on methods developed by Genz and Bretz, as described
in the references. The default absolute error tolerance for these cases
is 1e-4.

14-502



mvncdf

[...] = mvncdf(...,options) specifies control parameters for the
numerical integration used to compute y. This argument can be created
by a call to statset. Choices of statset parameters:

• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8
when d < 4, or 1e-4 when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations
allowed when d ≥ 4. Default is 1e7. 'MaxFunEvals' is ignored when
d < 4.

• 'Display' — Level of display output. Choices are 'off' (the
default), 'iter', and 'final'. 'Display' is ignored when d < 4.

Example mu = [1 -1]; SIGMA = [.9 .4; .4 .3];
[X1,X2] = meshgrid(linspace(-1,3,25)',linspace(-3,1,25)');
X = [X1(:) X2(:)];
p = mvncdf(X,mu,SIGMA);
surf(X1,X2,reshape(p,25,25));

See Also mvtcdf, mvnpdf, mvnrnd, normcdf
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Purpose Multivariate normal probability density function

Syntax y = mvnpdf(X)
y = mvnpdf(X,MU)
y = mvnpdf(X,MU,SIGMA)

Description y = mvnpdf(X) returns the n-by-1 vector y, containing the probability
density of the multivariate normal distribution with zero mean and
identity covariance matrix, evaluated at each row of the n-by-d matrix
X. Rows of X correspond to observations and columns correspond to
variables or coordinates.

y = mvnpdf(X,MU) returns the density of the multivariate normal
distribution with mean mu and identity covariance matrix, evaluated
at each row of X. MU is a 1-by-d vector, or an n-by-d matrix. If MU is a
matrix, the density is evaluated for each row of X with the corresponding
row of MU. MU can also be a scalar value, which mvnpdf replicates to
match the size of X.

y = mvnpdf(X,MU,SIGMA) returns the density of the multivariate
normal distribution with mean MU and covariance SIGMA, evaluated
at each row of X. SIGMA is a d-by-d matrix, or an d-by-d-by-n array,
in which case the density is evaluated for each row of X with the
corresponding page of SIGMA, i.e., mvnpdf computes y(i) using X(i,:)
and SIGMA(:,:,i). Specify [] for MU to use its default value when you
want to specify only SIGMA.

If X is a 1-by-d vector, mvnpdf replicates it to match the leading
dimension of mu or the trailing dimension of SIGMA.

Example mu = [1 -1];
SIGMA = [.9 .4; .4 .3];
X = mvnrnd(mu,SIGMA,10);
p = mvnpdf(X,mu,SIGMA);

See Also mvncdf, mvnrnd, normpdf
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Purpose Multivariate linear regression

Syntax beta = mvregress(X,Y)
[beta,SIGMA] = mvregress(X,Y)
[beta,SIGMA,RESID] = mvregress(X,Y)
[beta,SIGMA,RESID,COVBETA] = mvregress(...)
[beta,SIGMA,RESID,objective] = mvregress(...)
[...] = mvregress(X,Y,param1,val1,param2,val2,...)

Description beta = mvregress(X,Y) returns a p-by-1 vector beta of coefficient
estimates for a multivariate regression of the responses in Y on the
predictors in X. X is an n-by-p matrix of p predictors at each of n
observations. Y is an n-by-d vector of d-dimensional multivariate
responses.

Note To include a constant term in a model, X should contain a column
of ones.

X can also be a cell array of length n, with each cell containing a d-by-p
design matrix for one multivariate observation. If all observations have
the same d-by-p design matrix, X can be a single cell.

mvregress treats NaNs in X or Y as missing values. Missing values in X
are ignored. Missing values in Y are handled according to the value of
the 'algorithm' parameter described below.

[beta,SIGMA] = mvregress(X,Y) also returns a d-by-d matrix SIGMA
for the estimated covariance of Y.

[beta,SIGMA,RESID] = mvregress(X,Y) also returns an n-by-d matrix
RESID of residuals.

The RESID values corresponding to missing values in Y are the
differences between the conditionally imputed values for Y and the
fitted values. The SIGMA estimate is not the sample covariance matrix
of the RESID matrix.
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[beta,SIGMA,RESID,COVBETA] = mvregress(...) also returns a
matrix COVBETA for the estimated covariance the coefficients. By
default, or if the 'varformat' parameter is 'beta' (see below),
COVBETA is the estimated covariance matrix of beta. If the 'varformat'
parameter is 'full', COVBETA is the combined estimated covariance
matrix for beta and SIGMA.

[beta,SIGMA,RESID,objective] = mvregress(...) also returns the
value of the objective function, or log likelihood, objective, after the
last iteration.

[...] = mvregress(X,Y,param1,val1,param2,val2,...) specifies
additional parameter name/value pairs chosen from the following:

• 'algorithm' — Either 'ecm' to compute the maximum likelihood
estimates via the ECM algorithm, 'cwls' to perform least squares
(optionally conditionally weighted by an input covariance matrix),
or 'mvn' to omit observations with missing data and compute
the ordinary multivariate normal estimates. Default is 'mvn' for
complete data, 'ecm' for missing data when the sample size is
sufficient to estimate all parameters, and 'cwls' otherwise.

• 'maxiter' — Maximum number of iterations. Default is 100.

• 'tolbeta' — Convergence tolerance for beta. Default is sqrt(eps).
Iterations continue until the tolbeta and tolobj conditions are met.
The test for convergence at iteration k is

norm(beta(k)-beta(k-1)) <
sqrt(p)*tolbeta*(1+norm(beta(k)))

where p = length(beta).

• 'tolobj' — Convergence tolerance for changes in the objective
function. Default is eps^(3/4). The test is

abs(obj(k)-obj(k-1)) < tolobj*(1+abs(obj(k)))

where obj is the objective function. If both tolobj and tolbeta are
0, the function performs maxiter iterations with no convergence test.
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• 'param0' — A vector of p elements to be used as the initial estimate
for beta. Default is a zero vector. Not used for the 'mvn' algorithm.

• 'covar0' — A d-by-d matrix to be used as the initial estimate for
SIGMA. Default is the identity matrix. For the 'cwls' algorithm,
this matrix is usually a diagonal matrix used as a weighting at each
iteration. The 'cwls' algorithm uses the initial value of SIGMA at
each iteration, without changing it.

• 'outputfcn' — An output function called with three arguments:

1. A vector of current parameter estimates.

2. A structure with fields 'Covar' for the current value of the
covariance matrix, 'iteration' for the current iteration number,
and 'fval' for the current value of the objective function.

3. A text string that is 'init' when called during initialization,
'iter' when called after an iteration, and 'done' when called after
completion.

• 'varformat' — Either 'beta' to compute COVBETA for beta only
(default), or 'full' to compute COVBETA for both b and SIGMA.

• 'vartype' — Either 'hessian' to compute COVBETA using the
Hessian or observed information (default), or 'fisher' to compute
COVBETA using the complete-data Fisher or expected information. The
'hessian' method takes into account the increased uncertainties
due to missing data, while the 'fisher' method does not.

References [1] Little, R. J. A., D. B. Rubin, Statistical Analysis with Missing Data,
2nd ed., John Wiley & Sons, Inc., 2002.

[2] Meng, X., D. B. Rubin, “Maximum Likelihood Estimation via the
ECM Algorithm,” Biometrika, Vol. 80, No. 2, 1993, pp. 267–278.

[3] Sexton, J., A. R. Swensen, “ECM Algorithms that Converge at the
Rate of EM,” Biometrika, Vol. 87, No. 3, 2000, pp. 651–662.
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[4] Dempster, A. P., N.M. Laird, D. B. Rubin, “Maximum Likelihood
from Incomplete Data via the EM Algorithm,” Journal of the Royal
Statistical Society, Series B, Vol. 39, No. 1, 1977, pp. 1–37.

See Also mvregresslike, regstats, manova1

14-508



mvregresslike

Purpose Negative log-likelihood for multivariate regression

Syntax nlogL = mvregresslike(X,Y,beta,SIGMA,alg)
[nlogL,COVBETA] = mvregresslike(...)
[nlogL,COVBETA] = mvregresslike(...,type,format)

Description nlogL = mvregresslike(X,Y,beta,SIGMA,alg) computes the
negative log-likelihood nlogL for a multivariate regression of the
d-dimensional multivariate observations in the n-by-d matrix Y on the
predictor variables in the matrix or cell array X, evaluated for the p-by-1
column vector beta of coefficient estimates and the d-by-d matrix SIGMA
specifying the covariance of a row of Y. If d = 1, X can be an n-by-p
design matrix of predictor variables. For any value of d, X can also be a
cell array of length n, with each cell containing a d-by-p design matrix
for one multivariate observation. If all observations have the same
d-by-p design matrix, X can be a single cell.

NaN values in X or Y are taken as missing. Observations with missing
values in X are ignored. Treatment of missing values in Y depends on
the algorithm specified by alg.

alg should match the algorithm used by mvregress to obtain the
coefficient estimates beta, and must be one of the following:

• 'ecm' — ECM algorithm

• 'cwls' — Least squares conditionally weighted by SIGMA

• 'mvn' — Multivariate normal estimates computed after omitting
rows with any missing values in Y

[nlogL,COVBETA] = mvregresslike(...) also returns an estimated
covariance matrix COVBETA of the parameter estimates beta.

[nlogL,COVBETA] = mvregresslike(...,type,format) specifies the
type and format of COVBETA.

type is either:
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• 'hessian' — To use the Hessian or observed information. This
method takes into account the increased uncertainties due to missing
data. This is the default.

• 'fisher' — To use the Fisher or expected information. This method
uses the complete data expected information, and does not include
uncertainty due to missing data.

format is either:

• 'beta' — To compute COVBETA for beta only. This is the default.

• 'full' — To compute COVBETA for both beta and SIGMA.

See Also mvregress, regstats, manova1
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Purpose Random numbers from multivariate normal distribution

Syntax R = mvnrnd(MU,SIGMA)
r = mvnrnd(MU,SIGMA,cases)

Description R = mvnrnd(MU,SIGMA) returns an n-by-d matrix R of random vectors
chosen from the multivariate normal distribution with mean MU, and
covariance SIGMA. MU is an n-by-d matrix, and mvnrnd generates each
row of R using the corresponding row of mu. SIGMA is a d-by-d symmetric
positive semi-definite matrix, or a d-by-d-by-n array. If SIGMA is an
array, mvnrnd generates each row of R using the corresponding page of
SIGMA, i.e., mvnrnd computes R(i,:) using MU(i,:) and SIGMA(:,:,i).
If MU is a 1-by-d vector, mvnrnd replicates it to match the trailing
dimension of SIGMA.

r = mvnrnd(MU,SIGMA,cases) returns a cases-by-d matrix R of
random vectors chosen from the multivariate normal distribution with
a common 1-by-d mean vector MU, and a common d-by-d covariance
matrix SIGMA.

Example mu = [2 3];
SIGMA = [1 1.5; 1.5 3];
r = mvnrnd(mu,SIGMA,100);
plot(r(:,1),r(:,2),'+')
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See Also lhsnorm, mvncdf, mvnpdf, normrnd
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Purpose Multivariate t cumulative distribution function

Syntax y = mvtcdf(X,C,DF)
y = mvtcdf(xl,xu,C,DF)
[y,err] = mvtcdf(...)
[...] = mvntdf(...,options)

Description y = mvtcdf(X,C,DF) returns the cumulative probability of the
multivariate t distribution with correlation parameters C and degrees
of freedom DF, evaluated at each row of X. Rows of the n-by-d matrix
X correspond to observations or points, and columns correspond to
variables or coordinates. y is an n-by-1 vector.

C is a symmetric, positive definite, d-by-d matrix, typically a correlation
matrix. If its diagonal elements are not 1, mvtcdf scales C to correlation
form. DF is a scalar, or a vector with n elements.

The multivariate t cumulative probability at X is defined as the
probability that a random vector T, distributed as multivariate t, will
fall within the semi-infinite rectangle with upper limits defined by X,
i.e., Pr{T(1)≤X(1),T(2)≤X(2),...T(d)≤X(d)}.

y = mvtcdf(xl,xu,C,DF) returns the multivariate t cumulative
probability evaluated over the rectangle with lower and upper limits
defined by xl and xu, respectively.

[y,err] = mvtcdf(...) returns an estimate of the error in y. For
bivariate and trivariate distributions, mvtcdf uses adaptive quadrature
on a transformation of the t density, based on methods developed
by Genz, as described in the references. The default absolute error
tolerance for these cases is 1e-8. For four or more dimensions, mvtcdf
uses a quasi-Monte Carlo integration algorithm based on methods
developed by Genz and Bretz, as described in the references. The
default absolute error tolerance for these cases is 1e-4.

[...] = mvntdf(...,options) specifies control parameters for the
numerical integration used to compute y. This argument can be created
by a call to statset. Choices of statset parameters are:
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• 'TolFun' — Maximum absolute error tolerance. Default is 1e-8
when d < 4, or 1e-4 when d ≥ 4.

• 'MaxFunEvals' — Maximum number of integrand evaluations
allowed when d ≥ 4. Default is 1e7. 'MaxFunEvals' is ignored when
d < 4.

• 'Display' — Level of display output. Choices are 'off' (the
default), 'iter', and 'final'. 'Display' is ignored when d < 4.

Example C = [1 .4; .4 1]; df = 2;
[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
p = mvtcdf(X,C,df);
surf(X1,X2,reshape(p,25,25));

See Also mvncdf, mvnrnd, mvtrnd, tcdf
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Purpose Multivariate t probability density function

Syntax y = mvtpdf(X,C,df)

Description y = mvtpdf(X,C,df) returns the probability density of the multivariate
t distribution with correlation parameters C and degrees of freedom df,
evaluated at each row of X. Rows of the n-by-d matrix X correspond
to observations or points, and columns correspond to variables or
coordinates. C is a symmetric, positive definite, d-by-d matrix, typically
a correlation matrix. If its diagonal elements are not 1, mvtpdf scales
C to correlation form. df is a scalar, or a vector with n elements. y is
an n-by-1 vector.

Example Visualize a multivariate t distribution:

[X1,X2] = meshgrid(linspace(-2,2,25)',linspace(-2,2,25)');
X = [X1(:) X2(:)];
C = [1 .4; .4 1];
df = 2;
p = mvtpdf(X,C,df);
surf(X1,X2,reshape(p,25,25));
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See Also mvtcdf, mvtrnd, tpdf, mvnpdf
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Purpose Random numbers from multivariate t distribution

Syntax R = mvtrnd(C,df,cases)
R = mvtrnd(C,df)

Description R = mvtrnd(C,df,cases) returns a matrix of random numbers chosen
from the multivariate t distribution, where C is a correlation matrix.
df is the degrees of freedom and is either a scalar or is a vector with
cases elements. If p is the number of columns in C, then the output
R has cases rows and p columns.

Let t represent a row of R. Then the distribution of t is that of a vector
having a multivariate normal distribution with mean 0, variance 1, and
covariance matrix C, divided by an independent chi-square random
value having df degrees of freedom. The rows of R are independent.

C must be a square, symmetric and positive definite matrix. If its
diagonal elements are not all 1 (that is, if C is a covariance matrix rather
than a correlation matrix), mvtrnd computes the equivalent correlation
matrix before generating the random numbers.

R = mvtrnd(C,df) returns a single random number from the
multivariate t distribution.

Example SIGMA = [1 0.8;0.8 1];
R = mvtrnd(SIGMA,3,100);
plot(R(:,1),R(:,2),'+')

14-517



mvtrnd

See Also mvtcdf, mvnrnd, tcdf
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Purpose Covariance matrix, ignoring NaNs

Syntax C = nancov(X)
C = nancov(X,Y)
C = nancov(X)
nancov
C = nancov(X,1)
C = nancov(...,'pairwise')

Description C = nancov(X), where X is a vector, returns the sample variance of the
values in X, treating NaNs as missing values. If X is a matrix, in which
each row is an observation and each column a variable, nancov(X) is
the covariance matrix computed using rows of X that do not contain
any NaN values.

C = nancov(X,Y), where X and Y are matrices with the same number of
elements, is equivalent to nancov([X(:) Y(:)]).

C = nancov(X) or nancov(X,Y) normalizes the result by n – 1 if n > 0,
where n is the number of observations after removing missing values.
This makes nancov(X) the best unbiased estimate of the covariance
matrix if the observations are from a normal distribution. For n = 1
nancov normalizes by n.

C = nancov(X,1) or nancov(X,Y,1) normalizes the result by n. That
is, it returns the second moment matrix of the observations about their
mean. nancov(X,Y,0) is the same as nancov(X,Y), and nancov(X,0)
is the same as nancov(X).

C = nancov(...,'pairwise') computes C(i,j) using rows with no
NaN values in columns i or j. The result may not be a positive definite
matrix. C = nancov(...,'complete') is the default, and it omits rows
with any NaN values, even if they are not in column i or j.

The mean is removed from each column before calculating the result.

Example The following example generates random data having nonzero
covariance between column 4 and the other columns.
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X = randn(30,4); % Uncorrelated data
X(:,4) = sum(X,2); % Introduce correlation
X(2,3) = NaN; % Introduce one missing value
C = nancov(X) % Compute sample covariance

See Also cov, var, nanvar
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Purpose Maximum, ignoring NaNs

Syntax M = nanmax(A)
M = nanmax(A,B)
M = nanmax(A,[],dim)
[M,ndx] = nanmax(...)

Description M = nanmax(A) returns the maximum with NaNs treated as missing. For
vectors, nanmax(A) is the largest non-NaN element in A. For matrices,
nanmax(A) is a row vector containing the maximum non-NaN element
from each column. For N-dimensional arrays, nanmax operates along
the first nonsingleton dimension of X.

M = nanmax(A,B) returns an array of the same size as A and B, each of
whose entries is the maximum of the corresponding entries of A or B. A
scalar input is expanded to an array of the same size as the other input.

M = nanmax(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmax(...) also returns the indices of the maximum
values in the vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]
A =

NaN 1 6
3 5 NaN
4 NaN 2

[nmax,maxidx] = nanmax(A)
nmax =

4 5 6
maxidx =

3 2 1

See Also nanmin, nanmean, nanmedian, nanstd, nansum

14-521



nanmean

Purpose Mean, ignoring NaNs

Syntax y = nanmean(X)
y = nanmean(X,dim)

Description y = nanmean(X) is the mean computed by treating NaNs as missing
values.

For vectors, nanmean(x) is the mean of the non-NaN elements of x.
For matrices, nanmean(X) is a row vector containing the mean of the
non-NaN elements in each column. For N-dimensional arrays, nanmean
operates along the first nonsingleton dimension of X.

y = nanmean(X,dim) takes the mean along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =

NaN 1 6
3 5 NaN
4 NaN 2

nmean = nanmean(m)
nmean =

3.5000 3.0000 4.0000

See Also nanmin, nanmax, nanmedian, nanstd, nansum
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Purpose Median, ignoring NaNs

Syntax y = nanmedian(X)
y = nanmedian(X,dim)

Description y = nanmedian(X) is the median computed by treating NaNs as missing
values.

For vectors, nanmedian(x) is the median of the non-NaN elements of x.
For matrices, nanmedian(X) is a row vector containing the median of
the non-NaN elements in each column of X. For N-dimensional arrays,
nanmedian operates along the first nonsingleton dimension of X.

y = nanmedian(X,dim) takes the median along the dimension dim of X.

Example m = magic(4);
m([1 6 9 11]) = [NaN NaN NaN NaN]
m =

NaN 2 NaN 13
5 NaN 10 8
9 7 NaN 12
4 14 15 1

nmedian = nanmedian(m)
nmedian =

5.0000 7.0000 12.5000 10.0000

See Also nanmin, nanmax, nanmean, nanstd, nansum
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Purpose Minimum, ignoring NaNs

Syntax M = nanmin(A)
M = nanmin(A,B)
M = nanmin(A,[],dim)
[M,ndx] = nanmin(...)

Description M = nanmin(A) is the minimum computed by treating NaNs as missing
values. For vectors, M is the smallest non-NaN element in A. For matrices,
M is a row vector containing the minimum non-NaN element from each
column. For N-dimensional arrays, nanmin operates along the first
nonsingleton dimension of X.

M = nanmin(A,B) returns an array of the same size as A and B, each of
whose entries is the minimum of the corresponding entries of A or B. A
scalar input is expanded to an array of the same size as the other input.

M = nanmin(A,[],dim) operates along the dimension dim of X.

[M,ndx] = nanmin(...) also returns the indices of the minimum
values in vector ndx.

Example A = magic(3);
A([1 6 8]) = [NaN NaN NaN]
A =

NaN 1 6
3 5 NaN
4 NaN 2

[nmin,minidx] = nanmin(A)
nmin =

3 1 2
minidx =

2 1 3

See Also nanmax, nanmean, nanmedian, nanstd, nansum
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Purpose Standard deviation, ignoring NaNs

Syntax Y = nanstd(X)
Y = nanstd(X,1)
nanstd(X,0)
Y = nanstd(X,flag,dim)

Description Y = nanstd(X) is the standard deviation computed by treating NaNs
as missing values. For vectors, nanstd(X) is the standard deviation of
the non-NaN elements of X. For matrices, nanstd(X) is a row vector
containing the standard deviations of the non-NaN elements in each
column of X. For N-dimensional arrays, nanstd operates along the first
nonsingleton dimension of X.

Y = nanstd normalizes Y by n – 1, where n is the sample size. The
result Y is the square root of an unbiased estimator of the variance of the
population from which X is drawn, as long as X consists of independent,
identically distributed samples, and data are missing at random.

Y = nanstd(X,1) normalizes Y by n. The result Y is the square root of
the second moment of the sample about its mean. nanstd(X,0) is the
same as nanstd(X).

Y = nanstd(X,flag,dim) takes the standard deviation along the
dimension dim of X. Set flag to 0 to normalize the result by n – 1; set
flag to 1 to normalize the result by n.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =

NaN 1 6
3 5 NaN
4 NaN 2

nstd = nanstd(m)
nstd =

0.7071 2.8284 2.8284
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See Also nanmax, nanmin, nanmean, nanmedian, nansum
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Purpose Sum, ignoring NaNs

Syntax y = nansum(X)
Y = nansum(X,dim)

Description y = nansum(X) is the sum computed by treating NaNs as missing values.

For vectors, nansum(x) is the sum of the non-NaN elements of x. For
matrices, nansum(X) is a row vector containing the sum of the non-NaN
elements in each column of X. For N-dimensional arrays, nansum
operates along the first nonsingleton dimension of X.

Y = nansum(X,dim) takes the sum along dimension dim of X.

Example m = magic(3);
m([1 6 8]) = [NaN NaN NaN]
m =

NaN 1 6
3 5 NaN
4 NaN 2

nsum = nansum(m)
nsum =

7 6 8

See Also nanmax, nanmin, nanmean, nanmedian, nanstd
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Purpose Variance, ignoring NaNs

Syntax Y = nanvar(X)
Y = nanvar(X,1)
Y = nanvar(X,w)
Y = nanvar(X,w,dim)

Description Y = nanvar(X) returns the sample variance of the values in X,
treating NaNs as missing values. For a vector input, Y is the variance
of the non-NaN elements of X. For a matrix input, Y is a row vector
containing the variance of the non-NaN elements in each column of X.
For N-dimensional arrays, nanvar operates along the first nonsingleton
dimension of X.

nanvar normalizes Y by n – 1 if n > 1, where n is the sample size of
the non-NaN elements. The result, Y, is an unbiased estimator of the
variance of the population from which X is drawn, as long as X consists
of independent, identically distributed samples, and data are missing at
random. For n = 1, Y is normalized by N.

Y = nanvar(X,1) normalizes Y by n. The result Y is the second moment
of the sample about its mean. nanvar(X,0) is the same as nanvar(X).

Y = nanvar(X,w) computes the variance using the weight vector w.
The length of w must equal the length of the dimension over which
nanvar operates, and its elements must be nonnegative. Elements of X
corresponding to NaN elements of w are ignored.

Y = nanvar(X,w,dim) takes the variance along the dimension dim of X.
Set w to [] to use the default normalization by n – 1.

See Also var, nanstd, nanmean, nanmedian, nanmin, nanmax, nansum
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Purpose Negative binomial cumulative distribution function

Syntax Y = nbincdf(X,R,P)

Description Y = nbincdf(X,R,P) computes the negative binomial cdf at each of the
values in X using the corresponding parameters in R and P. X, R, and P
can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of Y. A scalar input for X, R, or P is
expanded to a constant array with the same dimensions as the other
inputs.

The negative binomial cdf is

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbincdf allows R to be any positive value,
including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the cdf is replaced by the equivalent expression

Example x = (0:15);
p = nbincdf(x,3,0.5);
stairs(x,p)
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See Also cdf, nbinfit, nbininv, nbinpdf, nbinrnd, nbinstat
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Purpose Parameter estimates and confidence intervals for negative binomial
distributed data

Syntax parmhat = nbinfit(data)
[parmhat,parmci] = nbinfit(data,alpha)
[...] = nbinfit(data,alpha,options)

Description parmhat = nbinfit(data) returns the maximum likelihood estimates
(MLEs) of the parameters of the negative binomial distribution given
the data in the vector data.

[parmhat,parmci] = nbinfit(data,alpha) returns MLEs and
100(1-alpha) percent confidence intervals. By default, alpha = 0.05,
which corresponds to 95% confidence intervals.

[...] = nbinfit(data,alpha,options) accepts a structure,
options, that specifies control parameters for the iterative algorithm
the function uses to compute maximum likelihood estimates. The
negative binomial fit function accepts an options structure which you
can create using the function statset. Enter statset('nbinfit')
to see the names and default values of the parameters that nbinfit
accepts in the options structure. See the reference page for statset
for more information about these options.

Note The variance of a negative binomial distribution is greater than
its mean. If the sample variance of the data in data is less than its
sample mean, nbinfit cannot compute MLEs. You should use the
poissfit function instead.

See Also nbincdf, nbininv, nbinpdf, nbinrnd, nbinstat, mle, statset
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Purpose Inverse of negative binomial cumulative distribution function

Syntax X = nbininv(Y,R,P)

Description X = nbininv(Y,R,P) returns the inverse of the negative binomial cdf
with parameters R and P at the corresponding probabilities in P. Since
the binomial distribution is discrete, nbininv returns the least integer
X such that the negative binomial cdf evaluated at X equals or exceeds
Y. Y, R, and P can be vectors, matrices, or multidimensional arrays that
all have the same size, which is also the size of X. A scalar input for
Y, R, or P is expanded to a constant array with the same dimensions
as the other inputs.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of success.
The number of extra trials you must perform in order to observe a given
number R of successes has a negative binomial distribution. However,
consistent with a more general interpretation of the negative binomial,
nbininv allows R to be any positive value, including nonintegers.

Example How many times would you need to flip a fair coin to have a 99%
probability of having observed 10 heads?

flips = nbininv(0.99,10,0.5) + 10
flips =

33

Note that you have to flip at least 10 times to get 10 heads. That is why
the second term on the right side of the equals sign is a 10.

See Also icdf, nbincdf, nbinfit, nbinpdf, nbinrnd, nbinstat
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Purpose Negative binomial probability density function

Syntax Y = nbinpdf(X,R,P)

Description Y = nbinpdf(X,R,P) returns the negative binomial pdf at each of the
values in X using the corresponding parameters in R and P. X, R, and P
can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of Y. A scalar input for X, R, or P is
expanded to a constant array with the same dimensions as the other
inputs. Note that the density function is zero unless the values in
X are integers.

The negative binomial pdf is

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of
success. The number of extra trials you must perform in order to
observe a given number R of successes has a negative binomial
distribution. However, consistent with a more general interpretation
of the negative binomial, nbinpdf allows R to be any positive value,
including nonintegers. When R is noninteger, the binomial coefficient in
the definition of the pdf is replaced by the equivalent expression

Example x = (0:10);
y = nbinpdf(x,3,0.5);
plot(x,y,'+')
set(gca,'Xlim',[-0.5,10.5])
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See Also nbincdf, nbinfit, nbininv, nbinrnd, nbinstat, pdf
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Purpose Random numbers from negative binomial distribution

Syntax RND = nbinrnd(R,P)
RND = nbinrnd(R,P,m)
RND = nbinrnd(R,P,m,n)

Description RND = nbinrnd(R,P) is a matrix of random numbers chosen from a
negative binomial distribution with parameters R and P. R and P can be
vectors, matrices, or multidimensional arrays that have the same size,
which is also the size of RND. A scalar input for R or P is expanded to a
constant array with the same dimensions as the other input.

RND = nbinrnd(R,P,m) generates random numbers with parameters R
and P, where v is a row vector. If v is a 1-by-2 vector, R is a matrix with
v(1) rows and v(2) columns. If v is 1-by-n, R is an n-dimensional array.

RND = nbinrnd(R,P,m,n) generates random numbers with parameters
R and P, where scalars m and n are the row and column dimensions
of RND.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of success.
The number of extra trials you must perform in order to observe a given
number R of successes has a negative binomial distribution. However,
consistent with a more general interpretation of the negative binomial,
nbinrnd allows R to be any positive value, including nonintegers.

Example Suppose you want to simulate a process that has a defect probability of
0.01. How many units might Quality Assurance inspect before finding
three defective items?

r = nbinrnd(3,0.01,1,6)+3
r =

496 142 420 396 851 178

See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinstat
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Purpose Mean and variance of negative binomial distribution

Syntax [M,V] = nbinstat(R,P)

Description [M,V] = nbinstat(R,P) returns the mean of and variance for the
negative binomial distribution with parameters R and P. R and P can
be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of M and V. A scalar input for R or P is
expanded to a constant array with the same dimensions as the other
input.

The mean of the negative binomial distribution with parameters r and p
is rq / p, where q = 1 – p. The variance is rq / p2.

The simplest motivation for the negative binomial is the case of
successive random trials, each having a constant probability P of success.
The number of extra trials you must perform in order to observe a given
number R of successes has a negative binomial distribution. However,
consistent with a more general interpretation of the negative binomial,
nbinstat allows R to be any positive value, including nonintegers.

Example p = 0.1:0.2:0.9;
r = 1:5;
[R,P] = meshgrid(r,p);
[M,V] = nbinstat(R,P)
M =

9.0000 18.0000 27.0000 36.0000 45.0000
2.3333 4.6667 7.0000 9.3333 11.6667
1.0000 2.0000 3.0000 4.0000 5.0000
0.4286 0.8571 1.2857 1.7143 2.1429
0.1111 0.2222 0.3333 0.4444 0.5556

V =
90.0000 180.0000 270.0000 360.0000 450.0000
7.7778 15.5556 23.3333 31.1111 38.8889
2.0000 4.0000 6.0000 8.0000 10.0000
0.6122 1.2245 1.8367 2.4490 3.0612
0.1235 0.2469 0.3704 0.4938 0.6173
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See Also nbincdf, nbinfit, nbininv, nbinpdf, nbinrnd
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Purpose Noncentral F cumulative distribution function

Syntax P = ncfcdf(X,NU1,NU2,DELTA)

Description P = ncfcdf(X,NU1,NU2,DELTA) computes the noncentral F cdf at
each of the values in X using the corresponding numerator degrees of
freedom in NU1, denominator degrees of freedom in NU2, and positive
noncentrality parameters in DELTA. NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that have the same size, which is
also the size of P. A scalar input for X, NU1, NU2, or DELTA is expanded to
a constant array with the same dimensions as the other inputs.

The noncentral F cdf is

where I(x|a,b) is the incomplete beta function with parameters a and b.

Example Compare the noncentral F cdf with δ = 10 to the F cdf with the same
number of numerator and denominator degrees of freedom (5 and 20
respectively).

x = (0.01:0.1:10.01)';
p1 = ncfcdf(x,5,20,10);
p = fcdf(x,5,20);
plot(x,p,'-',x,p1,'-')
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References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.

See Also cdf, ncfpdf, ncfinv, ncfrnd, ncfstat
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Purpose Inverse of noncentral F cumulative distribution function

Syntax X = ncfinv(P,NU1,NU2,DELTA)

Description X = ncfinv(P,NU1,NU2,DELTA) returns the inverse of the noncentral
F cdf with numerator degrees of freedom NU1, denominator degrees
of freedom NU2, and positive noncentrality parameter DELTA for the
corresponding probabilities in P. P, NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of X. A scalar input for P, NU1, NU2, or DELTA is expanded
to a constant array with the same dimensions as the other inputs.

Example One hypothesis test for comparing two sample variances is to take
their ratio and compare it to an F distribution. If the numerator and
denominator degrees of freedom are 5 and 20 respectively, then you
reject the hypothesis that the first variance is equal to the second
variance if their ratio is less than that computed below.

critical = finv(0.95,5,20)
critical =

2.7109

Suppose the truth is that the first variance is twice as big as the second
variance. How likely is it that you would detect this difference?

prob = 1 - ncfcdf(critical,5,20,2)
prob =

0.1297

If the true ratio of variances is 2, what is the typical (median) value you
would expect for the F statistic?

ncfinv(0.5,5,20,2)
ans =

1.2786
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References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd edition, John Wiley and Sons, 1993, pp. 102-105.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.

See Also icdf, ncfcdf, ncfpdf, ncfrnd, ncfstat
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Purpose Noncentral F probability density function

Syntax Y = ncfpdf(X,NU1,NU2,DELTA)

Description Y = ncfpdf(X,NU1,NU2,DELTA) computes the noncentral F pdf at
each of the values in X using the corresponding numerator degrees of
freedom in NU1, denominator degrees of freedom in NU2, and positive
noncentrality parameters in DELTA. X, NU1, N2, and B can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for P, NU1, NU2, or DELTA is expanded
to a constant array with the same dimensions as the other inputs.

The F distribution is a special case of the noncentral F where δ = 0. As δ
increases, the distribution flattens like the plot in the example.

Example Compare the noncentral F pdf with δ = 10 to the F pdf with the same
number of numerator and denominator degrees of freedom (5 and 20
respectively).

x = (0.01:0.1:10.01)';
p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plot(x,p,'-',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.

See Also ncfcdf, ncfinv, ncfrnd, ncfstat, pdf
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Purpose Random numbers from noncentral F distribution

Syntax R = ncfrnd(NU1,NU2,DELTA)
R = ncfrnd(NU1,NU2,DELTA,v)
R = ncfrnd(NU1,NU2,DELTA,m,n)

Description R = ncfrnd(NU1,NU2,DELTA) returns a matrix of random numbers
chosen from the noncentral F distribution with parameters NU1,
NU2 and DELTA. NU1, NU2, and DELTA can be vectors, matrices, or
multidimensional arrays that have the same size, which is also the size
of R. A scalar input for NU1, NU2, or DELTA is expanded to a constant
matrix with the same dimensions as the other inputs.

R = ncfrnd(NU1,NU2,DELTA,v) returns a matrix of random numbers
with parameters NU1, NU2, and DELTA, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = ncfrnd(NU1,NU2,DELTA,m,n) generates random numbers with
parameters NU1, NU2, and DELTA, where scalars m and n are the row
and column dimensions of R.

Example Compute six random numbers from a noncentral F distribution with 10
numerator degrees of freedom, 100 denominator degrees of freedom and
a noncentrality parameter, δ, of 4.0. Compare this to the F distribution
with the same degrees of freedom.

r = ncfrnd(10,100,4,1,6)
r =

2.5995 0.8824 0.8220 1.4485 1.4415 1.4864

r1 = frnd(10,100,1,6)
r1 =

0.9826 0.5911 1.0967 0.9681 2.0096 0.6598

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.
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See Also ncfcdf, ncfinv, ncfpdf, ncfstat
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Purpose Mean and variance of noncentral F distribution

Syntax [M,V] = ncfstat(NU1,NU2,DELTA)

Description [M,V] = ncfstat(NU1,NU2,DELTA) returns the mean of and variance
for the noncentral F pdf with NU1 and NU2 degrees of freedom and
noncentrality parameter DELTA. NU1, NU2, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of M and V. A scalar input for NU1, NU2, or DELTA is
expanded to a constant array with the same dimensions as the other
input.

The mean of the noncentral F distribution with parameters ν1, ν2, and
δ is

where ν2 > 2.

The variance is

where ν2 > 4.

Example [m,v]= ncfstat(10,100,4)
m =

1.4286
v =

0.4252

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 73-74.
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[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 189-200.

See Also ncfcdf, ncfinv, ncfpdf, ncfrnd
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Purpose Noncentral t cumulative distribution function

Syntax P = nctcdf(X,NU,DELTA)

Description P = nctcdf(X,NU,DELTA) computes the noncentral t cdf at each of
the values in X using the corresponding degrees of freedom in NU and
noncentrality parameters in DELTA. X, NU, and DELTA can be vectors,
matrices, or multidimensional arrays that have the same size, which
is also the size of P. A scalar input for X, NU, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Example Compare the noncentral t cdf with DELTA = 1 to the t cdf with the same
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctcdf(x,10,1);
p = tcdf(x,10);
plot(x,p,'-',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 147-148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.

See Also cdf, nctcdf, nctinv, nctpdf, nctrnd, nctstat
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Purpose Inverse of noncentral t cumulative distribution

Syntax X = nctinv(P,NU,DELTA)

Description X = nctinv(P,NU,DELTA) returns the inverse of the noncentral t cdf
with NU degrees of freedom and noncentrality parameter DELTA for
the corresponding probabilities in P. P, NU, and DELTA can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of X. A scalar input for P, NU, or DELTA is expanded to a
constant array with the same dimensions as the other inputs.

Example x = nctinv([0.1 0.2],10,1)
x =

-0.2914 0.1618

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 147-148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.

See Also icdf, nctcdf, nctpdf, nctrnd, nctstat
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Purpose Noncentral t probability density function

Syntax Y = nctpdf(X,V,DELTA)

Description Y = nctpdf(X,V,DELTA) computes the noncentral t pdf at each of
the values in X using the corresponding degrees of freedom in V and
noncentrality parameters in DELTA. Vector or matrix inputs for X, V, and
DELTA must have the same size, which is also the size of Y. A scalar
input for X, V, or DELTA is expanded to a constant matrix with the same
dimensions as the other inputs.

Example Compare the noncentral t pdf with DELTA = 1 to the t pdf with the same
number of degrees of freedom (10).

x = (-5:0.1:5)';
p1 = nctpdf(x,10,1);
p = tpdf(x,10);
plot(x,p,'-',x,p1,'-')

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 147-148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.

See Also nctcdf, nctinv, nctrnd, nctstat, pdf
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Purpose Random numbers from noncentral t distribution

Syntax R = nctrnd(V,DELTA)
R = nctrnd(V,DELTA,v)
R = nctrnd(V,DELTA,m,n)

Description R = nctrnd(V,DELTA) returns a matrix of random numbers chosen
from the noncentral T distribution with parameters V and DELTA. V and
DELTA can be vectors, matrices, or multidimensional arrays. A scalar
input for V or DELTA is expanded to a constant array with the same
dimensions as the other input.

R = nctrnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = nctrnd(V,DELTA,m,n) generates random numbers with
parameters V and DELTA, where scalars m and n are the row and column
dimensions of R.

Example nctrnd(10,1,5,1)
ans =

1.6576
1.0617
1.4491
0.2930
3.6297

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 147-148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.

See Also nctcdf, nctinv, nctpdf, nctstat
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Purpose Mean and variance of noncentral t distribution

Syntax [M,V] = nctstat(NU,DELTA)

Description [M,V] = nctstat(NU,DELTA) returns the mean of and variance for the
noncentral t pdf with NU degrees of freedom and noncentrality parameter
DELTA. NU and DELTA can be vectors, matrices, or multidimensional
arrays that all have the same size, which is also the size of M and V. A
scalar input for NU or DELTA is expanded to a constant array with the
same dimensions as the other input.

The mean of the noncentral t distribution with parameters ν and δ is

where ν > 1.

The variance is

where ν > 2.

Example [m,v] = nctstat(10,1)

m =
1.0837

v =
1.3255

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 147-148.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 201-219.
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See Also nctcdf, nctinv, nctpdf, nctrnd
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ncx2cdf

Purpose Noncentral chi-square cumulative distribution function

Syntax P = ncx2cdf(X,V,DELTA)

Description P = ncx2cdf(X,V,DELTA) computes the noncentral chi-square cdf at
each of the values in X using the corresponding degrees of freedom in V
and positive noncentrality parameters in DELTA. X, V, and DELTA can be
vectors, matrices, or multidimensional arrays that all have the same
size, which is also the size of P. A scalar input for X, V, or DELTA is
expanded to a constant array with the same dimensions as the other
inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

The noncentral chi-square cdf is

Example x = (0:0.1:10)';
p1 = ncx2cdf(x,4,2);
p = chi2cdf(x,4);
plot(x,p,'-',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.
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See Also cdf, ncx2inv, ncx2pdf, ncx2rnd, ncx2stat
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Purpose Inverse of noncentral chi-square cumulative distribution function

Syntax X = ncx2inv(P,V,DELTA)

Description X = ncx2inv(P,V,DELTA) returns the inverse of the noncentral
chi-square cdf with parameters V and DELTA at the corresponding
probabilities in P. P, V, and DELTA can be vectors, matrices, or
multidimensional arrays that all have the same size, which is also the
size of X. A scalar input for P, V, or DELTA is expanded to a constant
array with the same dimensions as the other inputs.

Algorithm ncx2inv uses Newton’s method to converge to the solution.

Example ncx2inv([0.01 0.05 0.1],4,2)
ans =

0.4858 1.1498 1.7066

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 50–52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions 2, John Wiley and Sons, 1970, pp. 130-148.

See Also icdf, ncx2cdf, ncx2pdf, ncx2rnd, ncx2stat
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Purpose Noncentral chi-square probability density function

Syntax Y = ncx2pdf(X,V,DELTA)

Description Y = ncx2pdf(X,V,DELTA) computes the noncentral chi-square pdf at
each of the values in X using the corresponding degrees of freedom in V
and positive noncentrality parameters in DELTA. Vector or matrix inputs
for X, V, and DELTA must have the same size, which is also the size of Y.
A scalar input for X, V, or DELTA is expanded to a constant array with
the same dimensions as the other inputs.

Some texts refer to this distribution as the generalized Rayleigh,
Rayleigh-Rice, or Rice distribution.

Example As the noncentrality parameter δ increases, the distribution flattens
as shown in the plot.

x = (0:0.1:10)';
p1 = ncx2pdf(x,4,2);
p = chi2pdf(x,4);
plot(x,p,'-',x,p1,'-')

References [1] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.

See Also ncx2cdf, ncx2inv, ncx2rnd, ncx2stat, pdf
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Purpose Random numbers from noncentral chi-square distribution

Syntax R = ncx2rnd(V,DELTA)
R = ncx2rnd(V,DELTA,v)
R = ncx2rnd(V,DELTA,m,n)

Description R = ncx2rnd(V,DELTA) returns a matrix of random numbers chosen
from the noncentral chi-square distribution with parameters V and
DELTA. V and DELTA can be vectors, matrices, or multidimensional arrays
that have the same size, which is also the size of R. A scalar input for
V or DELTA is expanded to a constant array with the same dimensions
as the other input.

R = ncx2rnd(V,DELTA,v) returns a matrix of random numbers with
parameters V and DELTA, where v is a row vector. If v is a 1-by-2 vector,
R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = ncx2rnd(V,DELTA,m,n) generates random numbers with
parameters V and DELTA, where scalars m and n are the row and column
dimensions of R.

Example ncx2rnd(4,2,6,3)
ans =

6.8552 5.9650 11.2961
5.2631 4.2640 5.9495
9.1939 6.7162 3.8315

10.3100 4.4828 7.1653
2.1142 1.9826 4.6400
3.8852 5.3999 0.9282

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 50-52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.

14-557



ncx2rnd

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2stat

14-558
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Purpose Mean and variance of noncentral chi-square distribution

Syntax [M,V] = ncx2stat(NU,DELTA)

Description [M,V] = ncx2stat(NU,DELTA) returns the mean of and variance
for the noncentral chi-square pdf with NU degrees of freedom and
noncentrality parameter DELTA. NU and DELTA can be vectors, matrices,
or multidimensional arrays that all have the same size, which is also
the size of M and V. A scalar input for NU or DELTA is expanded to a
constant array with the same dimensions as the other input.

The mean of the noncentral chi-square distribution with parameters
ν and δ is , and the variance is .

Example [m,v] = ncx2stat(4,2)
m =

6
v =

16

References [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd Edition, John Wiley and Sons, 1993, pp. 50-52.

[2] Johnson, N., and S. Kotz, Distributions in Statistics: Continuous
Univariate Distributions-2, John Wiley and Sons, 1970, pp. 130-148.

See Also ncx2cdf, ncx2inv, ncx2pdf, ncx2rnd
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Purpose Nonlinear least-squares regression

Syntax beta = nlinfit(X,y,fun,beta0)
[beta,r,J,SIGMA,mse] = nlinfit(X,y,fun,beta0)
[...] = nlinfit(X,y,fun,beta0,options)

Description beta = nlinfit(X,y,fun,beta0) estimates the coefficients of a
nonlinear regression function using least squares. y is a vector of
response (dependent variable) values. Typically, X is a design matrix of
predictor (independent variable) values, with one row for each value in
y. However, X can be any array that fun can accept. fun is a function
handle, specified using the @ sign, to a function of the form

yhat = myfun(beta,X)

where beta is a coefficient vector. fun returns a vector yhat of fitted y
values. beta0 is a vector containing initial values for the coefficients.

[beta,r,J,SIGMA,mse] = nlinfit(X,y,fun,beta0) returns the fitted
coefficients beta, the residuals r, the Jacobian J of fun, the estimated
covariance matrix SIGMA for the fitted coefficients, and an estimate
mse of the variance of the error term. You can use these outputs with
nlpredci to produce error estimates on predictions, and with nlparci
to produce error estimates on the estimated coefficients. If you use the
robust fitting option (see below), you must use SIGMA and may need mse
as input to nlpredci or nlparci to insure that the confidence intervals
take the robust fit properly into account.

Note nlintool provides a GUI for performing nonlinear fits and
computing confidence intervals.

[...] = nlinfit(X,y,fun,beta0,options) specifies control
parameters for the algorithm used in nlinfit. options is a structure
created by a call to statset. Applicable statset parameters are:
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• 'MaxIter' — Maximum number of iterations allowed. The default
is 100.

• 'TolFun' — Termination tolerance on the residual sum of squares.
The defaults is 1e-8.

• 'TolX' — Termination tolerance on the estimated coefficients beta.
The default is 1e-8.

• 'Display' — Level of display output during estimation. The choices
are

- 'off' (the default),

- 'iter'

- 'final'

• 'DerivStep' — Relative difference used in finite difference gradient
calculation. May be a scalar, or the same size as the parameter vector
beta0. The default is eps^(1/3).

• 'FunValCheck' — Check for invalid values, such as NaN or Inf, from
the objective function. Values are 'off' or 'on' (the default).

• 'Robust' — Invoke robust fitting option. Values are 'off' (the
default) or 'on'.

• 'WgtFun' — Specify the weight function for the robust fitting. It
can be 'bisquare' (the default), 'andrews', 'cauchy', 'fair',
'huber', 'logistic', 'talwar', or 'welsch'. 'WgtFun' is only
used when 'Robust' is set to 'on'. It can also be a function handle
that accepts a normalized residual as input and returns the robust
weights as output.

• 'Tune' — The tuning constant used to normalize the residuals before
applying the weight function. The value of 'Tune' must be positive,
and the default value is dependent on the weight function. 'Tune' is
required if the weight function is specified as a function handle.

nlinfit treats NaNs in y or fun(beta,X) as missing data and ignores
the corresponding rows.
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Example Find the coefficients that best fit the data in reaction.mat. The data
record reaction kinetics as a function of the partial pressures of three
chemical reactants: hydrogen, n-pentane, and isopentane.

The hougen function uses the Hougen-Watson model for reaction
kinetics to return the predicted values of the reaction rate.

load reaction
betafit = nlinfit(reactants,rate,@hougen,beta)
betafit =

1.2526
0.0628
0.0400
0.1124
1.1914

Reference [1] Seber, G. A. F., and C. J. Wild, Nonlinear Regression, John Wiley &
Sons Inc., 1989.

See Also hougen, nlintool, nlparci, nlpredci , lsqnonlin

Note The lsqnonlin function in Optimization Toolbox has more
outputs related to how well the optimization performed. It can
put bounds on the parameters, and it accepts many options to
control the optimization algorithm. The nlinfit function has more
statistics-oriented outputs that are useful, for example, in finding
confidence intervals for the coefficients. It also comes with the nlintool
GUI for visualizing the fitted function.
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Purpose Interactive nonlinear fitting

Syntax nlintool(x,y,fun,beta0)
nlintool(x,y,fun,beta0,alpha)
nlintool(x,y,fun,beta0,alpha,'xname','yname')

Description nlintool displays a “vector” of plots, one for each column of the matrix
of inputs, x. The response variable, y, is a column vector that matches
the number of rows in x.

nlintool(x,y,fun,beta0) is a prediction plot that provides a
nonlinear curve fit to (x, y) data. It plots a 95% global confidence
interval for predictions as two red curves. beta0 is a vector containing
initial guesses for the parameters.

fun is a function handle of the form

yhat = myfun(beta,x)

nlintool(x,y,fun,beta0,alpha) plots a 100(1 - alpha)% confidence
interval for predictions.

The default value for alpha is 0.05, which produces 95% confidence
intervals.

nlintool(x,y,fun,beta0,alpha,'xname','yname') labels the plot
using the string matrix ’xname’ for the x variables and the string ’yname’
for the y variable.

nlintool treats NaNs in y or fun(beta, X) as missing data and ignores
the corresponding rows.

Example See “Interactive Nonlinear Regression” on page 8-5 for an example
using the graphical interface.

See Also nlinfit, rstool
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Purpose Confidence intervals for parameters in nonlinear regression

Syntax ci = nlparci(beta,resid,'covar',sigma)
ci = nlparci(beta,resid,'jacobian',J)
ci = nlparci(...,'alpha',alpha)

Description ci = nlparci(beta,resid,'covar',sigma) returns the 95%
confidence intervals ci for the nonlinear least squares parameter
estimates beta. Before calling nlparci, use nlinfit to fit a nonlinear
regression model and get the coefficient estimates beta, residuals
resid, and estimated coefficient covariance matrix sigma.

ci = nlparci(beta,resid,'jacobian',J) is an alternative syntax
that also computes 95% confidence intervals. J is the Jacobian computed
by nlinfit. If the 'robust' option is used with nlinfit, use the
'covar' input rather than the 'jacobian' input so that the required
sigma parameter takes the robust fitting into account.

ci = nlparci(...,'alpha',alpha) returns 100(1-alpha)%
confidence intervals.

nlparci treats NaNs in resid or J as missing values, and ignores the
corresponding observations.

The confidence interval calculation is valid for systems where the length
of resid exceeds the length of beta and J has full column rank. When J
is ill-conditioned, confidence intervals may be inaccurate.

Example Continuing the example from nlinfit:

load reaction
[beta,resid,J,Sigma] = ...

nlinfit(reactants,rate,'hougen',beta);
ci = nlparci(beta,resid,'jacobian',J)
ci =

-0.7467 3.2519
-0.0377 0.1632
-0.0312 0.1113
-0.0609 0.2857
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-0.7381 3.1208

See Also nlinfit, nlintool, nlpredci
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Purpose Confidence intervals for predictions in nonlinear regression

Syntax [ypred,delta] = nlpredci(modelfun,x,beta,resid,'covar',sigma)
[ypred,delta] = nlpredci(modelfun,x,beta,resid,'jacobian',J)
[...] = nlpredci(...,param1,val1,param2,val2,...)

Description [ypred,delta] =
nlpredci(modelfun,x,beta,resid,'covar',sigma) returns
predictions, ypred, and 95% confidence interval half-widths, delta, for
the nonlinear regression model defined by modelfun, at input values x.
modelfun is a function handle, specified using @, that accepts two
arguments—a coefficient vector and the array x—and returns a vector
of fitted y values. Before calling nlpredci, use nlinfit to fit modelfun
by nonlinear least squares and get estimated coefficient values beta,
residuals resid, and estimated coefficient covariance matrix sigma.

[ypred,delta] =
nlpredci(modelfun,x,beta,resid,'jacobian',J) is an alternative
syntax that also computes 95% confidence intervals. J is the Jacobian
computed by nlinfit. If the 'robust' option is used with nlinfit, use
the 'covar' input rather than the 'jacobian' input so that the
required sigma parameter takes the robust fitting into account.

[...] = nlpredci(...,param1,val1,param2,val2,...) accepts
optional parameter name/value pairs.

Name Value

'alpha' A value between 0 and 1 that specifies the
confidence level as 100(1-alpha)%. Default
is 0.05.

'mse' The mean squared error returned by nlinfit.
This is required to predict new observations
(see 'predopt') if the robust option is
used with nlinfit; otherwise, the 'mse' is
computed from the residuals and does not
take the robust fitting into account.
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Name Value

'predopt' Either 'curve' (the default) to compute
confidence intervals for the estimated curve
(function value) at x, or 'observation' for
prediction intervals for a new observation at
x. If 'observation'is specified after using
a robust option with nlinfit, the 'mse'
parameter must be supplied to specify the
robust estimate of the mean squared error.

'simopt' Either 'on' for simultaneous bounds, or
'off' (the default) for nonsimultaneous
bounds.

nlpredci treats NaNs in resid or J as missing values, and ignores the
corresponding observations.

The confidence interval calculation is valid for systems where the
length of resid exceeds the length of beta and J has full column rank
at beta. When J is ill-conditioned, predictions and confidence intervals
may be inaccurate.

Example Continuing the example from nlinfit, you can determine the predicted
function value at the value newX and the half-width of a confidence
interval for it.

load reaction;
[beta,resid,J] = nlinfit(reactants,rate,@hougen,beta);
newX = reactants(1:2,:);
[ypred,delta] = nlpredci(@hougen,newX,beta,resid,J);
ypred =

8.4179
3.9542

delta =
0.2805
0.2474
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See Also nlinfit, nlintool, nlparci
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Purpose Node errors of tree

Syntax e = nodeerr(t)
e = nodeerr(t,nodes)

Description e = nodeerr(t) returns an n-element vector e of the errors of the nodes
in the tree t, where n is the number of nodes. For a regression tree, the
error e(i) for node i is the variance of the observations assigned to
node i. For a classification tree, e(i) is the misclassification probability
for node i.

e = nodeerr(t,nodes) takes a vector nodes of node numbers and
returns the errors for the specified nodes.

The error e is the so-called resubstitution error computed by applying
the tree to the same data used to create the tree. This error is likely to
under estimate the error you would find if you applied the tree to new
data. The test function provides options to compute the error (or cost)
using cross-validation or a test sample.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica
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view(t)

e = nodeerr(t)
e =

0.6667
0

0.5000
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0.0926
0.0217
0.0208
0.3333

0
0

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, test
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Purpose Node probabilities of tree

Syntax p = nodeprob(t)
p = nodeprob(t,nodes)

Description p = nodeprob(t) returns an n-element vector p of the probabilities of
the nodes in the tree t, where n is the number of nodes. The probability
of a node is computed as the proportion of observations from the original
data that satisfy the conditions for the node. For a classification tree,
this proportion is adjusted for any prior probabilities assigned to each
class.

p = nodeprob(t,nodes) takes a vector nodes of node numbers and
returns the probabilities for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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p = nodeprob(t)
p =

1.0000
0.3333
0.6667
0.3600
0.3067
0.3200
0.0400
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0.3133
0.0067

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, nodesize
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Purpose Size of tree node

Syntax sizes = nodesize(t)
sizes = nodesize(t,nodes)

Description sizes = nodesize(t) returns an n-element vector sizes of the sizes
of the nodes in the tree t, where n is the number of nodes. The size of
a node is defined as the number of observations from the data used to
create the tree that satisfy the conditions for the node.

sizes = nodesize(t,nodes) takes a vector nodes of node numbers
and returns the sizes for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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sizes = nodesize(t)
sizes =

150
50

100
54
46
48
6
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47
1

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes
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Purpose Create nominal array

Syntax B = nominal(A)
B = nominal(A,labels)
B = nominal(A,labels,levels)
B = nominal(A,labels,[],edges)

Description B = nominal(A) creates a nominal array B from the array A. A can
be numeric, logical, character, categorical, or a cell array of strings.
nominal creates the levels of B from the sorted unique values in A, and
creates default labels for them.

B = nominal(A,labels) labels the levels in B using the character array
or cell array of strings labels. nominal assigns labels to levels in B in
order according to the sorted unique values in A.

B = nominal(A,labels,levels) creates a nominal array with possible
levels defined by levels. levels is a vector whose values can be
compared to those in A using the equality operator. nominal assigns
labels to each level from the corresponding elements of labels.
If A contains any values not present in levels, the levels of the
corresponding elements of B are undefined.

B = nominal(A,labels,[],edges) creates a nominal array by binning
the numeric array A with bin edges given by the numeric vector
edges. The uppermost bin includes values equal to the right-most
edge. nominal assigns labels to each level in B from the corresponding
elements of labels. edges must have one more element than labels.

By default, an element of B is undefined if the corresponding element
of A is NaN (when A is numeric), an empty string (when A is character),
or undefined (when A is categorical). nominal treats such elements as
“undefined” or “missing” and does not include entries for them among
the possible levels for B. To create an explicit level for such elements
instead of treating them as undefined, you must use the levels input,
and include NaN, the empty string, or an undefined element.

You may include duplicate labels in labels in order to merge multiple
values in A into a single level in B.
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Examples Example 1

Create a nominal array from Fisher’s iris data:

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]

setosa versicolor virginica
50 50 50

meas: [150x4 double]
min 4.3000 2 1 0.1000
1st Q 5.1000 2.8000 1.6000 0.3000
median 5.8000 3 4.3500 1.3000
3rd Q 6.4000 3.3000 5.1000 1.8000
max 7.9000 4.4000 6.9000 2.5000

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});

3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

14-579



nominal

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also ordinal, histc
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Purpose Normal cumulative distribution function

Syntax P = normcdf(X,mu,sigma)
[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha)

Description P = normcdf(X,mu,sigma) computes the normal cdf at each of the
values in X using the corresponding parameters in mu and sigma. X,
mu, and sigma can be vectors, matrices, or multidimensional arrays
that all have the same size. A scalar input is expanded to a constant
array with the same dimensions as the other inputs. The parameters
in sigma must be positive.

[P,PLO,PUP] = normcdf(X,mu,sigma,pcov,alpha) produces
confidence bounds for P when the input parameters mu and sigma are
estimates. pcov is the covariance matrix of the estimated parameters.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of
alpha is 0.05. PLO and PUP are arrays of the same size as P containing
the lower and upper confidence bounds.

The function normdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforming those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and pcov from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The normal cdf is

The result, p, is the probability that a single observation from a normal
distribution with parameters µ and σ will fall in the interval (-∞ x].
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The standard normal distribution has µ = 0 and σ = 1.

Examples What is the probability that an observation from a standard normal
distribution will fall on the interval [-1 1]?

p = normcdf([-1 1]);
p(2)-p(1)
ans =

0.6827

More generally, about 68% of the observations from a normal
distribution fall within one standard deviation, σ, of the mean, µ.

See Also cdf, normfit, normlike, normpdf, normspec, normstat, normrnd,
norminv, normplot
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Purpose Parameter estimates and confidence intervals for normally distributed
data

Syntax [muhat,sigmahat] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data)
[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha)
[...] = normfit(data,alpha,censoring)
[...] = normfit(data,alpha,censoring,freq)
[...] = normfit(data,alpha,censoring,freq,options)

Description [muhat,sigmahat] = normfit(data) returns estimates of the mean,
µ, and standard deviation, σ, of the normal distribution given the data
in data.

[muhat,sigmahat,muci,sigmaci] = normfit(data) returns 95%
confidence intervals for the parameter estimates on the mean and
standard deviation in the arrays muci and sigmaci, respectively. The
first row of muci contains the lower bounds of the confidence intervals
for µ the second row contains the upper bounds. The first row of
sigmaci contains the lower bounds of the confidence intervals for σ, and
the second row contains the upper bounds.

[muhat,sigmahat,muci,sigmaci] = normfit(data,alpha) returns
100(1 - alpha) % confidence intervals for the parameter estimates,
where alpha is a value in the range [0 1] specifying the width of the
confidence intervals. By default, alpha is 0.05, which corresponds to
95% confidence intervals.

[...] = normfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.
data must be a vector in order to pass in the argument censoring.

[...] = normfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. Typically, freq contains integer
frequencies for the corresponding elements in data, but can contain any
nonnegative values. Pass in [] for alpha, censoring, or freq to use
their default values.
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[...] = normfit(data,alpha,censoring,freq,options) accepts a
structure, options, that specifies control parameters for the iterative
algorithm the function uses to compute maximum likelihood estimates
when there is censoring. The normal fit function accepts an options
structure which you can create using the function statset. Enter
statset('normfit') to see the names and default values of the
parameters that normfit accepts in the options structure. See the
reference page for statset for more information about these options.

Example In this example the data is a two-column random normal matrix. Both
columns have µ = 10 and σ = 2. Note that the confidence intervals below
contain the "true values."

data = normrnd(10,2,100,2);
[mu,sigma,muci,sigmaci] = normfit(data)
mu =

10.1455 10.0527
sigma =

1.9072 2.1256
muci =

9.7652 9.6288
10.5258 10.4766

sigmaci =
1.6745 1.8663
2.2155 2.4693

See Also mle, statset, normlike, normpdf, normspec, normstat, normcdf,
norminv, normplot
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Purpose Inverse of normal cumulative distribution function

Syntax X = norminv(P,mu,sigma)
[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha)

Description X = norminv(P,mu,sigma) computes the inverse of the normal cdf with
parameters mu and sigma at the corresponding probabilities in P. P, mu,
and sigma can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array with
the same dimensions as the other inputs. The parameters in sigma
must be positive, and the values in P must lie in the interval [0 1].

[X,XLO,XUP] = norminv(P,mu,sigma,pcov,alpha) produces
confidence bounds for X when the input parameters mu and sigma are
estimates. pcov is the covariance matrix of the estimated parameters.
alpha specifies 100(1 - alpha)% confidence bounds. The default value of
alpha is 0.05. XLO and XUP are arrays of the same size as X containing
the lower and upper confidence bounds.

The function norminv computes confidence bounds for P using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a normal distribution with mean 0 and
standard deviation 1. The computed bounds give approximately the
desired confidence level when you estimate mu, sigma, and pcov from
large samples, but in smaller samples other methods of computing the
confidence bounds may be more accurate.

The normal inverse function is defined in terms of the normal cdf as

where
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The result, x, is the solution of the integral equation above where you
supply the desired probability, p.

Examples Find an interval that contains 95% of the values from a standard
normal distribution.

x = norminv([0.025 0.975],0,1)
x =

-1.9600 1.9600

Note that the interval x is not the only such interval, but it is the
shortest.

xl = norminv([0.01 0.96],0,1)
xl =

-2.3263 1.7507

The interval xl also contains 95% of the probability, but it is longer
than x.

See Also icdf, normfit, normlike, normpdf, normspec, normstat, normcdf,
normrnd, normplot
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Purpose Negative log-likelihood for normal distribution

Syntax nlogL = normlike(params,data)
[nlogL,AVAR] = normlike(params,data)
[...] = normlike(param,data,censoring)
[...] = normlike(param,data,censoring,freq)

Description nlogL = normlike(params,data) returns the negative of the normal
log-likelihood function for the parameters params(1) = mu and
params(2) = sigma, given the vector data.

[nlogL,AVAR] = normlike(params,data) also returns the inverse of
Fisher’s information matrix, AVAR. If the input parameter values in
params are the maximum likelihood estimates, the diagonal elements
of AVAR are their asymptotic variances. AVAR is based on the observed
Fisher’s information, not the expected information.

[...] = normlike(param,data,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = normlike(param,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. The vector freq
typically contains integer frequencies for the corresponding elements in
data, but can contain any nonnegative values. Pass in [] for censoring
to use its default value.

normlike is a utility function for maximum likelihood estimation.

See Also betalike, gamlike, mle, normfit, wbllike, norminv, normpdf,
normspec, normstat, normcdf, normrnd, normplot
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Purpose Normal probability density function

Syntax Y = normpdf(X,mu,sigma)

Description Y = normpdf(X,mu,sigma) computes the pdf at each of the values
in X using the normal distribution with mean mu and standard
deviationsigma. X, mu, and sigma can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array with the same dimensions as the other
inputs. The parameters in sigma must be positive.

The normal pdf is

The likelihood function is the pdf viewed as a function of the parameters.
Maximum likelihood estimators (MLEs) are the values of the
parameters that maximize the likelihood function for a fixed value of x.

The standard normal distribution has µ = 0 and σ = 1.

If x is standard normal, then xσ + µ is also normal with mean µ and
standard deviation σ. Conversely, if y is normal with mean µ and
standard deviation σ, then x = (y-µ) / σ is standard normal.

Examples mu = [0:0.1:2];
[y i] = max(normpdf(1.5,mu,1));
MLE = mu(i)
MLE =

1.5000

See Also pdf, mvnpdf, normfit, norminv, normplot, normspec, normstat,
normcdf, normrnd, normlike
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Purpose Normal probability plot

Syntax h = normplot(X)

Description h = normplot(X) displays a normal probability plot of the data in X.
For matrix X, normplot displays a line for each column of X. h is a handle
to the plotted lines.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles
of each column of X (a robust linear fit of the sample order statistics.)
This line is extrapolated out to the ends of the sample to help evaluate
the linearity of the data.

The purpose of a normal probability plot is to graphically assess whether
the data in X could come from a normal distribution. If the data are
normal the plot will be linear. Other distribution types will introduce
curvature in the plot. normplot uses midpoint probability plotting
positions. Use probplot when the data included censored observations.

If the data does come from a normal distribution, the plot will appear
linear. Other probability density functions will introduce curvature
in the plot.

Examples Generate a normal sample and a normal probability plot of the data.

x = normrnd(10,1,25,1);
normplot(x)
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See Also cdfplot, wblplot, probplot,hist, normfit, norminv, normpdf,
normspec, normstat, normcdf, normrnd, normlike
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Purpose Random numbers from normal distribution

Syntax R = normrnd(mu,sigma)
R = normrnd(mu,sigma,v)
R = normrnd(mu,sigma,m,n)

Description R = normrnd(mu,sigma) generates random numbers from the normal
distribution with mean parameter mu and standard deviation parameter
sigma. mu and sigma can be vectors, matrices, or multidimensional
arrays that have the same size, which is also the size of R. A scalar
input for mu or sigma is expanded to a constant array with the same
dimensions as the other input.

R = normrnd(mu,sigma,v) generates random numbers from the
normal distribution with mean parameter mu and standard deviation
parameter sigma, where v is a row vector. If v is a 1-by-2 vector, R
is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R is an
n-dimensional array.

R = normrnd(mu,sigma,m,n) generates random numbers from the
normal distribution with mean parameter mu and standard deviation
parameter sigma, where scalars m and n are the row and column
dimensions of R.

Example n1 = normrnd(1:6,1./(1:6))
n1 =

2.1650 2.3134 3.0250 4.0879 4.8607 6.2827

n2 = normrnd(0,1,[1 5])
n2 =

0.0591 1.7971 0.2641 0.8717 -1.4462

n3 = normrnd([1 2 3;4 5 6],0.1,2,3)
n3 =

0.9299 1.9361 2.9640
4.1246 5.0577 5.9864
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See Also normfit, norminv, normpdf, normspec, normstat, normcdf, normplot,
normlike
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Purpose Plot normal density between specification limits

Syntax p = normspec(specs,mu,sigma)
[p,h] = normspec(specs,mu,sigma)

Description p = normspec(specs,mu,sigma) plots the normal density between
a lower and upper limit defined by the two elements of the vector
specs, where mu and sigma are the parameters of the plotted normal
distribution.

[p,h] = normspec(specs,mu,sigma) returns the probability p of a
sample falling between the lower and upper limits. h is a handle to
the line objects.

If specs(1) is -Inf, there is no lower limit, and similarly if
specs(2) = Inf, there is no upper limit.

Example Suppose a cereal manufacturer produces 10 ounce boxes of corn flakes.
Variability in the process of filling each box with flakes causes a 1.25
ounce standard deviation in the true weight of the cereal in each box.
The average box of cereal has 11.5 ounces of flakes. What percentage of
boxes will have less than 10 ounces?

normspec([10 Inf],11.5,1.25)

See Also capaplot, disttool, histfit, normfit, norminv, normpdf, normrnd,
normstat, normcdf, normplot, , normlike
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Purpose Mean and variance of normal distribution

Syntax [M,V] = normstat(mu,sigma)

Description [M,V] = normstat(mu,sigma) returns the mean of and variance for
the normal distribution with parameters mu and sigma. mu and sigma
can be vectors, matrices, or multidimensional arrays that all have the
same size, which is also the size of M and V. A scalar input for mu or
sigma is expanded to a constant array with the same dimensions as
the other input.

The mean of the normal distribution with parameters µ and σ is µ,
and the variance is σ2.

Examples n = 1:5;
[m,v] = normstat(n'*n,n'*n)
m =

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

v =
1 4 9 16 25
4 16 36 64 100
9 36 81 144 225

16 64 144 256 400
25 100 225 400 625

See Also normfit, norminv, normpdf, normrnd, normspec, normcdf, normplot,
normlike
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Purpose Number of segments of piecewise distribution

Syntax n = nsegments(obj)

Description n = nsegments(obj) returns the number of segments n in the
piecewise distribution object obj.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

n = nsegments(obj)
n =

3

See Also paretotails, boundary, segment
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Purpose Number of tree nodes

Syntax n = numnodes(t)

Description n = numnodes(t) returns the number of nodes n in the tree t.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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n = numnodes(t)
n =

9

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree
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Purpose Create ordinal array

Syntax B = ordinal(A)
B = ordinal(A,labels)
B = ordinal(A,labels,levels)
B = ordinal(A,labels,[],edges)

Description B = ordinal(A) creates an ordinal array B from the array A. A can
be numeric, logical, character, categorical, or a cell array of strings.
ordinal creates the levels of B from the sorted unique values in A, and
creates default labels for them.

B = ordinal(A,labels) labels the levels in B using the character array
or cell array of strings labels. ordinal assigns labels to levels in B in
order according to the sorted unique values in A.

B = ordinal(A,labels,levels) creates an ordinal array with
possible levels defined by levels. levels is a vector whose values
can be compared to those in A using the equality operator. ordinal
assigns labels to each level from the corresponding elements of labels.
If A contains any values not present in levels, the levels of the
corresponding elements of B are undefined. Use [] for labels to allow
ordinal to create default labels.

B = ordinal(A,labels,[],edges) creates an ordinal array by binning
the numeric array A, with bin edges given by the numeric vector
edges. The uppermost bin includes values equal to the right-most
edge. ordinal assigns labels to each level in B from the corresponding
elements of labels. edges must have one more element than labels.

By default, an element of B is undefined if the corresponding element
of A is NaN (when A is numeric), an empty string (when A is character),
or undefined (when A is categorical). ordinal treats such elements as
“undefined” or “missing” and does not include entries for them among
the possible levels for B. To create an explicit level for such elements
instead of treating them as undefined, you must use the levels input,
and include NaN, the empty string, or an undefined element.
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You may include duplicate labels in labels in order to merge multiple
values in A into a single level in B.

Examples Example 1

Create an ordinal array with labels from random integer data:

x = floor(3*rand(1,1e3));
x(1:5)
ans =

1 2 1 2 0

o = ordinal(x,{'I','II','III'});
o(1:5)
ans =

II III II III I

Example 2

Create an ordinal array from the measurements in Fisher’s iris data,
ignoring decimal lengths:

load fisheriris
m = floor(min(meas(:)));
M = floor(max(meas(:)));
labels = num2str((m:M)');
edges = m:M+1;
cms = ordinal(meas,labels,[],edges)

meas(1:5,:)
ans =

5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

cms(1:5,:)
ans =

5 3 1 0
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4 3 1 0
4 3 1 0
4 3 1 0
5 3 1 0

Example 3

Create an age group ordinal array from the data in hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);

hospital.Age(1:5)
ans =

38
43
38
40
49

AgeGroup(1:5)
ans =

30s
40s
30s
40s
40s

See Also nominal, histc
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Purpose Parallel coordinates plot for multivariate data

Syntax parallelcoords(X)
parallelcoords(X,...,'Standardize','on')
parallelcoords(X,...,'Standardize','PCA')
parallelcoords(X,...,'Standardize','PCAStd')
parallelcoords(X,...,'Quantile',alpha)
parallelcoords(X,...,'Group',group)
parallelcoords(X,...,'Labels',labels)
parallelcoords(X,...,PropertyName,PropertyValue,...)
h = parallelcoords(X,...)

Description parallelcoords(X) creates a parallel coordinates plot of the
multivariate data in the n-by-p matrix X. Rows of X correspond to
observations, columns to variables. A parallel coordinates plot is a
tool for visualizing high dimensional data, where each observation is
represented by the sequence of its coordinate values plotted against
their coordinate indices. parallelcoords treats NaNs in X as missing
values and does not plot those coordinate values.

parallelcoords(X,...,'Standardize','on') scales each column of X
to have mean 0 and standard deviation 1 before making the plot.

parallelcoords(X,...,'Standardize','PCA') creates a parallel
coordinates plot from the principal component scores of X, in order of
decreasing eigenvalues. parallelcoords removes rows of X containing
missing values (NaNs) for principal components analysis (PCA)
standardization.

parallelcoords(X,...,'Standardize','PCAStd') creates a parallel
coordinates plot using the standardized principal component scores.

parallelcoords(X,...,'Quantile',alpha) plots only the median
and the alpha and 1-alpha quantiles of f (t) at each value of t. This is
useful if X contains many observations.

parallelcoords(X,...,'Group',group) plots the data in different
groups with different colors. Groups are defined by group, a numeric
array containing a group index for each observation. (See “Grouped
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Data” on page 2-41.) group can also be a categorical variable, character
matrix, or cell array of strings, containing a group name for each
observation.

parallelcoords(X,...,'Labels',labels) labels the coordinate tick
marks along the horizontal axis using labels, a character array or
cell array of strings.

parallelcoords(X,...,PropertyName,PropertyValue,...) sets
properties to the specified property values for all line graphics objects
created by parallelcoords.

h = parallelcoords(X,...) returns a column vector of handles to the
line objects created by parallelcoords, one handle per row of X. If you
use the 'Quantile' input argument, h contains one handle for each of
the three lines objects created. If you use both the 'Quantile' and the
'Group' input arguments, h contains three handles for each group.

Examples % Make a grouped plot of the raw data
load fisheriris
labels = {'Sepal Length','Sepal Width',...

'Petal Length','Petal Width'};
parallelcoords(meas,'group',species,'labels',labels);

% Plot only the median and quartiles of each group
parallelcoords(meas,'group',species,'labels',labels,...

'quantile',.25);

See Also andrewsplot, glyphplot
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Purpose Parent node of tree node

Syntax p = parent(t)
p = parent(t,nodes)

Description p = parent(t) returns an n-element vector p containing the number of
the parent node for each node in the tree t, where n is the number of
nodes. The parent of the root node is 0.

p = parent(t,nodes) takes a vector nodes of node numbers and
returns the parent nodes for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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p = parent(t)
p =

0
1
1
3
3
4
4
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6
6

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, numnodes, children
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Purpose Pareto chart

Syntax pareto(y,names)
[h,ax] = pareto(...)

Description pareto(y,names) displays a Pareto chart where the values in the vector
y are drawn as bars in descending order. Each bar is labeled with the
associated value in the string matrix or cell array, names. pareto(y)
labels each bar with the index of the corresponding element in y.

The line above the bars shows the cumulative percentage.

[h,ax] = pareto(...) returns a combination of patch and line object
handles to the two axes created in ax.

Example Create a Pareto chart from data measuring the number of manufactured
parts rejected for various types of defects.

defects = {'pits';'cracks';'holes';'dents'};
quantity = [5 3 19 25];
pareto(quantity,defects)

See Also bar, hist
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Purpose Construct Pareto tails object

Syntax obj = paretotails(x,pl,pu)
obj = paretotails(x,pl,pu,cdffun)

Description obj = paretotails(x,pl,pu) creates an object obj defining a
distribution consisting of the empirical distribution of x in the center,
and Pareto distributions in the tails. x is a real-valued vector of data
values whose extreme observations are fit to generalized Pareto
distributions (GPDs). pl and pu identify the lower and upper tail
cumulative probabilities such that 100*pl and 100*(1-pu) percent
of the observations in x are, respectively, fit to a GPD by maximum
likelihood. If pl is 0 or if there are not at least two distinct observations
in the lower tail, then no lower Pareto tail is fit. If pu is 1 or if there are
not at least two distinct observations in the upper tail, then no upper
Pareto tail is fit.

obj = paretotails(x,pl,pu,cdffun) uses cdffun to estimate the cdf
of x between the lower and upper tail probabilities. cdffun may be
any of the following:

• 'ecdf' — Uses an interpolated empirical cdf, with data values as the
midpoints in the vertical steps in the empirical cdf, and computed by
linear interpolation between data values. This is the default.

• 'kernel' — Uses a kernel smoothing estimate of the cdf .

• @fun — Uses a handle to a function of the form [p,xi] = fun(x)
that accepts the input data vector x and returns a vector p of cdf
values and a vector xi of evaluation points. Values in xi must be
sorted and distinct but need not equal the values in x.

cdffun is used to compute the quantiles corresponding to pl and pu
by inverse interpolation, and to define the fitted distribution between
these quantiles.

The output object obj is a Pareto tails object with methods to evaluate
the cdf, inverse cdf, and other functions of the fitted distribution. These
methods are well-suited to copula and other Monte Carlo simulations.
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The pdf method in the tails is the GPD density, but in the center it is
computed as the slope of the interpolated cdf.

The paretotails class is a subclass of the piecewisedistribution
class, and many of its methods are derived from that class.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj);

x = linspace(-5,5);
plot(x,obj.cdf(x),'b-','LineWidth',2)
hold on
plot(x,tcdf(x,3),'r:','LineWidth',2)
plot(q,p,'bo','LineWidth',2,'MarkerSize',5)
legend('Pareto Tails Object','t Distribution','Location','NW')
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See Also ecdf, ksdensity, gpfit, cdf (piecewisedistribution), icdf
(piecewisedistribution)
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Purpose Linear or rank partial correlation coefficients

Syntax RHO = partialcorr(X,Z)
RHO = partialcorr(X,Y,Z)
[RHO,PVAL] = partialcorr(...)
[...] = partialcorr(...,param1,val1,param2,val2,...)

Description RHO = partialcorr(X,Z) returns the sample linear partial correlation
coefficients between pairs of variables in X controlling for the variables
in Z. X is an n-by-p matrix, and Z is an n-by-q matrix with rows
corresponding to observations, and columns corresponding to variables.
The output, RHO, is a symmetric p-by-p matrix.

RHO = partialcorr(X,Y,Z) returns the sample linear partial
correlation coefficients between pairs of variables between X and
Y, controlling for the variables in Z. X is an n-by-p1 matrix, Y an
n-by-p2 matrix, and Z is an n-by-q matrix, with rows corresponding to
observations, and columns corresponding to variables. RHO is a p1-by-p2
matrix, where the (i, j)th entry is the sample linear partial correlation
between the ith column in X and the jth column in Y.

If the covariance matrix of [X,Z] is

S
S S

S ST=
⎛

⎝⎜
⎞

⎠⎟
11 12

12 22

then the partial correlation matrix of X, controlling for Z, can be
defined formally as a normalized version of the covariance matrix

S xy S S S S T_ (= −11 12 22 12
-1 )

[RHO,PVAL] = partialcorr(...) also returns PVAL, a matrix of
p-values for testing the hypothesis of no partial correlation against the
alternative that there is a nonzero partial correlation. Each element of
PVAL is the p-value for the corresponding element of RHO. If PVAL(i,j)
is small, say less than 0.05, then the partial correlation, RHO(i,j), is
significantly different from zero.
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[...] = partialcorr(...,param1,val1,param2,val2,...)
specifies additional parameters and their values. Valid parameters
include the following:

Parameter Values

'type' 'Pearson' (the default) to compute
Pearson (linear) partial correlations or
’Spearman' to compute Spearman (rank)
partial correlations.

'rows' 'all' (default) to use all rows regardless
of missing values (NaNs), 'complete' to
use only rows with no missing values, or
'pairwise' to compute RHO(i,j) using
rows with no missing values in column i
or j.

'tail'The alternative
hypothesis against which
to compute p-values for
testing the hypothesis of
no partial correlation.

• 'both' (the default) — the correlation
is not zero.

• 'right' — the correlation is greater
than zero.

• 'left' — the correlation is less than
zero.

The 'pairwise' option for the rows parameter can produce RHO that is
not positive definite. The 'complete' option always produces a positive
definite RHO, but when data is missing, the estimates will in general
be based on fewer observations.

partialcorr computes p-values for linear and rank partial correlations
using a Student’s t distribution for a transformation of the correlation.
This is exact for linear partial correlation when X and Z are normal, but
is a large-sample approximation otherwise.

See Also corr, tiedrank, corrcoef
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Purpose Principal component analysis using covariance matrix

Syntax COEFF = pcacov(V)
[COEFF,latent] = pcacov(V)
[COEFF,latent,explained] = pcacov(V)

Description COEFF = pcacov(V) performs principal components analysis on the
p-by-p covariance matrix V and returns the principal component
coefficients, also known as loadings. COEFF is a p-by-p matrix, with
each column containing coefficients for one principal component. The
columns are in order of decreasing component variance.

pcacov does not standardize V to have unit variances. To perform
principal components analysis on standardized variables, use the
correlation matrix R = V./(SD*SD')), where SD = sqrt(diag(V)), in
place of V. To perform principal components analysis directly on the
data matrix, use princomp.

[COEFF,latent] = pcacov(V) returns latent, a vector containing the
principal component variances, that is, the eigenvalues of V.

[COEFF,latent,explained] = pcacov(V) returns explained, a vector
containing the percentage of the total variance explained by each
principal component.

Example load hald
covx = cov(ingredients);
[COEFF,latent,explained] = pcacov(covx)
COEFF =

0.0678 -0.6460 0.5673 -0.5062
0.6785 -0.0200 -0.5440 -0.4933

-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844

variances =
517.7969
67.4964
12.4054
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0.2372

explained =
86.5974
11.2882
2.0747
0.0397

References [1] Jackson, J. E., A User’s Guide to Principal Components, John Wiley
and Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer,
2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford
University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, factoran, pcares, princomp , rotatefactors
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Purpose Residuals from principal component analysis

Syntax residuals = pcares(X,ndim)
[residuals,reconstructed] = pcares(X,ndim)

Description residuals = pcares(X,ndim) returns the residuals obtained by
retaining ndim principal components of the n-by-p matrix X. Rows of X
correspond to observations, columns to variables. ndim is a scalar and
must be less than or equal to p. residuals is a matrix of the same size
as X. Use the data matrix, not the covariance matrix, with this function.

pcares does not normalize the columns of X. To perform the principal
components analysis based on standardized variables, that is, based on
correlations, use pcares(zscore(X), ndim). You can perform principal
components analysis directly on a covariance or correlation matrix, but
without constructing residuals, by using pcacov.

[residuals,reconstructed] = pcares(X,ndim) returns the
reconstructed observations; that is, the approximation to X obtained by
retaining its first ndim principal components.

Example This example shows the drop in the residuals from the first row of the
Hald data as the number of component dimensions increases from one
to three.

load hald
r1 = pcares(ingredients,1);
r2 = pcares(ingredients,2);
r3 = pcares(ingredients,3);

r11 = r1(1,:)
r11 =

2.0350 2.8304 -6.8378 3.0879

r21 = r2(1,:)
r21 =

-2.4037 2.6930 -1.6482 2.3425
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r31 = r3(1,:)
r31 =

0.2008 0.1957 0.2045 0.1921

References [1] Jackson, J. E., A User’s Guide to Principal Components, John Wiley
and Sons, 1991.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd Edition, Springer,
2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford
University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also factoran, pcacov, princomp
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Purpose Probability density function for specified distribution

Syntax Y = pdf(name,X,A)
Y = pdf(name,X,A,B)
Y = pdf(name,X,A,B,C)

Description Y = pdf(name,X,A) computes the probability density function for the
one-parameter family of distributions specified by name. Parameter
values for the distribution are given in A. Densities are evaluated at
the values in X and returned in Y.

If X and A are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A. If A is a scalar, it is
expanded to a constant matrix the same size as X.

Y is the common size of X and A after any necessary scalar expansion.

Y = pdf(name,X,A,B) computes the probability density function for
two-parameter families of distributions, where parameter values are
given in A and B.

If X, A, and B are arrays, they must be the same size. If X is a scalar, it is
expanded to a constant matrix the same size as A and B. If either A or B
are scalars, they are expanded to constant matrices the same size as X.

Y is the common size of X, A, and B after any necessary scalar expansion.

Y = pdf(name,X,A,B,C) computes the probability density function for
three-parameter families of distributions, where parameter values are
given in A, B, and C.

If X, A, B, and C are arrays, they must be the same size. If X is a scalar,
it is expanded to a constant matrix the same size as A, B, and C. If
any of A, B or C are scalars, they are expanded to constant matrices
the same size as X.

Y is the common size of X, A, B and C after any necessary scalar
expansion.

Acceptable strings for name are:
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• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)

• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples p = pdf('Normal',-2:2,0,1)
p =
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0.0540 0.2420 0.3989 0.2420 0.0540

p = pdf('Poisson',0:4,1:5)
p =

0.3679 0.2707 0.2240 0.1954 0.1755

See Also cdf, icdf, mle, random
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Purpose Probability density function for piecewise distribution

Syntax P = pdf(obj,X)

Description P = pdf(obj,X) returns an array P of values of the probability density
function for the piecewise distribution object obj, evaluated at the
values in the array X.

Note For a Pareto tails object, the pdf is computed using the
generalized Pareto distribution in the tails. In the center, the pdf is
computed using the slopes of the cdf, which are interpolated between
a set of discrete values. Therefore the pdf in the center is piecewise
constant. It is noisy for a cdffun specified in paretotails via the
'ecdf' option, and somewhat smoother for the 'kernel' option, but
generally not a good estimate of the underlying density of the original
data.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);
[p,q] = boundary(obj)
p =

0.1000
0.9000

q =
-1.7766
1.8432

pdf(obj,q)
ans =

0.2367
0.1960

See Also paretotails, cdf (piecewisedistribution)
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Purpose Pairwise distance between observations

Syntax Y = pdist(X)
Y = pdist(X,metric)
Y = pdist(X,distfun)
Y = pdist(X,'minkowski',p)

Description Y = pdist(X) computes the Euclidean distance between pairs of
objects in n-by-p data matrix X. Rows of X correspond to observations;
columns correspond to variables. Y is a row vector of length n(n–1)/2,
corresponding to pairs of observations in X. The distances are arranged
in the order (2,1), (3,1), ..., (n,1), (3,2), ..., (n,2), ..., (n,n–1)). Y is commonly
used as a dissimilarity matrix in clustering or multidimensional scaling.

To save space and computation time, Y is formatted as a vector. However,
you can convert this vector into a square matrix using the squareform
function so that element i, j in the matrix, where i < j, corresponds to
the distance between objects i and j in the original data set.

Y = pdist(X,metric) computes the distance between objects in the
data matrix, X, using the method specified by metric, which can be any
of the following character strings.

'euclidean' Euclidean distance (default)

'seuclidean' Standardized Euclidean distance. Each
coordinate in the sum of squares is inverse
weighted by the sample variance of that
coordinate.

'mahalanobis' Mahalanobis distance

'cityblock' City Block metric

'minkowski' Minkowski metric

'cosine' One minus the cosine of the included angle
between points (treated as vectors)
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'correlation' One minus the sample correlation between
points (treated as sequences of values).

'spearman' One minus the sample Spearman’s rank
correlation between observations, treated as
sequences of values

'hamming' Hamming distance, the percentage of
coordinates that differ

'jaccard' One minus the Jaccard coefficient, the
percentage of nonzero coordinates that differ

'chebychev' Chebychev distance (maximum coordinate
difference)

Y = pdist(X,distfun) accepts a function handle distfun to a metric
of the form

d = distfun(u,V)

which takes as arguments a 1-by-p vector u, corresponding to a single
row of X, and an m-by-p matrix V, corresponding to multiple rows
of X. distfun must accept a matrix V with an arbitrary number of
rows. distfun must return an m-by-1 vector of distances d, whose kth
element is the distance between u and V(k,:).

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide the
additional parameters to the distance function, if necessary.

Y = pdist(X,'minkowski',p) computes the distance between objects
in the data matrix, X, using the Minkowski metric. p is the exponent
used in the Minkowski computation which, by default, is 2.

Metric Definitions

Given an m-by-n data matrix X, which is treated as m (1-by-n) row
vectors x1, x2, ..., xm, the various distances between the vector xr and
xs are defined as follows:
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• Euclidean distance

• Standardized Euclidean distance

where D is the diagonal matrix with diagonal elements given by ,
which denotes the variance of the variable Xj over the m objects.

• Mahalanobis distance

where V is the sample covariance matrix.

• City Block metric

• Minkowski metric

Notice that for the special case of p = 1, the Minkowski metric gives
the City Block metric, and for the special case of p = 2, the Minkowski
metric gives the Euclidean distance.

• Cosine distance

• Correlation distance
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where

and

• Hamming distance

• Jaccard distance

Examples X = [1 2; 1 3; 2 2; 3 1]
X =

1 2
1 3
2 2
3 1

Y = pdist(X,'mahal')
Y =

2.3452 2.0000 2.3452 1.2247 2.4495 1.2247

Y = pdist(X)
Y =

1.0000 1.0000 2.2361 1.4142 2.8284 1.4142

squareform(Y)
ans =
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0 1.0000 1.0000 2.2361
1.0000 0 1.4142 2.8284
1.0000 1.4142 0 1.4142
2.2361 2.8284 1.4142 0

See Also cluster, clusterdata, cmdscale, cophenet, dendrogram,
inconsistent, linkage, silhouette, squareform
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Purpose Random numbers from Pearson system of distributions

Syntax r = pearsrnd(mu,sigma,skew,kurt,m,n)
[r,type] = pearsrnd(...)
[r,type,c] = pearsrnd(...)

Description r = pearsrnd(mu,sigma,skew,kurt,m,n) returns an m-by-n matrix of
random numbers drawn from the distribution in the Pearson system
with mean mu, standard deviation sigma, skewness skew, and kurtosis
kurt. mu, sigma, skew, and kurt must be scalars.

Note Because r is a random sample, its sample moments, especially
the skewness and kurtosis, typically differ somewhat from the specified
distribution moments.

Some combinations of moments are not valid for any random variable,
and in particular, the kurtosis must be greater than the square of the
skewness plus 1. The kurtosis of the normal distribution is defined
to be 3.

r = pearsrnd(mu,sigma,skew,kurt) returns a scalar value.

r = pearsrnd(mu,sigma,skew,kurt,m,n,...) or r =
pearsrnd(mu,sigma,skew,kurt,[m,n,...]) returns an m-by-n-by-...
array.

[r,type] = pearsrnd(...) returns the type of the specified
distribution within the Pearson system. type is a scalar integer from
0 to 7. Set m and n to zero to identify the distribution type without
generating any random values.

The seven distribution types in the Pearson system correspond to the
following distributions:

0 Normal distribution

1 Four-parameter beta
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2 Symmetric four-parameter beta

3 Three-parameter gamma

4 Not related to any standard distribution.
Density proportional to (1+((x-a)/b)^2)^(-c) *
exp(-d*arctan((x-a)/b)).

5 Inverse gamma location-scale

6 F location-scale

7 Student’s t location-scale

[r,type,c] = pearsrnd(...) returns the coefficients of the quadratic
polynomial that defines the distribution via the differential equation

d( (p(x)))
dx

 = 
(a + x)

(c(0) + c(1) x + c(2) x2
log

⋅ ⋅ )
.

Example Generate random values from the standard normal distribution.

r = pearsrnd(0,1,0,3,100,1); % equivalent to randn(100,1)

Determine the distribution type.

[r,type] = pearsrnd(0,1,1,4,0,0);
r =

[]
type =

1

See Also random, johnsrnd
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Purpose All permutations

Syntax P = perms(v)

Description P = perms(v) where v is a row vector of length n, creates a matrix
whose rows consist of all possible permutations of the n elements of v.
The matrix P contains n! rows and n columns.

perms is only practical when n is less than 8 or 9.

Example perms([2 4 6])

ans =

6 4 2
6 2 4
4 6 2
4 2 6
2 4 6
2 6 4
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Purpose Poisson cumulative distribution function

Syntax P = poisscdf(X,lambda)

Description P = poisscdf(X,lambda) computes the Poisson cdf at each of the
values in X using the corresponding parameters in lambda. X and
lambda can be vectors, matrices, or multidimensional arrays that have
the same size. A scalar input is expanded to a constant array with the
same dimensions as the other input. The parameters in lambda must
be positive.

The Poisson cdf is

Examples For example, consider a Quality Assurance department that performs
random tests of individual hard disks. Their policy is to shut down the
manufacturing process if an inspector finds more than four bad sectors
on a disk. What is the probability of shutting down the process if the
mean number of bad sectors (λ) is two?

probability = 1-poisscdf(4,2)
probability =

0.0527

About 5% of the time, a normally functioning manufacturing process
will produce more than four flaws on a hard disk.

Suppose the average number of flaws (λ) increases to four. What is the
probability of finding fewer than five flaws on a hard drive?

probability = poisscdf(4,4)
probability =

0.6288
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This means that this faulty manufacturing process continues to operate
after this first inspection almost 63% of the time.

See Also cdf, poissfit, poissinv, poisspdf, poissrnd, poisstat
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Purpose Parameter estimates and confidence intervals for Poisson distributed
data

Syntax lambdshat = poissfit(data)
[lambdahat,lambdaci] = poissfit(data)
[lambdahat,lambdaci] = poissfit(data,alpha)

Description lambdshat = poissfit(data) returns the maximum likelihood
estimate (MLE) of the parameter of the Poisson distribution, λ, given
the data data.

[lambdahat,lambdaci] = poissfit(data) also gives 95% confidence
intervals in lamdaci.

[lambdahat,lambdaci] = poissfit(data,alpha) gives
100(1 - alpha)% confidence intervals. For example alpha = 0.001
yields 99.9% confidence intervals.

The sample mean is the MLE of λ.

Example r = poissrnd(5,10,2);
[l,lci] = poissfit(r)
l =

7.4000 6.3000
lci =

5.8000 4.8000
9.1000 7.9000

See Also betafit, binofit, expfit, gamfit, poisscdf, poissinv, poisspdf,
poissrnd, poisstat, unifit, wblfit
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Purpose Inverse of Poisson cumulative distribution function

Syntax X = poissinv(P,lambda)

Description X = poissinv(P,lambda) returns the smallest value X such that the
Poisson cdf evaluated at X equals or exceeds P. P and lambda can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other input.

Examples If the average number of defects (λ) is two, what is the 95th percentile
of the number of defects?

poissinv(0.95,2)
ans =

5

What is the median number of defects?

median_defects = poissinv(0.50,2)
median_defects =

2

See Also icdf, poisscdf, poissfit, poisspdf, poissrnd, poisstat
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Purpose Poisson probability density function

Syntax Y = poisspdf(X,lambda)

Description Y = poisspdf(X,lambda) computes the Poisson pdf at each of the
values in X using the corresponding parameters in lambda. X and
lambda can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array with
the same dimensions as the other input. The parameters in lambda
must all be positive.

The Poisson pdf is

where x can be any nonnegative integer. The density function is zero
unless x is an integer.

Examples A computer hard disk manufacturer has observed that flaws occur
randomly in the manufacturing process at the average rate of two flaws
in a 4 GB hard disk and has found this rate to be acceptable. What is
the probability that a disk will be manufactured with no defects?

In this problem, λ = 2 and x = 0.

p = poisspdf(0,2)
p =

0.1353

See Also pdf, poisscdf, poissfit, poissinv, poissrnd, poisstat
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Purpose Random numbers from Poisson distribution

Syntax R = poissrnd(lambda)
R = poissrnd(lambda,m)
R = poissrnd(lambda,m,n)

Description R = poissrnd(lambda) generates random numbers from the Poisson
distribution with mean parameter lambda. lambda can be a vector, a
matrix, or a multidimensional array. The size of R is the size of lambda.

R = poissrnd(lambda,m) generates random numbers from the Poisson
distribution with mean parameter lambda, where m is a row vector. If m
is a 1-by-2 vector, R is a matrix with m(1) rows and m(2) columns. If m is
1-by-n, R is an n-dimensional array.

R = poissrnd(lambda,m,n) generates random numbers from the
Poisson distribution with mean parameter lambda, where scalars m and
n are the row and column dimensions of R.

Example Generate a random sample of 10 pseudo-observations from a Poisson
distribution with λ = 2.

lambda = 2;

random_sample1 = poissrnd(lambda,1,10)
random_sample1 =

1 0 1 2 1 3 4 2 0 0

random_sample2 = poissrnd(lambda,[1 10])
random_sample2 =

1 1 1 5 0 3 2 2 3 4

random_sample3 = poissrnd(lambda(ones(1,10)))
random_sample3 =

3 2 1 1 0 0 4 0 2 0

See Also poisscdf, poissfit, poissinv, poisspdf, poisstat
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Purpose Mean and variance of Poisson distribution

Syntax M = poisstat(lambda)
[M,V] = poisstat(lambda)

Description M = poisstat(lambda) returns the mean of the Poisson distribution
with parameter lambda. The size of M is the size of lambda.

[M,V] = poisstat(lambda) also returns the variance V of the Poisson
distribution.

For the Poisson distribution with parameter λ, both the mean and
variance are equal to λ.

Examples Find the mean and variance for the Poisson distribution with λ = 2.

[m,v] = poisstat([1 2; 3 4])
m =

1 2
3 4

v =
1 2
3 4

See Also poisscdf, poissfit, poissinv, poisspdf, poissrnd
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Purpose Polynomial confidence intervals

Syntax Y = polyconf(P,X)
[Y,DELTA] = polyconf(P,X,S)
[Y,DELTA] = polyconf(P,X,S,name1,val1,name2,val2,...)

Description Y = polyconf(P,X) returns the value of a polynomial, P, evaluated at
X. The polynomial P is a vector of length N+1 whose elements are the
coefficients of the polynomial in descending powers.

[Y,DELTA] = polyconf(P,X,S) uses the optional output, S, created by
polyfit to generate 95% prediction intervals. If the coefficients in P
are least squares estimates computed by polyfit, and the errors in
the data input to polyfit were independent, normal, with constant
variance, then there is a 95% probability that Y – DELTA will contain
a future observation at X.

[Y,DELTA] = polyconf(P,X,S,name1,val1,name2,val2,...)
specifies optional argument name/value pairs chosen from the following
list. Argument names are case insensitive and partial matches are
allowed.

Name Value

'alpha' A value between 0 and 1 specifying a confidence level
of 100*(1-alpha)%. Default is alpha=0.05 for 95%
confidence.

'mu' A two-element vector containing centering and scaling
parameters as computed by polyfit. With this
option, polyconf uses (X-mu(1))/mu(2) in place of X.

'predopt' Either 'observation' (the default) to compute
intervals for predicting a new observation at X, or
'curve' to compute confidence intervals for the
polynomial evaluated at X.

'simopt' Either 'off' (the default) for nonsimultaneous
bounds, or 'on' for simultaneous bounds.
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See Also polyval, polytool, polyfit, invpred, polyvalm
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Purpose Polynomial fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of
degree n that fits the data, p(x(i)) to y(i), in a least squares sense.
The result p is a row vector of length n+1 containing the polynomial
coefficients in descending powers:

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p
and a structure S for use with polyval to obtain error estimates or
predictions. S contains fields for the triangular factor (R) from a QR
decomposition of the Vandermonde matrix of x, the degrees of freedom
(df), and the norm of the residuals (normr). If the data is random, an
estimate of the covariance matrix of p is (Rinv*Rinv')*normr^2/df,
where Rinv is the inverse of R.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

where µ1 = mean(x) and µ2 = std(x). mu is the two-element vector [µ1 ,
µ2]. This centering and scaling transformation improves the numerical
properties of both the polynomial and the fitting algorithm.

The polyfit function is part of the standard MATLAB language.

Example Fitting a random data set to a first-order polynomial:

[p,S] = polyfit(1:10,[1:10] + normrnd(0,1,1,10),1)
p =

1.1433 -0.7868
S =
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R: [2x2 double]
df: 8
normr: 2.3773

See Also polyval, polytool, polyconf
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Purpose Interactive plot of fitted polynomials and prediction intervals

Syntax polytool(x,y)
polytool(x,y,n)
polytool(x,y,n,alpha)
polytool(x,y,n,alpha,xname,yname)
h = polytool(...)

Description polytool(x,y) fits a line to the vectors x and y and displays an
interactive plot of the result in a graphical interface. You can use the
interface to explore the effects of changing the parameters of the fit and
to export fit results to the workspace.

polytool(x,y,n) initially fits a polynomial of degree n. The default
is 1, which produces a linear fit.

polytool(x,y,n,alpha) initially plots 100(1 - alpha)% confidence
intervals on the predicted values. The default is 0.05 which results in
95% confidence intervals.

polytool(x,y,n,alpha,xname,yname) labels the x and y values on the
graphical interface using the strings xname and yname. Specify n and
alpha as [] to use their default values.

h = polytool(...) outputs a vector of handles, h, to the line objects
in the plot. The handles are returned in the degree: data, fit, lower
bounds, upper bounds.

Algorithm polytool fits by least squares using the regression model
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Purpose Polynomial values and prediction intervals

Syntax Y = polyval(p,X)
[Y,DELTA] = polyval(p,X,S)

Description Y = polyval(p,X) returns the value of a polynomial given its
coefficients, p, at the values in X.

[Y,DELTA] = polyval(p,X,S) uses the optional output S generated by
polyfit to generate error estimates, Y ± DELTA. If the errors in the
data input to polyfit are independent normal with constant variance,
Y ± DELTA contains at least 50% of future observations at X.

If p is a vector whose elements are the coefficients of a polynomial in
descending powers, then polyval(p,X) is the value of the polynomial
evaluated at X. If X is a matrix or vector, the polynomial is evaluated at
each of the elements.

The polyval function is part of the standard MATLAB language.

Examples Simulate the function y = x, adding normal random errors with a
standard deviation of 0.1. Then use polyfit to estimate the polynomial
coefficients. Note that predicted Y values are within DELTA of the
integer X in every case.

[p,S] = polyfit(1:10,(1:10)+normrnd(0,0.1,1,10),1);
X = magic(3);
[Y,D] = polyval(p,X,S)
Y =

8.0696 1.0486 6.0636
3.0546 5.0606 7.0666
4.0576 9.0726 2.0516

D =
0.0889 0.0951 0.0861
0.0889 0.0861 0.0870
0.0870 0.0916 0.0916
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See Also polyfit, polytool, polyconf
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Purpose Percentiles of sample

Syntax Y = prctile(X,p)
Y = prctile(X,p,dim)

Description Y = prctile(X,p) returns percentiles of the values in X. p is a scalar or
a vector of percent values. When X is a vector, Y is the same size as p and
Y(i) contains the p(i)th percentile. When X is a matrix, the ith row of
Y contains the p(i)th percentiles of each column of X. For N-dimensional
arrays, prctile operates along the first nonsingleton dimension of X.

Y = prctile(X,p,dim) calculates percentiles along dimension dim.
The dim’th dimension of Y has length length(p).

Percentiles are specified using percentages, from 0 to 100. For an
n-element vector X, prctile computes percentiles as follows:

1 The sorted values in X are taken to be the 100(0.5/n), 100(1.5/n), ...,
100([n-0.5]/n) percentiles.

2 Linear interpolation is used to compute percentiles for percent values
between 100(0.5/n) and 100([n-0.5]/n).

3 The minimum or maximum values in X are assigned to percentiles
for percent values outside that range.

prctile treats NaNs as missing values and removes them.

Examples x = (1:5)'*(1:5)
x =

1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25

y = prctile(x,[25 50 75])
y =
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1.7500 3.5000 5.2500 7.0000 8.7500
3.0000 6.0000 9.0000 12.0000 15.0000
4.2500 8.5000 12.7500 17.0000 21.2500
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Purpose Principal component analysis

Syntax [COEFF,SCORE] = princomp(X)
[COEFF,SCORE,latent] = princomp(X)
[COEFF,SCORE,latent,tsquare] = princomp(X)
[...] = princomp(X,'econ')

Description COEFF = princomp(X) performs principal components analysis on the
n-by-p data matrix X, and returns the principal component coefficients,
also known as loadings. Rows of X correspond to observations, columns
to variables. COEFF is a p-by-p matrix, each column containing
coefficients for one principal component. The columns are in order of
decreasing component variance.

princomp centers X by subtracting off column means, but does not
rescale the columns of X. To perform principal components analysis
with standardized variables, that is, based on correlations, use
princomp(zscore(X)). To perform principal components analysis
directly on a covariance or correlation matrix, use pcacov.

[COEFF,SCORE] = princomp(X) returns SCORE, the principal
component scores; that is, the representation of X in the principal
component space. Rows of SCORE correspond to observations, columns
to components.

[COEFF,SCORE,latent] = princomp(X) returns latent, a vector
containing the eigenvalues of the covariance matrix of X.

[COEFF,SCORE,latent,tsquare] = princomp(X) returns tsquare,
which contains Hotelling’s T2 statistic for each data point.

The scores are the data formed by transforming the original data into
the space of the principal components. The values of the vector latent
are the variance of the columns of SCORE. Hotelling’s T2 is a measure
of the multivariate distance of each observation from the center of the
data set.

When n <= p, SCORE(:,n:p) and latent(n:p) are necessarily zero,
and the columns of COEFF(:,n:p) define directions that are orthogonal
to X.
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[...] = princomp(X,'econ') returns only the elements of latent
that are not necessarily zero, and the corresponding columns of COEFF
and SCORE, that is, when n <= p, only the first n-1. This can be
significantly faster when p is much larger than n.

Example Compute principal components for the ingredients data in the Hald
data set, and the variance accounted for by each component.

load hald;
[pc,score,latent,tsquare] = princomp(ingredients);
pc,latent
pc =

0.0678 -0.6460 0.5673 -0.5062
0.6785 -0.0200 -0.5440 -0.4933

-0.0290 0.7553 0.4036 -0.5156
-0.7309 -0.1085 -0.4684 -0.4844

latent =
517.7969
67.4964
12.4054
0.2372

References [1] Jackson, J. E., A User’s Guide to Principal Components, John Wiley
and Sons, 1991, p. 592.

[2] Jolliffe, I. T., Principal Component Analysis, 2nd edition, Springer,
2002.

[3] Krzanowski, W. J., Principles of Multivariate Analysis, Oxford
University Press, 1988.

[4] Seber, G. A. F., Multivariate Observations, Wiley, 1984.

See Also barttest, biplot, canoncorr, factoran, pcacov, pcares ,
rotatefactors
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Purpose Probability plots

Syntax probplot(Y)
probplot(distribution,Y)
probplot(Y,cens,freq)
probplot(ax,Y)
probplot(...,'noref')
probplot(ax,fun,params)
h = probplot(...)

Description probplot(Y) produces a normal probability plot comparing the
distribution of the data Y to the normal distribution. Y can be a single
vector, or a matrix with a separate sample in each column. The plot
includes a reference line useful for judging whether the data follow
a normal distribution. probplot uses midpoint probability plotting
positions.

probplot(distribution,Y) creates a probability plot for the
distribution specified by distribution. Acceptable strings for
distribution are:

• 'exponential' — Exponential probability plot (nonnegative values)

• 'extreme value' — Extreme value probability plot (all values)

• 'lognormal' — Lognormal probability plot (positive values)

• 'normal' — Normal probability plot (all values)

• 'rayleigh' — Rayleigh probability plot (positive values)

• 'weibull' — Weibull probability plot (positive values)

Not all distributions are appropriate for all data sets, and probplot will
error when asked to create a plot with a data set that is inappropriate
for a specified distribution. Appropriate data ranges for each
distribution are given parenthetically in the list above.

probplot(Y,cens,freq) or probplot(distname,Y,cens,freq)
requires a vector Y. cens is a vector of the same size as Y and contains

14-646



probplot

1 for observations that are right-censored and 0 for observations that
are observed exactly. freq is a vector of the same size as Y, containing
integer frequencies for the corresponding elements in Y.

probplot(ax,Y) takes a handle ax to an existing probability plot, and
adds additional lines for the samples in Y. ax is a handle for a set of axes.

probplot(...,'noref') omits the reference line.

probplot(ax,fun,params) takes a function fun and a set of
parameters, params, and adds fitted lines to the axes of an existing
probability plot specified by ax. fun is a function handle to a cdf
function, specified with @ (for example, @weibcdf). params is the set of
parameters required to evaluate fun, and is specified as a cell array
or vector. The function must accept a vector of X values as its first
argument, then the optional parameters, and must return a vector of
cdf values evaluated at X.

h = probplot(...) returns handles to the plotted lines.

Example The following plot assesses two samples, one from a Weibull distribution
and one from a Rayleigh distribution, to see if they may have come
from a Weibull population.

x1 = wblrnd(3,3,100,1);
x2 = raylrnd(3,100,1);
probplot('weibull',[x1 x2])
legend('Weibull Sample','Rayleigh Sample','Location','NW')
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See Also normplot, ecdf, wblplot
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Purpose Procrustes analysis

Syntax d = procrustes(X,Y)
[d,Z] = procrustes(X,Y)
[d,Z,transform] = procrustes(X,Y)

Description d = procrustes(X,Y) determines a linear transformation (translation,
reflection, orthogonal rotation, and scaling) of the points in matrix Y to
best conform them to the points in matrix X. The goodness-of-fit criterion
is the sum of squared errors. procrustes returns the minimized value
of this dissimilarity measure in d. d is standardized by a measure of the
scale of X, given by

sum(sum((X-repmat(mean(X,1),size(X,1),1)).^2,1))

i.e., the sum of squared elements of a centered version of X. However,
if X comprises repetitions of the same point, the sum of squared errors
is not standardized.

X and Y must have the same number of points (rows), and procrustes
matches the ith point in Y to the ith point in X. Points in Y can have
smaller dimension (number of columns) than those in X. In this case,
procrustes adds columns of zeros to Y as necessary.

[d,Z] = procrustes(X,Y) also returns the transformed Y values.

[d,Z,transform] = procrustes(X,Y) also returns the transformation
that maps Y to Z. transform is a structure with fields:

c Translation component

T Orthogonal rotation and reflection component

b Scale component

That is, Z = transform.b * Y * transform.T + transform.c.

This example creates some random points in two dimensions, then
rotates, scales, translates, and adds some noise to those points. It then
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uses procrustes to conform Y to X, and plots the original X and Y, and
the transformed Y.

X = normrnd(0,1,[10 2]);
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S+2,0.05,size(X));
[d,Z,tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx',...

Y(:,1),Y(:,2),'b.',...
Z(:,1),Z(:,2),'bx');

Examples Example 1

This example creates some random points in two dimensions, then
rotates, scales, translates, and adds some noise to those points. It then
uses procrustes to conform Y to X, and plots the original X and Y, and
the transformed Y.

n = 10;
X = normrnd(0,1,[n 2]);
S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5];
Y = normrnd(0.5*X*S+2,0.05,n,2);
[d,Z,tr] = procrustes(X,Y);
plot(X(:,1),X(:,2),'rx',...

Y(:,1),Y(:,2),'b.',...
Z(:,1),Z(:,2),'bx');
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Example 2

This example modifies the previous example to compute a procrustes
solution that does not include scaling:

trUnscaled.T = tr.T;
trUnscaled.b = 1;
trUnscaled.c = mean(X) - mean(Y) * trUnscaled.T;
ZUnscaled = Y * trUnscaled.T + repmat(trUnscaled.c,n,1);
dUnscaled = sum((ZUnscaled(:)-X(:)).^2) ...

/ sum(sum((X - repmat(mean(X,1),n,1)).^2, 1));

References [1] Seber, G. A. F., Multivariate Observations, Wiley, 1984
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[2] Bulfinch, T., The Age of Fable; or, Stories of Gods and Heroes,
Sanborn, Carter, and Bazin, Boston, 1855.

See Also cmdscale, factoran
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Purpose Produce subtrees by pruning

Syntax t2 = prune(t1,'level',level)
t2 = prune(t1,'nodes',nodes)
t2 = prune(t1)

Description t2 = prune(t1,'level',level) takes a decision tree t1 and a pruning
level level, and returns the decision tree t2 pruned to that level. If
level is 0, there is no pruning. Trees are pruned based on an optimal
pruning scheme that first prunes branches giving less improvement
in error cost.

t2 = prune(t1,'nodes',nodes) prunes the nodes listed in the nodes
vector from the tree. Any t1 branch nodes listed in nodes become leaf
nodes in t2, unless their parent nodes are also pruned. Use view to
display the node numbers for any node you select.

t2 = prune(t1) returns the decision tree t2 that is the full, unpruned
t1, but with optimal pruning information added. This is useful only if
t1 is created by pruning another tree, or by using the classregtree
function with the 'prune' parameter set to 'off'. If you plan to prune
a tree multiple times along the optimal pruning sequence, it is more
efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes
into leaf nodes and removing the leaf nodes under the original branch.

Example Display the full tree for Fisher’s iris data:

load fisheriris;

t1 = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)

t1 =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
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3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 if PW<1.55 then node 10 else node 11
8 class = versicolor
9 class = virginica

10 class = virginica
11 class = versicolor

view(t1)
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Display the next largest tree from the optimal pruning sequence:

t2 = prune(t1,'level',1)
t2 =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
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5 class = virginica
6 class = versicolor
7 class = virginica

view(t2)

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.
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See Also classregtree, test, view
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Purpose Quantile-quantile plot of two samples

Syntax qqplot(X)
qqplot(X,Y)
qqplot(X,Y,pvec)
h = qqplot(X,Y,pvec)

Description qqplot(X) displays a quantile-quantile plot of the sample quantiles
of X versus theoretical quantiles from a normal distribution. If the
distribution of X is normal, the plot will be close to linear.

qqplot(X,Y) displays a quantile-quantile plot of two samples. If the
samples do come from the same distribution, the plot will be linear.

For matrix X and Y, qqplot displays a separate line for each pair of
columns. The plotted quantiles are the quantiles of the smaller data set.

The plot has the sample data displayed with the plot symbol '+'.
Superimposed on the plot is a line joining the first and third quartiles of
each distribution (this is a robust linear fit of the order statistics of the
two samples). This line is extrapolated out to the ends of the sample to
help evaluate the linearity of the data.

Use qqplot(X,Y,pvec) to specify the quantiles in the vector pvec.

h = qqplot(X,Y,pvec) returns handles to the lines in h.

Example The following example shows a quantile-quantile plot of two samples
from Poisson distributions.

x = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qqplot(x,y);
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See Also normplot
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Purpose Quantiles of sample

Syntax Y = quantile(X,p)
Y = quantile(X,p,dim)

Description Y = quantile(X,p) returns quantiles of the values in X. p is a scalar or
a vector of cumulative probability values. When X is a vector, Y is the
same size as p, and Y(i) contains the p(i)th quantile. When X is a
matrix, the ith row of Y contains the p(i)th quantiles of each column
of X. For N-dimensional arrays, quantile operates along the first
nonsingleton dimension of X.

Y = quantile(X,p,dim) calculates quantiles along dimension dim. The
dimth dimension of Y has length length(P).

Quantiles are specified using cumulative probabilities from 0 to 1. For
an n-element vector X, quantile computes quantiles as follows:

1 The sorted values in X are taken as the (0.5/n), (1.5/n), ..., ([n-0.5]/n)
quantiles.

2 Linear interpolation is used to compute quantiles for probabilities
between (0.5/n) and ([n-0.5]/n).

3 The minimum or maximum values in X are assigned to quantiles for
probabilities outside that range.

quantile treats NaNs as missing values and removes them.

Examples y = quantile(x,.50); % the median of x
y = quantile(x,[.025 .25 .50 .75 .975]); % Summary of x

See Also prctile, iqr, median
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Purpose Gamma distributed random numbers and arrays (unit scale)

Syntax Y = randg
Y = randg(A)
Y = randg(A,m)
Y = randg(A,m,n,...)
Y = randg(A,[m,n,...])

Description Y = randg returns a scalar random value chosen from a gamma
distribution with unit scale and shape.

Y = randg(A) returns a matrix of random values chosen from gamma
distributions with unit scale. Y is the same size as A, and randg
generates each element of Y using a shape parameter equal to the
corresponding element of A.

Y = randg(A,m) returns an m-by-m matrix of random values chosen
from gamma distributions with shape parameters A. A is either an
m-by-m matrix or a scalar. If A is a scalar, randg uses that single shape
parameter value to generate all elements of Y.

Y = randg(A,m,n,...) or Y = randg(A,[m,n,...]) returns an
m-by-n-by-... array of random values chosen from gamma distributions
with shape parameters A. A is either an m-by-n-by-... array or a scalar.

randg produces pseudorandom numbers using the MATLAB functions
rand and randn. The sequence of numbers generated is determined
by the states of both generators. To create reproducible output from
randg, set the states of both rand and randn to a fixed pair of values
before calling randg. For example,

rand('state',j);
randn('state',s);
r = randg(1,[10,1]);

always generates the same 10 values. You can also use the MATLAB
generators by calling rand and randn with the argument 'seed'.
Calling randg changes the current states of rand and randn and
therefore alters the outputs of subsequent calls to those functions.
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To generate gamma random numbers and specify both the scale and
shape parameters, you should call gamrnd rather than calling randg
directly.

References [1] Marsaglia, G., and Tsang, W. W., “A Simple Method for Generating
Gamma Variables,” ACM Transactions on Mathematical Software, Vol.
26, 2000, pp. 363-372.

See Also gamrnd

14-662



random

Purpose Random numbers from specified distribution

Syntax Y = random(name,A)
Y = random(name,A,B)
Y = random(name,A,B,C)
Y = random(...,m,n,...)
Y = random(...,[m,n,...])

Description Y = random(name,A) returns random numbers Y from the
one-parameter family of distributions specified by name. Parameter
values for the distribution are given in A.

Y is the same size as A.

Y = random(name,A,B) returns random numbers Y from a
two-parameter family of distributions. Parameter values for the
distribution are given in A and B.

If A and B are arrays, they must be the same size. If either A or B are
scalars, they are expanded to constant matrices of the same size.

Y = random(name,A,B,C) returns random numbers Y from a
three-parameter family of distributions. Parameter values for the
distribution are given in A, B, and C.

If A, B, and C are arrays, they must be the same size. If any of A, B, or C
are scalars, they are expanded to constant matrices of the same size.

Y = random(...,m,n,...) or Y = random(...,[m,n,...]) returns
an m-by-n-by... matrix of random numbers.

If any of A, B, or C are arrays, then the specified dimensions must
match the common dimensions of A, B, and C after any necessary scalar
expansion.

Acceptable strings for name are:

• 'beta' (Beta distribution)

• 'bino' (Binomial distribution)

• 'chi2' (Chi-square distribution)
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• 'exp' (Exponential distribution)

• 'ev' (Extreme value distribution)

• 'f' (F distribution)

• 'gam' (Gamma distribution)

• 'gev' (Generalized extreme value distribution)

• 'gp' (Generalized Pareto distribution)

• 'geo' (Geometric distribution)

• 'hyge' (Hypergeometric distribution)

• 'logn' (Lognormal distribution)

• 'nbin' (Negative binomial distribution)

• 'ncf' (Noncentral F distribution)

• 'nct' (Noncentral tdistribution)

• 'ncx2' (Noncentral chi-square distribution)

• 'norm' (Normal distribution)

• 'poiss' (Poisson distribution)

• 'rayl' (Rayleigh distribution)

• 't' (t distribution)

• 'unif' (Uniform distribution)

• 'unid' (Discrete uniform distribution)

• 'wbl' (Weibull distribution)

Examples rn = random('Normal',0,1,2,4)
rn =

1.1650 0.0751 -0.6965 0.0591
0.6268 0.3516 1.6961 1.7971

rp = random('Poisson',1:6,1,6)

14-664



random

rp =
0 0 1 2 5 7

See Also cdf, pdf, icdf, mle
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Purpose Random numbers from piecewise distribution

Syntax r = random(obj)
R = random(obj,n)
R = random(obj,m,n)
R = random(obj,[m,n])
R = random(obj,m,n,p,...)
R = random(obj,[m,n,p,...])

Description r = random(obj) generates a pseudo-random number r drawn from
the piecewise distribution object obj.

R = random(obj,n) generates an n-by-n matrix of pseudo-random
numbers R.

R = random(obj,m,n) or R = random(obj,[m,n]) generates an
m-by-n matrix of pseudo-random numbers R.

R = random(obj,m,n,p,...) or R = random(obj,[m,n,p,...])
generates an m-by-n-by-p-by-... array of pseudo-random numbers R.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

r = random(obj)
r =

0.8285

See Also paretotails, cdf (piecewisedistribution), icdf
(piecewisedistribution)
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Purpose Random sample, with or without replacement

Syntax y = randsample(n,k)
y = randsample(population,k)
y = randsample(...,replace)
y = randsample(...,true,w)

Description y = randsample(n,k) returns a 1-by-k vector y of values sampled
uniformly at random, without replacement, from the integers 1 to n.

y = randsample(population,k) returns k values sampled uniformly
at random, without replacement, from the values in the vector
population.

y = randsample(...,replace) returns a sample taken with
replacement if replace is true, or without replacement if replace is
false. The default is false.

y = randsample(...,true,w) returns a weighted sample taken with
replacement, using a vector of positive weights w, whose length is
n. The probability that the integer i is selected for an entry of y is
w(i)/sum(w). Usually, w is a vector of probabilities. randsample does
not support weighted sampling without replacement.

Example The following command generates a random sequence of the characters
A, C, G, and T, with replacement, according to the specified probabilities.

R = randsample('ACGT',48,true,[0.15 0.35 0.35 0.15])

See Also rand, randperm
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Purpose Interactive random number generation

Syntax randtool

Description randtool opens the Random Number Generation Tool.

The Random Number Generation Tool is a graphical user interface that
generates random samples from specified probability distributions and
displays the samples as histograms. Use the tool to explore the effects
of changing parameters and sample size on the distributions.

14-668



randtool

����������	
���	��
 ���������&�

��
���	�

���
��

'��	��
��

��
���	�

�����

��
���	�

��
	
�� ����	��
��

��
���	�
�
�����������

�
���	�������
���	
���	��


#$��
	�	�
"�
 �����

14-669



randtool

Start by selecting a distribution, then enter the desired sample size.

You can also

• Use the controls at the bottom of the window to set parameter values
for the distribution and to change their upper and lower bounds.

• Draw another sample from the same distribution, with the same
size and parameters.

• Export the current sample to your workspace. A dialog box enables
you to provide a name for the sample.

See Also disttool, dfittool
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Purpose Sample range

Syntax range(X)
y = range(X,dim)

Description range(X) returns the difference between the maximum and the
minimum of a sample. For vectors, range(x) is the range of the
elements. For matrices, range(X) is a row vector containing the range
of each column of X. For N-dimensional arrays, range operates along
the first nonsingleton dimension of X.

y = range(X,dim) operates along the dimension dim of X.

range treats NaNs as missing values and ignores them.

The range is an easily-calculated estimate of the spread of a sample.
Outliers have an undue influence on this statistic, which makes it an
unreliable estimator.

Example The range of a large sample of standard normal random numbers is
approximately six. This is the motivation for the process capability
indices Cp and Cpk in statistical quality control applications.

rv = normrnd(0,1,1000,5);
near6 = range(rv)
near6 =

6.1451 6.4986 6.2909 5.8894 7.0002

See Also std, iqr, mad
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Purpose Wilcoxon rank sum test

Syntax p = ranksum(x,y)
[p,h] = ranksum(x,y)
[p,h] = ranksum(x,y,'alpha',alpha)
[p,h] = ranksum(...,'method',method)
[p,h,stats] = ranksum(...)

Description p = ranksum(x,y) performs a two-sided rank sum test of the null
hypothesis that data in the vectors x and y are independent samples
from identical continuous distributions with equal medians, against
the alternative that they do not have equal medians. x and y can have
different lengths. The p-value of the test is returned in p. The test is
equivalent to a Mann-Whitney U-test.

[p,h] = ranksum(x,y) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = ranksum(x,y,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.

[p,h] = ranksum(...,'method',method) computes the p-value using
either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = ranksum(...) returns the structure stats with the
following fields:

• ranksum — Value of the rank sum test statistic

• zval — Value of the z-statistic (computed only for large samples)
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Example Test the hypothesis of equal medians for two independent unequal-sized
samples. The sampling distributions are identical except for a shift
of 0.25.

x = unifrnd(0,1,10,1);
y = unifrnd(0.25,1.25,15,1);
[p,h] = ranksum(x,y)
p =

0.0375
h =

1

The test rejects the null hypothesis of equal medians at the default
5% significance level.

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition,
M. Dekker, 1985.

[2] Hollander, M., and D. A. Wolfe, Nonparametric Statistical Methods,
Wiley, 1973.

See Also kruskalwallis, signrank, signtest, ttest2
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Purpose Rayleigh cumulative distribution function

Syntax P = raylcdf(X,B)

Description P = raylcdf(X,B) computes the Rayleigh cdf at each of the values
in X using the corresponding parameters in B. X and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input for X or B is expanded to a constant array with the same
dimensions as the other input.

The Rayleigh cdf is

Example x = 0:0.1:3;
p = raylcdf(x,1);
plot(x,p)

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Reference [1] Evans, M., N. Hastings, and B. Peacock, Statistical Distributions,
2nd edition, Wiley, 1993, pp. 134-136.

See Also cdf, raylinv, raylpdf, raylrnd, raylstat
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Purpose Parameter estimates and confidence intervals for Rayleigh distributed
data

Syntax raylfit(data,alpha)
[phat,pci] = raylfit(data,alpha)

Description raylfit(data,alpha) returns the maximum likelihood estimates of the
parameter of the Rayleigh distribution given the data in the vector data.

[phat,pci] = raylfit(data,alpha) returns the maximum likelihood
estimate and 100(1 - alpha)% confidence interval given the data. The
default value of the optional parameter alpha is 0.05, corresponding to
95% confidence intervals.

See Also raylcdf, raylinv, raylpdf, raylrnd, raylstat, mle
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Purpose Inverse of Rayleigh cumulative distribution function

Syntax X = raylinv(P,B)

Description X = raylinv(P,B) returns the inverse of the Rayleigh cumulative
distribution function with parameter B at the corresponding
probabilities in P. P and B can be vectors, matrices, or multidimensional
arrays that all have the same size. A scalar input for P or B is expanded
to a constant array with the same dimensions as the other input.

Example x = raylinv(0.9,1)
x =

2.1460

See Also icdf, raylcdf, raylpdf, raylrnd, raylstat
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Purpose Rayleigh probability density function

Syntax Y = raylpdf(X,B)

Description Y = raylpdf(X,B) computes the Rayleigh pdf at each of the values
in X using the corresponding parameters in B. X and B can be vectors,
matrices, or multidimensional arrays that all have the same size, which
is also the size of Y. A scalar input for X or B is expanded to a constant
array with the same dimensions as the other input.

The Rayleigh pdf is

Example x = 0:0.1:3;
p = raylpdf(x,1);
plot(x,p)

See Also pdf, raylcdf, raylinv, raylrnd, raylstat
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Purpose Random numbers from Rayleigh distribution

Syntax R = raylrnd(B)
R = raylrnd(B,v)
R = raylrnd(B,m,n)

Description R = raylrnd(B) returns a matrix of random numbers chosen from the
Rayleigh distribution with parameter B. B can be a vector, a matrix, or a
multidimensional array. The size of R is the size of B.

R = raylrnd(B,v) returns a matrix of random numbers chosen from
the Rayleigh distribution with parameter B, where v is a row vector. If v
is a 1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = raylrnd(B,m,n) returns a matrix of random numbers chosen from
the Rayleigh distribution with parameter B, where scalars m and n are
the row and column dimensions of R.

Example r = raylrnd(1:5)
r =

1.7986 0.8795 3.3473 8.9159 3.5182

See Also random, raylcdf, raylinv, raylpdf, raylstat
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Purpose Mean and variance of Rayleigh distribution

Syntax [M,V] = raylstat(B)

Description [M,V] = raylstat(B) returns the mean of and variance for the
Rayleigh distribution with parameter B.

The mean of the Rayleigh distribution with parameter b is and
the variance is

Example [mn,v] = raylstat(1)
mn =

1.2533
v =

0.4292

See Also raylcdf, raylinv, raylpdf, raylrnd
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Purpose Residual case order plot

Syntax rcoplot(r,rint)

Description rcoplot(r,rint) displays an errorbar plot of the confidence intervals
on the residuals from a regression. The residuals appear in the plot in
case order. Inputs r and rint are outputs from the regress function.

Example X = [ones(10,1) (1:10)'];
y = X*[10;1]+normrnd(0,0.1,10,1);
[b,bint,r,rint] = regress(y,X,0.05);
rcoplot(r,rint);

The figure shows a plot of the residuals with error bars showing 95%
confidence intervals on the residuals. All the error bars pass through
the zero line, indicating that there are no outliers in the data.

See Also regress

14-680



refcurve

Purpose Add polynomial to current plot

Syntax h = refcurve(p)

Description refcurve adds a graph of the polynomial p to the current axes. The
function for a polynomial of degree n is:

y = p1x
n + p2x

(n-1) + ... + pnx + pn+1

Note that p1 goes with the highest order term.

h = refcurve(p) returns the handle to the curve.

Example Plot data for the height of a rocket against time, and add a reference
curve showing the theoretical height (assuming no air friction). The
initial velocity of the rocket is 100 m/sec.

h = [85 162 230 289 339 381 413 ...
437 452 458 456 440 400 356];

plot(h,'+')
refcurve([-4.9 100 0])

See Also polyfit, polyval, refline
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Purpose Add reference line to current axes

Syntax refline(slope,intercept)
refline(slope)
h = refline(slope,intercept)
refline

Description refline(slope,intercept) adds a reference line with the given slope
and intercept to the current axes.

refline(slope), where slope is a two-element vector, adds the line

y = slope(2)+slope(1)*x

to the figure.

h = refline(slope,intercept) returns the handle to the line.

refline with no input arguments superimposes the least squares line
on each line object in the current figure (except LineStyles '-', '--',
'.-'). This behavior is equivalent to lsline.

Example y = [3.2 2.6 3.1 3.4 2.4 2.9 3.0 3.3 3.2 2.1 2.6]';
plot(y,'+')
refline(0,3)

See Also lsline, polyfit, polyval, refcurve
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Purpose Multiple linear regression

Syntax b = regress(y,X)
[b,bint] = regress(y,X)
[b,bint,r] = regress(y,X)
[b,bint,r,rint] = regress(y,X)
[b,bint,r,rint,stats] = regress(y,X)
[...] = regress(y,X,alpha)

Description b = regress(y,X) returns a p-by-1 vector b of coefficient estimates for
a multilinear regression of the responses in y on the predictors in X. X
is an n-by-p matrix of p predictors at each of n observations. y is an
n-by-1 vector of observed responses.

regress treats NaNs in X or y as missing values, and ignores them.

If the columns of X are linearly dependent, regress obtains a basic
solution by setting the maximum number of elements of b to zero.

[b,bint] = regress(y,X) returns a p-by-2 matrix bint of 95%
confidence intervals for the coefficient estimates. The first column of
bint contains lower confidence bounds for each of the p coefficient
estimates; the second column contains upper confidence bounds.

If the columns of X are linearly dependent, regress returns zeros in
elements of bint corresponding to the zero elements of b.

[b,bint,r] = regress(y,X) returns an n-by-1 vector r of residuals.

[b,bint,r,rint] = regress(y,X) returns an n-by-2 matrix rint of
intervals that can be used to diagnose outliers. If the interval rint(i,:)
for observation i does not contain zero, then the corresponding residual
is larger than expected at the 5% significance level, suggesting an
outlier.

[b,bint,r,rint,stats] = regress(y,X) returns a 1-by-4 vector
stats that contains, in order, the R2 statistic, the F statistic and its
p-value, and an estimate of the error variance.
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Note When computing statistics, X should include a column of ones so
that the model contains a constant term. The F statistic and its p-value
are computed under this assumption, and they are not correct for models
without a constant. The R2 statistic can be negative for models without
a constant, indicating that the model is not appropriate for the data.

[...] = regress(y,X,alpha) uses a 100*(1-alpha)% confidence
level to compute bint, and a (100*alpha)% significance level to
compute rint.

Example Load data on cars; identify weight and horsepower as predictors,
mileage as the response:

load carsmall
x1 = Weight;
x2 = Horsepower; % Contains NaN data
y = MPG;

Compute regression coefficients for a linear model with an interaction
term:

X = [ones(size(x1)) x1 x2 x1.*x2];
b = regress(y,X) % Removes NaN data
b =

60.7104
-0.0102
-0.1882
0.0000

Plot the data and the model:

scatter3(x1,x2,y,'filled')
hold on
x1fit = min(x1):100:max(x1);
x2fit = min(x2):10:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
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YFIT = b(1) + b(2)*X1FIT + b(3)*X2FIT + b(4)*X1FIT.*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Weight')
ylabel('Horsepower')
zlabel('MPG')
view(50,10)

Reference [1] Chatterjee, S., A. S. Hadi, “Influential Observations, High Leverage
Points, and Outliers in Linear Regression,” Statistical Science, 1986,
pp. 379- 416.

See Also regstats, mvregress, robustfit, stepwisefit
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Purpose Regression diagnostics for linear models

Syntax regstats(y,X,model)
stats = regstats(...)
stats = regstats(y,X,model,whichstats)

Description regstats(y,X,model) performs a multilinear regression of the
responses in y on the predictors in X. X is an n-by-p matrix of p predictors
at each of n observations. y is an n-by-1 vector of observed responses.

The optional input model controls the regression model. By default,
regstats uses a linear additive model with a constant term. model can
be any one of the following strings:

• 'linear' — Constant and linear terms (the default)

• 'interaction' — Constant, linear, and interaction terms

• 'quadratic' — Constant, linear, interaction, and squared terms

• 'purequadratic' — Constant, linear, and squared terms

To specify a polynomial model of arbitrary order, or a model without a
constant term, use a matrix for model as described in x2fx.

With this syntax, the function displays a graphical user interface (GUI)
with a list of diagnostic statistics, as shown in the following figure.

14-686



regstats

14-687



regstats

When you select check boxes corresponding to the statistics you want
to compute and click OK, regstats returns the selected statistics to
the MATLAB workspace. The names of the workspace variables are
displayed on the right-hand side of the interface. You can change the
name of the workspace variable to any valid MATLAB variable name.

stats = regstats(...) creates the structure stats, whose fields
contain all of the diagnostic statistics for the regression. This syntax
does not open the GUI. The fields of stats are:

Q Q from the QR decomposition of the design matrix

R R from the QR decomposition of the design matrix

beta Regression coefficients

covb Covariance of regression coefficients

yhat Fitted values of the response data

r Residuals

mse Mean squared error

rsquare R2 statistic

adjrsquare Adjusted R2 statistic

leverage Leverage

hatmat Hat matrix

s2_i Delete-1 variance

beta_i Delete-1 coefficients

standres Standardized residuals

studres Studentized residuals

dfbetas Scaled change in regression coefficients

dffit Change in fitted values

dffits Scaled change in fitted values

covratio Change in covariance
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cookd Cook’s distance

tstat t statistics for coefficients

fstat F statistic

Note that the fields names of stats correspond to the names of the
variables returned to the MATLAB workspace when you use the GUI.
For example, stats.beta corresponds to the variable beta that is
returned when you select Coefficients in the GUI and click OK.

stats = regstats(y,X,model,whichstats) returns only the statistics
that you specify in whichstats. whichstats can be a single string
such as 'leverage' or a cell array of strings such as {'leverage'
'standres' 'studres'}. Set whichstats to 'all' to return all of
the statistics.

Note The F statistic is computed under the assumption that the model
contains a constant term. It is not correct for models without a constant.
The R2 statistic can be negative for models without a constant, which
indicates that the model is not appropriate for the data.

Example Open the regstats GUI using data from hald.mat:

load hald
regstats(heat,ingredients,'linear');

Select Fitted Values and Residuals in the GUI:

Click OK to export the fitted values and residuals to the MATLAB
workspace in variables named yhat and r, respectively.
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You can create the same variables using the stats output, without
opening the GUI:

whichstats = {'yhat','r'};
stats = regstats(heat,ingredients,'linear',whichstats);
yhat = stats.yhat;
r = stats.r;

Reference [1] Belsley, D. A., E. Kuh, R. E. Welsch, Regression Diagnostics, Wiley,
1980.

[2] Chatterjee, S., A. S. Hadi, “Influential Observations, High Leverage
Points, and Outliers in Linear Regression,” Statistical Science, 1986,
pp. 379-416.

[3] Cook, R. D., S. Weisberg, Residuals and Influence in Regression,
Wiley, 1982.

[4] Goodall, C. R., “Computation using the QR decomposition,”
Handbook in Statistics, Volume 9, Elsevier/North-Holland, 1993.

See Also x2fx, regress, stepwise, leverage
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Purpose Reorder levels of categorical array

Syntax B = reorderlevels(A,newlevels)

Description B = reorderlevels(A,newlevels) reorders the levels of the
categorical array A. newlevels is a cell array of strings or a
two-dimensional character matrix that specifies the new order.
newlevels must be a reordering of getlabels(A).

The order of the levels of an ordinal array has significance for relational
operators, minimum and maximum, and for sorting.

Example Reorder hockey standings:

standings = ordinal(1:3,{'Leafs','Canadiens','Bruins'});
getlabels(standings)
ans =

'Leafs' 'Canadiens' 'Bruins'

standings = reorderlevels(standings,...
{'Canadiens','Leafs','Bruins'});

getlabels(standings)
ans =

'Canadiens' 'Leafs' 'Bruins'

See Also addlevels, droplevels, mergelevels, islevel, getlabels
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Purpose Convert array to dataset variables

Syntax B = replacedata(A,X)
B = replacedata(A,X,vars)

Description B = replacedata(A,X) creates a dataset array B with the same
variables as the dataset array A, but with the data for those variables
replaced by the data in the array X. replacedata creates each variable
in B using one or more columns from X, in order. X must have as many
columns as the total number of columns in all of the variables in A, and
as many rows as A has observations.

B = replacedata(A,X,vars) creates a dataset array B with the same
variables as the dataset array A, but with the data for the variables
specified in vars replaced by the data in the array X. The remaining
variables in B are copies of the corresponding variables in A. vars is a
positive integer, a vector of positive integers, a variable name, a cell
array containing one or more variable names, or a logical vector. Each
variable in B has as many columns as the corresponding variable in A. X
must have as many columns as the total number of columns in all the
variables specified in vars.

Example Use double or single as complementary operations with replacedata
when processing variables outside of a dataset array:

data = dataset({rand(3,3),'Var1','Var2','Var3'})
data =

Var1 Var2 Var3
0.81472 0.91338 0.2785
0.90579 0.63236 0.54688
0.12699 0.09754 0.95751

X = double(data,'Var2');
X = zscore(X);
data = replacedata(data,X,'Var2')
data =

Var1 Var2 Var3
0.81472 0.88219 0.2785
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0.90579 0.20413 0.54688
0.12699 -1.0863 0.95751

See Also dataset
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Purpose Ridge regression

Syntax b = ridge(y,X,k)
b = ridge(y,X,k,scaled)

Description b = ridge(y,X,k) returns a vector b of coefficient estimates for a
multilinear ridge regression of the responses in y on the predictors in X.
X is an n-by-p matrix of p predictors at each of n observations. y is an
n-by-1 vector of observed responses. k is a vector of ridge parameters. If
k has m elements, b is p-by-m. By default, b is computed after centering
and scaling the predictors to have mean 0 and standard deviation 1.
The model does not include a constant term, and X should not contain a
column of ones.

b = ridge(y,X,k,scaled) uses the {0,1}-valued flag scaled to
determine if the coefficient estimates in b are restored to the scale of the
original data. ridge(y,X,k,0) performs this additional transformation.
In this case, b contains p+1 coefficients for each value of k, with the first
row corresponding to a constant term in the model. ridge(y,X,k,1)
is the same as ridge(y,X,k). In this case, b contains p coefficients,
without a coefficient for a constant term.

The relationship between b0 = ridge(y,X,k,0) and b1 =
ridge(y,X,k,1) is given by

m = mean(X);
s = std(X,0,1)';
b1_scaled = b1./s;
b0 = [mean(y)-m*temp; b1_scaled]

This can be seen by replacing the xi (i = 1, ..., n) in the multilinear
model y = b0

0 + b1
0x1 + ... + bn

0xn with the z-scores zi = (xi – μi)/σi, and
replacing y with y – μy.

In general, b1 is more useful for producing plots in which the coefficients
are to be displayed on the same scale, such as a ridge trace (a plot of
the regression coefficients as a function of the ridge parameter). b0 is
more useful for making predictions.
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Ridge regression is used when the predictors in a multiple linear
regression are correlated. This can arise, for example, when data are
collected without an experimental design. When the columns of X are
correlated, the correlation matrix (XTX)–1 may be close to singular. As a
result, the least squares estimate

b X X X yT T= = −ˆ ( )β 1

becomes highly sensitive to random errors in y, producing a large
variance in b.

Ridge regression addresses the issue by estimating regression
coefficients using

b X X kI X yT T= = + −ˆ ( )β 1

where k is the ridge parameter and I is the identity matrix. Small
positive values of k can be used to improve the conditioning of the
problem, and reduce the variance of the estimates. While biased, the
reduced variance of ridge estimates often result in a smaller mean
square error when compared to least-squares estimates.

Example Load the data in acetylene.mat, with predictors x1, x2, x3 and
response y:

load acetylene

Plot the predictors against each other:

subplot(1,3,1)
plot(x1,x2,'.')
xlabel('x1'); ylabel('x2'); grid on; axis square

subplot(1,3,2)
plot(x1,x3,'.')
xlabel('x1'); ylabel('x3'); grid on; axis square
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subplot(1,3,3)
plot(x2,x3,'.')
xlabel('x2'); ylabel('x3'); grid on; axis square

Note the correlation between x1 and the other two predictors.

Compute coefficient estimates for a multilinear model with interaction
terms, for a range of ridge parameters:

X = [x1 x2 x3];
D = x2fx(X,'interaction');
D(:,1) = []; % No constant term
k = 0:1e-5:5e-3;
b = ridge(y,D,k);

Plot the ridge trace:

figure
plot(k,b,'LineWidth',2)
ylim([-100 100])
grid on
xlabel('Ridge Parameter')
ylabel('Standardized Coefficient')
title('{\bf Ridge Trace}')
legend('constant','x1','x2','x3','x1x2','x1x3','x2x3')
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The estimates stabilize to the right of the plot. Note that the x2x3
interaction term changes sign at a value of the ridge parameter 5 x
10–4.

14-697



ridge

Reference [1] Hoerl, A.E., R.W. Kennard, “Ridge Regression: Biased Estimation
for Nonorthogonal Problems,” Technometrics, Vol. 12, Number 1, pp.
55-67, 1970.

[2] Hoerl, A.E., R.W. Kennard, “Ridge Regression: Applications to
Nonorthogonal Problems,” Technometrics, Vol. 12, Number 1, pp. 69-82,
1970.

[3] Marquardt, D.W., “Generalized Inverses, Ridge Regression, Biased
Linear Estimation, and Nonlinear Estimation,” Technometrics, Vol.
12, Number 3, pp. 591-612, 1970.

[4] Marquardt, D.W., R.D. Snee, “Ridge Regression in Practice,” The
American Statistician, Vol. 29, Number 1, pp. 3-20, 1975.

See Also regress, stepwise
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Purpose Node risks of tree

Syntax r = risk(t)
r = risk(t,nodes)

Description r = risk(t) returns an n-element vector r of the risk of the nodes
in the tree t, where n is the number of nodes. The risk r(i) for node
i is the node error e(i) (computed by nodeerr) weighted by the node
probability p(i) (computed by nodeprob).

r = risk(t,nodes) takes a vector nodes of node numbers and returns
the risk values for the specified nodes.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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e = nodeerr(t);
p = nodeprob(t);
r = risk(t);

r
r =

0.6667
0

0.3333
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0.0333
0.0067
0.0067
0.0133

0
0

e.*p
ans =

0.6667
0

0.3333
0.0333
0.0067
0.0067
0.0133

0
0

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree, nodeerr, nodeprob
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Purpose Interactive robust regression

Syntax robustdemo
robustdemo(x,y)

Description robustdemo demonstrates the difference between ordinary least
squares regression and robust regression. It displays a scatter plot of x
and y values, where y is roughly a linear function of x, but one point is
an outlier. The bottom of the figure shows the fitted equations using
both least squares and robust fitting, plus estimates of the root mean
squared errors.

Use the left mouse button to select a point and move it, and the fitted
lines will update. Use the right mouse button to click on a point and
view two of its properties:

• leverage — a measure of how much influence the point has on the
least squares fit

• weight — the weight the point was given in the robust fit

robustdemo(x,y) uses the x and y data vectors you supply, in place of
the sample data supplied with the function.

Example See “Robust Regression” on page 7-26.

See Also robustfit, leverage
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Purpose Robust linear regression

Syntax b = robustfit(X,y)
b = robustfit(X,y,wfun,tune)
b = robustfit(X,y,wfun,tune,const)
[b,stats] = robustfit(...)

Description b = robustfit(X,y) returns a p-by-1 vector b of coefficient estimates for
a robust multilinear regression of the responses in y on the predictors
in X. X is an n-by-p matrix of p predictors at each of n observations. y is
an n-by-1 vector of observed responses. By default, the algorithm uses
iteratively reweighted least squares with a bisquare weighting function.

Note By default, robustfit adds a first column of ones to X,
corresponding to a constant term in the model. Do not enter a column of
ones directly into X. You can change the default behavior of robustfit
using the input const, below.

robustfit treats NaNs in X or y as missing values, and removes them.

b = robustfit(X,y,wfun,tune) specifies a weighting function wfun.
tune is a tuning constant that is divided into the residual vector before
computing weights.

The weighting function wfun can be any one of the following strings:

Weight
Function Equation

Default
Tuning
Constant

'andrews' w = (abs(r)<pi) .* sin(r) ./ r 1.339

'bisquare'
(default)

w = (abs(r)<1) .* (1 -
r.^2).^2

4.685

'cauchy' w = 1 ./ (1 + r.^2) 2.385
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Weight
Function Equation

Default
Tuning
Constant

'fair' w = 1 ./ (1 + abs(r)) 1.400

'huber' w = 1 ./ max(1, abs(r)) 1.345

'logistic' w = tanh(r) ./ r 1.205

'ols' Ordinary least squares (no
weighting function)

None

'talwar' w = 1 * (abs(r)<1) 2.795

'welsch' w = exp(-(r.^2)) 2.985

If tune is unspecified, the default value in the table is used. Default
tuning constants give coefficient estimates that are approximately
95% as statistically efficient as the ordinary least squares estimates,
provided the response has a normal distribution with no outliers.
Decreasing the tuning constant increases the downweight assigned
to large residuals; increasing the tuning constant decreases the
downweight assigned to large residuals.

The value r in the weight functions is equal to

resid/(tune*s*sqrt(1-h))

where resid is the vector of residuals from the previous iteration, h
is the vector of leverage values from a least squares fit, and s is an
estimate of the standard deviation of the error term given by

s = MAD/0.6745

Here MAD is the median absolute deviation of the residuals from their
median. The constant 0.6745 makes the estimate unbiased for the
normal distribution. If there are p columns in X, the smallest p absolute
deviations are excluded when computing the median.

You can write your own M-file weight function. The function must take
a vector of scaled residuals as input and produce a vector of weights as
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output. In this case, wfun is specified using a function handle @ (as in
@myfun), and the input tune is required.

b = robustfit(X,y,wfun,tune,const) controls whether or not the
model will include a constant term. const is 'on' to include the
constant term (the default), or 'off' to omit it. When const is 'on',
robustfit adds a first column of ones to X. When const is 'off',
robustfit does not alter X.

[b,stats] = robustfit(...) returns the structure stats, whose
fields contain diagnostic statistics from the regression. The fields of
stats are:

• ols_s — Sigma estimate (RMSE) from ordinary least squares

• robust_s — Robust estimate of sigma

• mad_s — Estimate of sigma computed using the median absolute
deviation of the residuals from their median; used for scaling
residuals during iterative fitting

• s — Final estimate of sigma, the larger of robust_s and a weighted
average of ols_s and robust_s

• se — Standard error of coefficient estimates

• t — Ratio of b to se

• p — p-values for t

• covb — Estimated covariance matrix for coefficient estimates

• coeffcorr — Estimated correlation of coefficient estimates

• w — Vector of weights for robust fit

• h — Vector of leverage values for least squares fit

• dfe — Degrees of freedom for error

• R — R factor in QR decomposition of X
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The robustfit function estimates the variance-covariance matrix of
the coefficient estimates using inv(X'*X)*stats.s^2. Standard errors
and correlations are derived from this estimate.

Example Generate data with the trend y = 10-2*x, then change one value to
simulate an outlier:

x = (1:10)';
y = 10 - 2*x + randn(10,1);
y(10) = 0;

Use both ordinary least squares and robust regression to estimate a
straight line fit:

bls = regress(y,[ones(10,1) x])
bls =

7.2481
-1.3208

brob = robustfit(x,y)
brob =

9.1063
-1.8231

A scatter plot of the data together with the fits shows that the robust fit
is less influenced by the outlier than the least squares fit:

scatter(x,y,'filled'); grid on; hold on
plot(x,bls(1)+bls(2)*x,'r','LineWidth',2);
plot(x,brob(1)+brob(2)*x,'g','LineWidth',2)
legend('Data','Ordinary Least Squares','Robust Regression')
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References [1] DuMouchel, W. H., F. L. O’Brien, “Integrating a Robust Option into
a Multiple Regression Computing Environment,” Computer Science
and Statistics: Proceedings of the 21st Symposium on the Interface,
Alexandria, VA, American Statistical Association, 1989.

[2] Holland, P. W., R. E. Welsch, “Robust Regression Using Iteratively
Reweighted Least-Squares,” Communications in Statistics: Theory and
Methods, A6, 1977, pp. 813-827.

[3] Huber, P. J., Robust Statistics, Wiley, 1981.
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[4] Street, J. O., R. J. Carroll, D. Ruppert, “A Note on Computing Robust
Regression Estimates via Iteratively Reweighted Least Squares,” The
American Statistician, 42, 1988, pp. 152-154.

See Also regress, robustdemo
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Purpose Rotation of factor analysis or principal components analysis loadings

Syntax B = rotatefactors(A)
B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
B = rotatefactors(A,'Method','procrustes','Target',target)
B = rotatefactors(A,'Method','pattern','Target',target)
B = rotatefactors(A,'Method','promax')
[B,T] = rotatefactors(A,...)

Description B = rotatefactors(A) rotates the d-by-m loadings matrix A to
maximize the varimax criterion, and returns the result in B. Rows of
A and B correspond to variables and columns correspond to factors, for
example, the (i, j)th element of A is the coefficient for the ith variable
on the jth factor. The matrix A usually contains principal component
coefficients created with princomp or pcacov, or factor loadings
estimated with factoran.

B = rotatefactors(A,'Method','orthomax','Coeff',gamma)
rotates A to maximize the orthomax criterion with the coefficient gamma,
i.e., B is the orthogonal rotation of A that maximizes

sum(D*sum(B.^4,1) - GAMMA*sum(B.^2,1).^2)

The default value of 1 for gamma corresponds to varimax rotation.
Other possibilities include gamma = 0, m/2, and d(m - 1)/(d + m - 2),
corresponding to quartimax, equamax, and parsimax. You can also
supply the strings 'varimax', 'quartimax', 'equamax', or 'parsimax'
for the 'method' parameter and omit the 'Coeff' parameter.

If 'Method' is 'orthomax', 'varimax', 'quartimax', 'equamax', or
'parsimax', then additional parameters are

• 'Normalize' — Flag indicating whether the loadings matrix should
be row-normalized for rotation. If 'on' (the default), rows of A
are normalized prior to rotation to have unit Euclidean norm, and
unnormalized after rotation. If 'off', the raw loadings are rotated
and returned.
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• 'Reltol' — Relative convergence tolerance in the iterative
algorithm used to find T. The default is sqrt(eps).

• 'Maxit' — Iteration limit in the iterative algorithm used to find T.
The default is 250.

B = rotatefactors(A,'Method','procrustes','Target',target)
performs an oblique procrustes rotation of A to the d-by-m target
loadings matrix target.

B = rotatefactors(A,'Method','pattern','Target',target)
performs an oblique rotation of the loadings matrix A to the d-by-m
target pattern matrix target, and returns the result in B. target
defines the "restricted" elements of B, i.e., elements of B corresponding
to zero elements of target are constrained to have small magnitude,
while elements of B corresponding to nonzero elements of target are
allowed to take on any magnitude.

If 'Method' is 'procrustes' or 'pattern', an additional parameter is
'Type', the type of rotation. If 'Type' is 'orthogonal', the rotation
is orthogonal, and the factors remain uncorrelated. If 'Type' is
'oblique' (the default), the rotation is oblique, and the rotated factors
might be correlated.

When 'Method' is 'pattern', there are restrictions on target. If A has
m columns, then for orthogonal rotation, the jth column of target must
contain at least m - j zeros. For oblique rotation, each column of target
must contain at least m - 1 zeros.

B = rotatefactors(A,'Method','promax') rotates A to maximize
the promax criterion, equivalent to an oblique Procrustes rotation
with a target created by an orthomax rotation. Use the four orthomax
parameters to control the orthomax rotation used internally by promax.

An additional parameter for ’promax’ is 'Power', the exponent for
creating promax target matrix. 'Power' must be 1 or greater. The
default is 4.

[B,T] = rotatefactors(A,...) returns the rotation matrix T used to
create B, that is, B = A*T. inv(T'*T) is the correlation matrix of the
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rotated factors. For orthogonal rotation, this is the identity matrix,
while for oblique rotation, it has unit diagonal elements but nonzero
off-diagonal elements.

Examples X = randn(100,10);
L = princomp(X);

% Default (normalized varimax) rotation of
% the first three components from a PCA.
[L1,T] = rotatefactors(L(:,1:3));

% Equamax rotation of the first three
% components from a PCA.
[L2, T] = rotatefactors(L(:,1:3),'method','equamax');

% Promax rotation of the first three factors from an FA.
L = factoran(X,3,'Rotate','none');
L3, T] = rotatefactors(L,'method','promax','power',2);

% Pattern rotation of the first three factors from an FA.
Tgt = [1 1 1 1 1 0 1 0 1; ...

0 0 0 1 1 1 0 0 0; ...
1 0 0 1 0 1 1 1 1]';

[L4,T] = rotatefactors(L,'method','pattern','target',Tgt);
inv(T'*T) % the correlation matrix of the rotated factors

References [1] Harman, H. H., Modern Factor Analysis, 3rd edition, University of
Chicago Press, 1976.

[2] Lawley, D. N. and A. E. Maxwell, A. E., Factor Analysis as a
Statistical Method, 2nd edition, American Elsevier Publishing, 1971.

See Also biplot, factoran, princomp, pcacov, procrustes
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Purpose D-optimal design of experiments row exchange algorithm

Syntax settings = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns)
[settings,X] = rowexch(nfactors,nruns,model)
[settings,X] = rowexch(...,param1,val1,param2,val2,...)

Description settings = rowexch(nfactors,nruns) generates the factor-settings
matrix, settings, for a D-optimal design using a linear additive model
with a constant term. settings has nruns rows and nfactors columns.

[settings,X] = rowexch(nfactors,nruns) also generates the
associated matrix X of term settings, often called the design matrix.

[settings,X] = rowexch(nfactors,nruns,model) produces a design
for fitting a specified regression model. The input, model, can be one
of these strings:

'linear' Includes constant and linear terms (the default).

'interaction' Includes constant, linear, and cross product
terms.

'quadratic' Includes interactions plus squared terms.

'purequadratic' Includes constant, linear and squared terms.

[settings,X] = rowexch(...,param1,val1,param2,val2,...)
provides more control over the design generation through a set of
parameter/value pairs. Valid parameters are:

'bounds' Lower and upper bounds for each factor, specified as a
2-by-nfactors matrix. Alternatively, this value can
be a cell array containing nfactors elements, each
element specifying the vector of allowable values for
the corresponding factor.

'categorical'Indices of categorical predictors.
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'display' Either 'on' or 'off' to control display of iteration
counter. The default is 'on'.

'excludefun' Function to exclude undesirable runs.

'init' Initial design as an nruns-by-nfactors matrix. The
default is a randomly selected set of points.

'levels' Vector of number of levels for each factor.

'tries' Number of times to try to generate a design from a
new starting point, using random points for each try
except possibly the first. The default is 1.

'maxiter' Maximum number of iterations. The default is 10.

If the 'excludefcn' function is F, it must support the syntax B=F(S),
where S is a matrix of K-by-nfactors columns containing settings, and
B is a vector of K boolean values. B(j) is true if the jth row of S should
be excluded.

Examples This example illustrates that the D-optimal design for three factors
in eight runs, using an interactions model, is a two-level full-factorial
design.

s = rowexch(3,8,'interaction')
s =

1 -1 -1
1 1 1

-1 -1 1
1 -1 1
1 1 -1

-1 1 1
-1 1 -1
-1 -1 -1

Example of the design for three categorical factors taking three levels
each—multiple tries may be required to find the best design.

s = sortrows(rowexch(3,9,'linear','cat',1:3,'levels',3,'tries',10))
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s =

1 1 2

1 2 3

1 3 1

2 1 3

2 2 1

2 3 2

3 1 1

3 2 2

3 3 3

This example may display warnings that the starting design is rank
deficient.

Algorithm The rowexch function searches for a D-optimal design using a
row-exchange algorithm. It first generates a candidate set of points that
are eligible to be included in the design, and then iteratively exchanges
design points for candidate points in an attempt to reduce the variance
of the coefficients that would be estimated using this design. If you need
to use a candidate set that differs from the default one, call the candgen
and candexch functions in place of rowexch.

See Also bbdesign, candexch, candgen, ccdesign, cordexch, x2fx
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Purpose Demo of design of experiments and surface fitting

Syntax rsmdemo

Description rsmdemo creates a GUI that simulates a chemical reaction. To start,
you have a budget of 13 test reactions. Try to find out how changes in
each reactant affect the reaction rate. Determine the reactant settings
that maximize the reaction rate. Estimate the run-to-run variability of
the reaction. Now run a designed experiment using the model pop-up.
Compare your previous results with the output from response surface
modeling or nonlinear modeling of the reaction. The GUI has the
following elements:

• A Run button to perform one reactor run at the current settings

• An Export button to export the x and y data to the base workspace

• Three sliders with associated data entry boxes to control the partial
pressures of the chemical reactants: Hydrogen, n-pentane, and
isopentane

• A text box to report the reaction rate

• A text box to keep track of the number of test reactions you have left

Example See “Design of Experiments Demo” on page 11-11.

See Also rstool, nlintool, cordexch
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Purpose Interactive multidimensional response surface modeling

Syntax rstool(X,Y,model)
rstool(x,y,model,alpha)
rstool(x,y,model,alpha,xname,yname)

Description rstool(X,Y,model) displays a graphical user interface for fitting and
visualizing a polynomial response surface for Y as a function of the
predictors in X. Distinct predictor variables should appear in different
columns of X. Y can be a vector, corresponding to a single response, or a
matrix, with columns corresponding to multiple responses. Y must have
as many elements (or rows, if it is a matrix) as X has rows.

rstool displays a family of subplots, one for each combination of
columns in X and Y. The subplots show 95% global confidence intervals
for predictions as two red curves.

The optional input model controls the regression model. By default,
rstool uses a linear additive model with a constant term. model can be
any one of the following strings:

• 'linear' — Constant and linear terms (the default)

• 'interaction' — Constant, linear, and interaction terms

• 'quadratic' — Constant, linear, interaction, and squared terms

• 'purequadratic' — Constant, linear, and squared terms

To specify a polynomial model of arbitrary order, or a model without a
constant term, use a matrix for model as described in x2fx.

To use the interface:

• Drag the dashed blue reference line to examine predicted values.

• Specify a predictor by typing its value into the editable text field.

• Use the pop-up menu to change the model.
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• Use the Export push button to export fitted coefficients and
regression statistics to the base workspace. Exported coefficients
appear in the order defined by the x2fx function.

rstool(x,y,model,alpha) plots 100(1-alpha)% global confidence
intervals for predictions.

rstool(x,y,model,alpha,xname,yname) labels the axes using the
names in the strings xname and yname. To label each subplot differently,
xname and yname can be cell arrays of strings.

Drag the dashed blue reference line and watch the predicted values
update simultaneously. Alternatively, you can get a specific prediction
by typing the value of x into an editable text field. Use the pop-up menu
to interactively change the model. Click the Export button to move
specified variables to the base workspace.

Example See “Quadratic Response Surface Models” on page 7-12.

See Also x2fx, nlintool
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Purpose Runs test for randomness

Syntax h = runstest(x)
h = runstest(x,v)
h = runstest(x,'ud')
h = runstest(...,param1,val1,param2,val2,...)
[h,p] = runstest(...)
[h,p,stats] = runstest(...)

Description h = runstest(x) performs a runs test on the sequence of observations
in the vector x. This is a test of the null hypothesis that the values in x
come in random order, against the alternative that they do not. The test
is based on the number of runs of consecutive values above or below the
mean of x. Too few runs indicate a tendency for high and low values to
cluster. Too many runs indicate a tendency for high and low values to
alternate. The test returns the logical value h = 1 if it rejects the null
hypothesis at the 5% significance level, and h = 0 if it cannot. The test
treats NaN values in x as missing values, and ignores them.

runstest uses a test statistic which is approximately normally
distributed when the null hypothesis is true. It is the difference between
the number of runs and its mean, divided by its standard deviation.

h = runstest(x,v) performs the test using runs above or below the
value v. Values exactly equal to v are discarded.

h = runstest(x,'ud') performs a test for the number of runs up
or down. This also tests the hypothesis that the values in x come in
random order. Too few runs indicate a trend. Too many runs indicate an
oscillation. Values exactly equal to the preceding value are discarded.

h = runstest(...,param1,val1,param2,val2,...) specifies
additional parameters and their values. Valid parameter/value pairs
are the following:

• 'alpha' — A scalar giving the significance level of the test

• 'method' — Either 'exact' to compute the p-value using an exact
algorithm, or 'approximate' to use a normal approximation. The
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default is 'exact' for runs above/below, and for runs up/down when
the length of x is 50 or less. The 'exact' method is not available for
runs up/down when the length of x is 51 or greater.

• 'tail' — Performs the test against one of the following alternative
hypotheses:

- 'both' — two-tailed test (sequence is not random)

- 'right' — right-tailed test (like values separate for runs
above/below, direction alternates for runs up/down)

- 'left' — left-tailed test (like values cluster for runs above/below,
values trend for runs up/down)

[h,p] = runstest(...) returns the p-value of the test. The output p
is computed from either the test statistic or the exact distribution of the
number of runs, depending on the value of the 'method' parameter.

[h,p,stats] = runstest(...) returns a structure stats with the
following fields:

• nruns — The number of runs

• n1 — The number of values above v

• n0 — The number of values below v

• z — The test statistic

Example x = randn(40,1);
[h,p] = runstest(x,median(x))
h =

0
p =

0.6286

See Also signrank, signtest
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Purpose Sample size and power for hypothesis test

Syntax n = sampsizepwr(testtype,p0,p1)
n = sampsizepwr(testtype,p0,p1,power)
power = sampsizepwr(testtype,p0,p1,[],n)
p1 = sampsizepwr(testtype,p0,[],power,n)
[...] = sampsizepwr(...,n,param1,val1,param2,val2,...)

Description n = sampsizepwr(testtype,p0,p1) returns the sample size n required
for a two-sided test of the specified type to have a power (probability
of rejecting the null hypothesis when the alternative hypothesis is
true) of 0.90 when the significance level (probability of rejecting the
null hypothesis when the null hypothesis is true) is 0.05. p0 specifies
parameter values under the null hypothesis. p1 specifies the single
parameter value being tested under the alternative hypothesis.

The following values are available for testtype:

• 'z' — z-test for normally distributed data with known standard
deviation. p0 is a two-element vector [mu0 sigma0] of the mean and
standard deviation, respectively, under the null hypothesis. p1 is the
value of the mean under the alternative hypothesis.

• 't' — t-test for normally distributed data with unknown standard
deviation. p0 is a two-element vector [mu0 sigma0] of the mean and
standard deviation, respectively, under the null hypothesis. p1 is the
value of the mean under the alternative hypothesis.

• 'var' — Chi-square test of variance for normally distributed data.
p0 is the variance under the null hypothesis. p1 is the variance under
the alternative hypothesis.

• 'p' — Test of the p parameter (success probability) for a binomial
distribution. p0 is the value of p under the null hypothesis. p1 is the
value of p under the alternative hypothesis.

The 'p' test is a discrete test for which increasing the sample size
does not always increase the power. For n values larger than 200,
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there may be values smaller than the returned n value that also
produce the desired size and power.

n = sampsizepwr(testtype,p0,p1,power) returns the sample size n
such that the power is power for the parameter value p1.

power = sampsizepwr(testtype,p0,p1,[],n) returns the power
achieved for a sample size of n when the true parameter value is p1.

p1 = sampsizepwr(testtype,p0,[],power,n) returns the parameter
value detectable with the specified sample size n and power power.

When computing p1 for the 'p' test, if no alternative can be rejected for
a given null hypothesis and significance level, the function displays a
warning message and returns NaN.

[...] = sampsizepwr(...,n,param1,val1,param2,val2,...)
specifies one or more of the following name/value pairs:

• 'alpha' — Significance level of the test (default 0.05)

• 'tail' — The type of test is one of the following:

- 'both' — Two-sided test for an alternative not equal to p0

- 'right' — One-sided test for an alternative larger than p0

- 'left' — One-sided test for an alternative smaller than p0

Example Compute the mean closest to 100 that can be determined to be
significantly different from 100 using a t-test with a sample size of 60
and a power of 0.8.

mu1 = sampsizepwr('t',[100 10],[],.8,60)
mu1 =

103.6770

Compute the sample size n required to distinguish p = 0.23 from p = 0.2
with a binomial test. The result is approximate, so make a plot to see if
any smaller n values also have the required power of 0.5.
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napprox = sampsizepwr('p',.2,.26,.6)

Warning: Values N>200 are approximate. Plotting the power as a function

of N may reveal lower N values that have the required power.

napprox =

244

nn = 1:250;

pwr = sampsizepwr('p',.2,.26,[],nn);

nexact = min(nn(pwr>=.6))

nexact =

213

plot(nn,pwr,'b-',[napprox nexact],pwr([napprox nexact]),'ro');

grid on

See Also vartest, ttest, ztest, binocdf
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Purpose 2-D scatter plot with marginal histograms

Syntax scatterhist(x,y)
scatterhist(x,y,nbins)
h = scatterhist(...)

Description scatterhist(x,y) creates a 2-D scatterplot of the data in the vectors x
and y, and puts a univariate histogram on the horizontal and vertical
axes of the plot. x and y must be the same length.

The function is useful for viewing properties of random samples
produced by functions such as copularnd, mvnrnd, lhsdesign.

scatterhist(x,y,nbins) also accepts a two-element vector nbins
specifying the number of bins for the x and y histograms. The default is
to compute the number of bins using a Scott rule based on the sample
standard deviation. Any NaN values in either x or y are treated as
missing, and are removed from both x and y. Therefore the plots reflect
points for which neither x nor y has a missing value.

h = scatterhist(...) returns a vector of three axes handles for the
scatterplot, the histogram along the horizontal axis, and the histogram
along the vertical axis, respectively.

Examples Example 1

Independent normal and lognormal random samples:

x = randn(1000,1);
y = exp(.5*randn(1000,1));
scatterhist(x,y)
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Example 2

Marginal uniform samples that are not independent:

u = copularnd('Gaussian',.8,1000);
scatterhist(u(:,1),u(:,2))
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Example 3

Mixed discrete and continuous data:

cars = load('carsmall');
scatterhist(cars.Weight,cars.Cylinders,[10 3])
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See Also scatter, hist
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Purpose Segment of piecewise distribution containing input values

Syntax S = segment(obj,X,P)

Description S = segment(obj,X,P) returns an array S of integers indicating which
segment of the piecewise distribution object obj contains each value of X
or, alternatively, P. One of X and P must be empty ([]). If X is non-empty,
S is determined by comparing X with the quantile boundary values
defined for obj. If P is non-empty, S is determined by comparing P with
the probability boundary values.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

pvals = 0:0.2:1;
s = segment(obj,[],pvals)
s =

1 2 2 2 2 3

See Also paretotails, boundary, nsegments
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Purpose Display and define dataset array properties

Syntax set(A)
set(A,PropertyName)
A = set(A,PropertyName,PropertyValue,...)

Description set(A) displays all properties of the dataset array A and their possible
values.

set(A,PropertyName) displays possible values for the property
specified by the string PropertyName.

A = set(A,PropertyName,PropertyValue,...) sets property
name/value pairs.

Example Create a dataset array from Fisher’s iris data and add a description:

load fisheriris
NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)','%d'));
iris = dataset({nominal(species),'species'},...

{meas,'SL','SW','PL','PW'},...
'obsnames',ObsNames);

iris = set(iris,'Description','Fisher''s Iris Data');
get(iris)

Description: 'Fisher's Iris Data'
Units: {}
DimNames: {'Observations' 'Variables'}
UserData: []
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

See Also get, summary (dataset)
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Purpose Define labels of levels in categorical array

Syntax A = setlabels(A,labels)
A = setlabels(A,labels,levels)

Description A = setlabels(A,labels) labels the levels in the categorical array
A using the cell array of strings or two-dimensional character matrix
labels. Labels are assigned in the order given in labels.

A = setlabels(A,labels,levels) labels only the levels specified in
the cell array of strings or two-dimensional character matrix levels.

Examples Example 1

Relabel the species in Fisher’s iris data using new categories:

load fisheriris
species = nominal(species);
species = mergelevels(...

species,{'setosa','virginica'},'parent');
species = setlabels(species,'hybrid','versicolor');
getlabels(species)
ans =

'hybrid' 'parent'

Example 2

1 Load patient data from the CSV file hospital.dat and store the
information in a dataset array with observation names given by the
first column in the data (patient identification):

patients = dataset('file','hospital.dat',...
'delimiter',',',...
'ReadObsNames',true);

2 Make the {0,1}-valued variable smoke nominal, and change the labels
to 'No' and 'Yes':

patients.smoke = nominal(patients.smoke,{'No','Yes'});
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3 Add new levels to smoke as placeholders for more detailed histories
of smokers:

patients.smoke = addlevels(patients.smoke,...
{'0-5 Years','5-10 Years','LongTerm'});

4 Assuming the nonsmokers have never smoked, relabel the 'No' level:

patients.smoke = setlabels(patients.smoke,'Never','No');

5 Drop the undifferentiated 'Yes' level from smoke:

patients.smoke = droplevels(patients.smoke,'Yes');

Warning: OLDLEVELS contains categorical levels that
were present in A, caused some array elements to have
undefined levels.

Note that smokers now have an undefined level.

6 Set each smoker to one of the new levels, by observation name:

patients.smoke('YPL-320') = '5-10 Years';

See Also getlabels
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Purpose One-sample or paired-sample Wilcoxon signed rank test

Syntax p = signrank(x)
p = signrank(x,m)
p = signrank(x,y)
[p,h] = signrank(...)
[p,h] = signrank(...,'alpha',alpha)
[p,h] = signrank(...,'method',method)
[p,h,stats] = signrank(...)

Description p = signrank(x) performs a two-sided signed rank test of the
null hypothesis that data in the vector x comes from a continuous,
symmetric distribution with zero median, against the alternative that
the distribution does not have zero median. The p-value of the test
is returned in p.

p = signrank(x,m) performs a two-sided signed rank test of the null
hypothesis that data in the vectors x and y are independent samples
from a continuous, symmetric distribution with median m, against the
alternative that the distribution does not have median m. m must be
a scalar.

p = signrank(x,y) performs a paired, two-sided signed rank test of
the null hypothesis that data in the vector x-y come from a continuous,
symmetric distribution with zero median, against the alternative that
the distribution does not have zero median. x and y must have equal
lengths. Note that a hypothesis of zero median for x-y is not equivalent
to a hypothesis of equal median for x and y.

[p,h] = signrank(...) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = signrank(...,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.
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[p,h] = signrank(...,'method',method) computes the p-value
using either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = signrank(...) returns the structure stats with the
following fields:

• signedrank — Value of the signed rank test statistic

• zval — Value of the z-statistic (computed only for large samples)

Example Test the hypothesis of zero median for the difference between two
paired samples.

before = lognrnd(2,.25,10,1);
after = before+trnd(2,10,1);
[p,h] = signrank(before,after)
p =

0.5566
h =

0

The sampling distribution of the difference between before and after
is symmetric with zero median. At the default 5% significance level, the
test fails to reject to the null hypothesis of zero median in the difference.

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition,
M. Dekker, 1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods,
Wiley, 1973.

See Also ranksum, ttest, ztest
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Purpose One-sample or paired-sample sign test

Syntax p = signtest(x)
p = signtest(x,m)
p = signtest(x,y)
[p,h] = signtest(...)
[p,h] = signtest(...,'alpha',alpha)
[p,h] = signtest(...,'method',method)
[p,h,stats] = signtest(...)

Description p = signtest(x) performs a two-sided sign test of the null hypothesis
that data in the vector x come from a continuous distribution with zero
median, against the alternative that the distribution does not have zero
median. The p-value of the test is returned in p

p = signtest(x,m) performs a two-sided sign test of the null
hypothesis that data in the vector x come from a continuous distribution
with median m, against the alternative that the distribution does not
have median m. m must be a scalar.

p = signtest(x,y) performs a paired, two-sided sign test of the
null hypothesis that data in the vector x-y come from a continuous
distribution with zero median, against the alternative that the
distribution does not have zero median. x and y must be the same
length. Note that a hypothesis of zero median for x-y is not equivalent
to a hypothesis of equal median for x and y.

[p,h] = signtest(...) returns the result of the test in h. h = 1
indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

[p,h] = signtest(...,'alpha',alpha) performs the test at the
(100*alpha)% significance level. The default, when unspecified, is
alpha = 0.05.

[p,h] = signtest(...,'method',method) computes the p-value
using either an exact algorithm, when method is 'exact', or a normal
approximation, when method is 'approximate'. The default, when
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unspecified, is the exact method for small samples and the approximate
method for large samples.

[p,h,stats] = signtest(...) returns the structure stats with the
following fields:

• sign — Value of the sign test statistic

• zval — Value of the z-statistic (computed only for large samples)

Example Test the hypothesis of zero median for the difference between two
paired samples.

before = lognrnd(2,.25,10,1);
after = before + (lognrnd(0,.5,10,1) - 1);
[p,h] = signtest(before,after)
p =

0.3438
h =

0

The sampling distribution of the difference between before and after
is symmetric with zero median. At the default 5% significance level, the
test fails to reject to the null hypothesis of zero median in the difference.

References [1] Gibbons, J. D., Nonparametric Statistical Inference, 2nd edition,
M. Dekker, 1985.

[2] Hollander, M. and D. A. Wolfe, Nonparametric Statistical Methods,
Wiley, 1973.

See Also ranksum, signrank, ttest, ztest
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Purpose Silhouette plot for clustered data

Syntax silhouette(X,clust)
s = silhouette(X,clust)
[s,h] = silhouette(X,clust)
[...] = silhouette(X,clust,metric)
[...] = silhouette(X,clust,distfun,p1,p2,...)

Description silhouette(X,clust) plots cluster silhouettes for the n-by-p data
matrix X, with clusters defined by clust. Rows of X correspond to
points, columns correspond to coordinates. clust can be a categorical
variable, numeric vector, character matrix, or cell array of strings
containing a cluster name for each point. (See “Grouped Data” on page
2-41.) silhouette treats NaNs or empty strings in clust as missing
values, and ignores the corresponding rows of X. By default, silhouette
uses the squared Euclidean distance between points in X.

s = silhouette(X,clust) returns the silhouette values in the n-by-1
vector s, but does not plot the cluster silhouettes.

[s,h] = silhouette(X,clust) plots the silhouettes, and returns the
silhouette values in the n-by-1 vector s, and the figure handle in h.

[...] = silhouette(X,clust,metric) plots the silhouettes using
the inter-point distance function specified in metric. Choices for
metric are:

'Euclidean' Euclidean distance

'sqEuclidean' Squared Euclidean distance (default)

'cityblock' Sum of absolute differences

'cosine' One minus the cosine of the included angle
between points (treated as vectors)

'correlation' One minus the sample correlation between points
(treated as sequences of values)

'Hamming' Percentage of coordinates that differ
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'Jaccard' Percentage of nonzero coordinates that differ

Vector A numeric distance matrix in upper triangular
vector form, such as is created by pdist. X is
not used in this case, and can safely be set to [].

[...] = silhouette(X,clust,distfun,p1,p2,...) accepts a
function handle distfun to a metric of the form

d = distfun(X0,X,p1,p2,...)

where X0 is a 1-by-p point, X is an n-by-p matrix of points, and p1,p2,...
are optional additional arguments. The function distfun returns an
n-by-1 vector d of distances between X0 and each point (row) in X. The
arguments p1, p2,... are passed directly to the function distfun.

Remarks The silhouette value for each point is a measure of how similar that
point is to points in its own cluster compared to points in other clusters,
and ranges from -1 to +1. It is defined as

S(i) = (min(b(i,:),2) - a(i)) ./ max(a(i),min(b(i,:),2))

where a(i) is the average distance from the ith point to the other
points in its cluster, and b(i,k) is the average distance from the ith
point to points in another cluster k.

Examples X = [randn(10,2)+ones(10,2);
randn(10,2)-ones(10,2)];
cidx = kmeans(X,2,'distance','sqeuclid');
s = silhouette(X,cidx,'sqeuclid');

References [1] Kaufman L., and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, 1990.

See Also dendrogram, kmeans, linkage, pdist
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Purpose Markov chain slice sampler

Syntax rnd = slicesample(initial,nsamples,'pdf',pdf)
rnd = slicesample(...,'width',w)
rnd = slicesample(...,'burnin',k)
rnd = slicesample(...,'thin',m)
[rnd,neval] = slicesample(...)

Description rnd = slicesample(initial,nsamples,'pdf',pdf) generates
nsamples random samples from a target distribution whose density
function is defined by pdf using the slice sampling method. initial
is a row vector or scalar containing the initial value of the random
sample sequences. initial must be within the domain of the target
distribution. nsamples is the number of samples to be generated. pdf is
a function handle created using @. pdf accepts only one argument that
must be the same type and size as initial. It defines a function that is
proportional to the target density function. If the log density function
is preferred, 'pdf' can be replaced with 'logpdf'. The log density
function is not necessarily normalized.

rnd = slicesample(...,'width',w) performs slice sampling for the
target distribution with a typical width w. w is a scalar or vector. If it is a
scalar, all dimensions are assumed to have the same typical widths. If it
is a vector, each element of the vector is the typical width of the marginal
target distribution in that dimension. The default value of w is 10.

rnd = slicesample(...,'burnin',k) generates random samples
with values between the starting point and the kth point omitted in
the generated sequence. Values beyond the kth point are kept. k is a
nonnegative integer with default value of 0.

rnd = slicesample(...,'thin',m) generates random samples with
m-1 out of m values omitted in the generated sequence. m is a positive
integer with default value of 1.

[rnd,neval] = slicesample(...) also returns neval, the averaged
number of function evaluations that occurred in the slice sampling.
neval is a scalar.
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Example Generate random samples from a distribution with a user-defined pdf.

First, define the function that is proportional to the pdf for a
multi-modal distribution.

f = @(x) exp( -x.^2/2).*(1+(sin(3*x)).^2).* ...
(1+(cos(5*x).^2));

Next, use the slicesample function to generate the random samples for
the function defined above.

x = slicesample(1,2000,'pdf',f,'thin',5,'burnin',1000);

Now, plot a histogram of the random samples generated.

hist(x,50)
set(get(gca,'child'),'facecolor',[0.6 .6 .6]);
hold on
xd = get(gca,'XLim'); % Gets the xdata of the bins
binwidth = (xd(2)-xd(1)); % Finds the width of each bin
% Use linspace to normalize the histogram
y = 5.6398*binwidth*f(linspace(xd(1),xd(2),1000));
plot(linspace(xd(1),xd(2),1000),y,'r')
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See Also rand, mhsample, randsample

14-739



skewness

Purpose Sample skewness

Syntax y = skewness(X)
y = skewness(X,flag)

Description y = skewness(X) returns the sample skewness of X. For vectors,
skewness(x) is the skewness of the elements of x. For matrices,
skewness(X) is a row vector containing the sample skewness of each
column. For N-dimensional arrays, skewness operates along the first
nonsingleton dimension of X.

y = skewness(X,flag) specifies whether to correct for bias (flag = 0)
or not (flag = 1, the default). When X represents a sample from a
population, the skewness of X is biased; that is, it will tend to differ
from the population skewness by a systematic amount that depends
on the size of the sample. You can set flag = 0 to correct for this
systematic bias.

skewness(X,flag,dim) takes the skewness along dimension dim of X.

skewness treats NaNs as missing values and removes them.

Remarks Skewness is a measure of the asymmetry of the data around the sample
mean. If skewness is negative, the data are spread out more to the
left of the mean than to the right. If skewness is positive, the data are
spread out more to the right. The skewness of the normal distribution
(or any perfectly symmetric distribution) is zero.

The skewness of a distribution is defined as

where µ is the mean of x, σ is the standard deviation of x, and E(t)
represents the expected value of the quantity t.

Example X = randn([5 4])
X =
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1.1650 1.6961 -1.4462 -0.3600
0.6268 0.0591 -0.7012 -0.1356
0.0751 1.7971 1.2460 -1.3493
0.3516 0.2641 -0.6390 -1.2704

-0.6965 0.8717 0.5774 0.9846

y = skewness(X)
y =

-0.2933 0.0482 0.2735 0.4641

See Also kurtosis, mean, moment, std, var
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Purpose Sort ordinal array

Syntax B = sort(A)
B = sort(A,dim)
B = sort(A,dim,mode)
[B,I] = sort(A,...)

Description B = sort(A), when A is an ordinal vector, sorts the elements of A in
ascending order. For ordinal matrices, sort(A) sorts each column of A
in ascending order. For N-D ordinal arrays, sort(A) sorts the along the
first nonsingleton dimension of A. B is an ordinal array with the same
levels as A.

B = sort(A,dim) sorts A along dimension dim.

B = sort(A,dim,mode) sorts A in the order specified by mode. mode is
'ascend' for ascending order, or 'descend' for descending order.

[B,I] = sort(A,...) also returns an index matrix I. If A is a vector,
then B = A(I). If A is an m-by-n matrix and dim is 1, then B(:,j) =
A(I(:,j),j) for j = 1:n.

Elements with undefined levels are sorted to the end.

Example Sort the columns of an ordinal array in ascending order:

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
{'lo','med','hi'},[],[0 2 4 6])

A =
hi med hi
med hi lo
med med hi

B = sort(A)
B =

med med lo
med med hi
hi hi hi
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See Also sortrows (ordinal)
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Purpose Sort rows of dataset array

Syntax B = sortrows(A)
B = sortrows(A,vars)
B = sortrows(A,'obsnames')
B = sortrows(A,vars,mode)
[B,idx] = sortrows(A)

Description B = sortrows(A) returns a copy of the dataset array A, with the
observations sorted in ascending order by all of the variables in A.
The observations in B are sorted first by the first variable, next by the
second variable, and so on. The variables in A must be scalar valued
(i.e., column vectors) and be from a class for which a sort method exists.

B = sortrows(A,vars) sorts the observations in A by the variables
specified by vars. vars is a positive integer, a vector of positive integers,
variable names, a cell array containing one or more variable names, or
a logical vector.

B = sortrows(A,'obsnames') sorts the observations in A by
observation name.

B = sortrows(A,vars,mode) sorts in the direction specified by mode.
mode is 'ascend' (the default) or 'descend'. Use [] for vars to sort
using all variables.

[B,idx] = sortrows(A) also returns an index vector idx such that
B = A(idx,:).

Example Sort the data in hospital.mat by age and then by last name:

load hospital
hospital(1:5,1:3)
ans =

LastName Sex Age
YPL-320 'SMITH' Male 38
GLI-532 'JOHNSON' Male 43
PNI-258 'WILLIAMS' Female 38
MIJ-579 'JONES' Female 40
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XLK-030 'BROWN' Female 49

hospital = sortrows(hospital,{'Age','LastName'});
hospital(1:5,1:3)
ans =

LastName Sex Age
REV-997 'ALEXANDER' Male 25
FZR-250 'HALL' Male 25
LIM-480 'HILL' Female 25
XUE-826 'JACKSON' Male 25
SCQ-914 'JAMES' Male 25

See Also sortrows (ordinal)
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Purpose Sort rows of ordinal array

Syntax B = sortrows(A)
B = sortrows(A,col)
[B,I] = sortrows(A)
[B,I] = sortrows(A,col)

Description B = sortrows(A) sorts the rows of the two-dimensional ordinal matrix
A in ascending order, as a group. B is an ordinal array with the same
levels as A.

B = sortrows(A,col) sorts A based on the columns specified in the
vector col. If an element of col is positive, the corresponding column
in A is sorted in ascending order; if an element of col is negative, the
corresponding column in A is sorted in descending order.

[B,I] = sortrows(A) and [B,I] = sortrows(A,col) also returns an
index matrix I such that B = A(I,:).

Elements with undefined levels are sorted to the end.

Example Sort the rows of an ordinal array in ascending order for the first column,
and then in descending order for the second column:

A = ordinal([6 2 5; 2 4 1; 3 2 4],...
{'lo','med','hi'},[],[0 2 4 6])

A =
hi med hi
med hi lo
med med hi

B = sortrows(A,[1 -2])
B =

med hi lo
med med hi
hi med hi

See Also sort, sortrows (dataset)

14-746



squareform

Purpose Reformat distance matrix

Syntax Z = squareform(y)
y = squareform(Z)
Z = squareform(y,'tovector')
Y = squareform(Z,'tomatrix')

Description Z = squareform(y), where y is a vector as created by the pdist
function, converts y into a square, symmetric format Z, in which Z(i,j)
denotes the distance between the ith and jth objects in the original
data.

y = squareform(Z), where Z is a square, symmetric matrix with zeros
along the diagonal, creates a vector y containing the Z elements below
the diagonal. y has the same format as the output from the pdist
function.

Z = squareform(y,'tovector') forces squareform to treat y as a
vector.

Y = squareform(Z,'tomatrix') forces squareform to treat Z as a
matrix.

The last two formats are useful if the input has a single element, so that
it is ambiguous whether the input is a vector or square matrix.

Example y = 1:6
y =

1 2 3 4 5 6

X = [0 1 2 3; 1 0 4 5; 2 4 0 6; 3 5 6 0]
X =

0 1 2 3
1 0 4 5
2 4 0 6
3 5 6 0

Then squareform(y) = X and squareform(X) = y.
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See Also pdist
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Purpose Parameter values from statistics options structure

Syntax val = statget(options,param)
val = statget(options,param,default)

Description val = statget(options,param) returns the value of the parameter
specified by the string param in the statistics options structure options.
If the parameter is not defined in options, statget returns []. You
need to type only enough leading characters to define the parameter
name uniquely. Case is ignored for parameter names.

val = statget(options,param,default) returns default if the
specified parameter is not defined in the optimization options structure
options.

Examples This statement returns the value of the Display statistics options
parameter from the structure called my_options.

val = statget(my_options,'Display')

This statement returns the value of the Display statistics options
parameter from the structure called my_options (as in the previous
example) except that if the Display parameter is not defined, it returns
the value 'final'.

optnew = statget(my_options,'Display','final');

See Also statset
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Purpose Create or edit statistics options structure

Syntax options = statset(param1,val1,param2,val2,...)
options = statset(oldopts,param1,val1,param2,val2,...)
options = statset(oldopts,newopts)
statset
options = statset
options = statset(statfun)

Description options = statset(param1,val1,param2,val2,...) creates a
statistics options structure options in which the named parameters
have the specified values. Any unspecified parameters are set to [].
When you pass options to a statistics function, a parameter set to []
indicates that the function uses its default value for that parameter.
Case is ignored for parameter names, and unique partial matches are
allowed.

NOTE: For parameters that are string-valued, the complete string is
required for the value; if an invalid string is provided, the default is
used.

options = statset(oldopts,param1,val1,param2,val2,...)
creates a copy of oldopts with the named parameters altered with
the specified values.

options = statset(oldopts,newopts) combines an existing
options structure, oldopts, with a new options structure, newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

statset with no input arguments and no output arguments displays
all parameter names and their possible values, with defaults shown in
{} when the default is the same for all functions that use that option.
Use statset(statfun) (see below) to see function-specific defaults for
a specific function.

options = statset with no input arguments creates an options
structure where all fields are set to [].
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options = statset(statfun) creates an options structure with all
the parameter names and default values relevant to the optimization
function named in statfun. statset sets parameters in options
to [] for parameters that are not valid for statfun. For example,
statset('factoran') or statset(@factoran) returns an options
structure containing all the parameter names and default values
relevant to the function factoran.

Parameters The following table lists the valid parameter strings for statset, their
meanings, and their allowed values. You can also view these parameters
and allowed values by typing statset at the command line.

Parameter Meaning Allowed Value

'DerivStep' Relative difference used in
finite difference derivative
calculations. May be a
scalar or the same size as
the parameter vector.

Positive scalar or vector

'Display' Amount of information
displayed by the
algorithm.

• 'off' — displays no
information

• 'final' — displays
the final output

• 'notify' — displays
output only if the
algorithm fails to
converge

'FunValCheck'Check for invalid values,
such as NaN or Inf, from
the objective function.

• 'off'

• 'on'

'GradObject' Objective function can
return a gradient vector
as a second output.

• 'off'

• 'on'
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Parameter Meaning Allowed Value

'MaxFunEvals'Maximum number
of objective function
evaluations allowed.

Positive integer

'MaxIter' Maximum number of
iterations allowed.

Positive integer

'Robust' Invoke robust fitting
option.

• 'off' (default)

• 'on'

'TolBnd' Parameter bound
tolerance.

Positive scalar

'TolFun' Termination tolerance
for the objective function
value.

Positive scalar

'TolX' Termination tolerance for
the parameters.

Positive scalar
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Parameter Meaning Allowed Value

'Tune' The tuning constant used
to normalize the residuals
before applying the weight
function. The default
value depends upon the
weight function. This
parameter is required if
the weight function is
specified as a function
handle.

Positive scalar

'WgtFun' Specify the weight
function for robust fitting.
This weight function is
only valid when 'Robust'
is set 'on'. This can
also be a function handle
that accepts a normalized
residual as input and
returns the robust
weights as output.

• 'bisquare' (default)

• 'andrews'

• 'cauchy'

• 'fair'

• 'huber'

• 'logistic'

• 'talwar'

• 'welsch'

Example Suppose you want to change the default parameters for the function
evfit, which fits data to an extreme value distribution. To see the
defaults for evfit, enter

statset('evfit')
ans =

Display: 'off'
MaxFunEvals: []
MaxIter: []
TolBnd: []
TolFun: []
TolX: 1.0000e-006
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GradObj: []
DerivStep: []
FunValCheck: []

Note that the only parameters evfit uses are Display and TolX. To
change the value of TolX to 1e-8, enter

my_opts = statset('TolX',1e-8)
my_opts =

Display: []
MaxFunEvals: []
MaxIter: []
TolBnd: []
TolFun: []
TolX: 1.0000e-008
GradObj: []
DerivStep: []
FunValCheck: []

When you pass my_opts into evfit with the command

evfit(data,[],[],[],my_opts)

evfit uses its default value 'notify' for Display and overrides the
default value of TolX with 1e-8.

See Also evfit, factoran, gamfit, lognfit, nbinfit, normfit, statget
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Purpose Standard deviation of sample

Syntax y = std(X)
Y = std(X,1)
Y = std(X,flag,dim)

Description y = std(X) computes the sample standard deviation of the data in
X. For vectors, std(x) is the standard deviation of the elements in x.
For matrices, std(X) is a row vector containing the standard deviation
of each column of X. For N-dimensional arrays, std operates along the
first nonsingleton dimension of X.

std normalizes by n-1 where n is the sample size. The result Y is the
square root of an unbiased estimator of the variance of the population
from which X is drawn, as long as X consists of independent, identically
distributed samples.

The standard deviation is

where the sample mean is .

The std function is part of the standard MATLAB language.

Y = std(X,1) normalizes Y by n. The result Y is the square root of the
second moment of the sample about its mean. std(X,0) is the same
as std(X).

Y = std(X,flag,dim) takes the standard deviation along the
dimension dim of X. Set flag to 0 to normalize Y by n-1; set flag to
1 to normalize by n.

Examples In each column, the expected value of y is one.

x = normrnd(0,1,100,6);
y = std(x)
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y =
0.9536 1.0628 1.0860 0.9927 0.9605 1.0254

y = std(-1:2:1)
y =

1.4142

See Also cov, var

14-756



stepwise

Purpose Interactive stepwise regression

Syntax stepwise(X,y)
stepwise(X,y,inmodel,penter,premove)

Description stepwise(X,y) displays a graphical user interface for performing a
multilinear regression of the responses in y on a subset of the predictors
in X. Distinct predictor variables should appear in different columns of
X. Initially, no predictors are included in the model. Click on predictor
names to switch them into and out of the model.

Note stepwise automatically includes a constant term in all models.
Do not enter a column of ones directly into X.

For each predictor in the model, the interactive tool plots the predictor’s
least squares coefficient as a blue filled circle. For each predictor not
in the model, the interactive tool plots a filled red circle to indicate
the coefficient the predictor would have if you add it to the model.
Horizontal bars in the plot indicate 90% confidence intervals (colored)
and 95% confidence intervals (black).

stepwise treats NaNs in either X or y as missing values, and ignores
them.

stepwise(X,y,inmodel,penter,premove) specifies the initial state of
the model and the confidence levels to use. inmodel is either a logical
vector, whose length is the number of columns in X, or a vector of indices,
whose values range from 1 to the number of columns in X, specifying
the predictors that are included in the initial model. The default is to
include no columns of X. penter specifies the maximum p-value that a
predictor can have for the interactive tool to recommend adding it to
the model. The default value of penter is 0.05. premove specifies the
minimum p-value that a predictor can have for the interactive tool to
recommend removing it from the model. The default value of premove
is 0.10.
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Examples See “Quadratic Response Surface Models” on page 7-12 and “Stepwise
Regression Demo” on page 7-16.

Reference [1] Draper, N., and H. Smith, Applied Regression Analysis, 2nd edition,
John Wiley and Sons, 1981, pp. 307-312.

See Also regress, rstool, stepwisefit
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Purpose Stepwise regression

Syntax b = stepwisefit(X,y)
[b,se,pval,inmodel,stats,nextstep,history] = stepwisefit(...)
[...] = stepwisefit(X,y,param1,val1,param2,val2,...)

Description b = stepwisefit(X,y) uses a stepwise method to perform a
multilinear regression of the responses in y on the predictors in X.
Distinct predictor variables should appear in different columns of X. b
is a vector of estimated coefficients for all of the predictors in X. The
value of b for a column not included in the final model is the coefficient
estimate that you result from adding that column to the model.

Note stepwise automatically includes a constant term in all models.
Do not enter a column of ones directly into X.

stepwisefit treats NaNs in either X or y as missing values, and ignores
them.

[b,se,pval,inmodel,stats,nextstep,history] =
stepwisefit(...) returns the following additional results:

• se is a vector of standard errors for b.

• pval is a vector of p-values for testing whether b is 0.

• inmodel is a logical vector, whose length equals the number of
columns in X, specifying which predictors are in the final model. A 1
in position j indicates that the jth predictor is in the final model; a 0
indicates that the corresponding predictor in not in the final model.

• stats is a structure containing additional statistics.

• nextstep is the recommended next step—either the index of the next
predictor to move in or out, or 0 if no further steps are recommended.

• history is a structure containing information about the history of
steps taken.
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[...] = stepwisefit(X,y,param1,val1,param2,val2,...)
specifies one or more of the name/value pairs described in the following
table.

Parameter
Name Parameter Value

'inmodel' Logical vector specifying the predictors to include
in the initial fit. The default is a vector specifying
no predictors.

'penter' Maximum p-value for a predictor to be added.
The default is 0.05.

'premove' Minimum p-value for a predictor to be removed.
The default is 0.10.

'display' 'on' displays information about each step.

'off' omits the information.

'maxiter' Maximum number of steps to take (default is no
maximum)

'keep' Logical vector specifying the predictors to keep
in their initial state. The default is a vector
specifying no predictors.

'scale' 'on' scales each column of X by its standard
deviation before fitting.

'off' does not scale (the default).

Example load hald
stepwisefit(ingredients, heat, 'penter', .08)
Initial columns included: none
Step 1, added column 4, p=0.000576232
Step 2, added column 1, p=1.10528e-006
Step 3, added column 2, p=0.0516873
Step 4, removed column 4, p=0.205395
Final columns included: 1 2
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ans =
'Coeff' 'Std.Err.' 'Status' 'P'
[ 1.4683] [ 0.1213] 'In' [2.6922e-007]
[ 0.6623] [ 0.0459] 'In' [5.0290e-008]
[ 0.2500] [ 0.1847] 'Out' [ 0.2089]
[-0.2365] [ 0.1733] 'Out' [ 0.2054]

ans =
1.4683
0.6623
0.2500
-0.2365

See Also addedvarplot, regress, rstool, stepwise
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Purpose Summary statistics for categorical array

Syntax summary(A)
C = summary(A)
[C,labels] = summary(A)

Description summary(A) displays the number of elements in the categorical array
A equal to each of the possible levels in A. If A contains any undefined
elements, the output also includes the number of undefined elements.

C = summary(A) returns counts of the number of elements in the
categorical array A equal to each of the possible levels in A. If A is
a matrix or N-dimensional array, C is a matrix or array with rows
corresponding to the levels of A. If A contains any undefined elements, C
contains one more row than the number of levels of A, with the number
of undefined elements in c(end) or c(end,:).

[C,labels] = summary(A) also returns the list of categorical level
labels corresponding to the counts in C.

Example Count the number of patients in each age group in the data in
hospital.mat:

load hospital
edges = 0:10:100;
labels = strcat(num2str((0:10:90)','%d'),{'s'});
AgeGroup = ordinal(hospital.Age,labels,[],edges);
[c,labels] = summary(AgeGroup);

Table = dataset({labels,'AgeGroup'},{c,'Count'});
Table(3:6,:)
ans =

AgeGroup Count
'20s' 15
'30s' 41
'40s' 42
'50s' 2

14-762



summary (categorical)

See Also islevel, ismember, levelcounts
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Purpose Summary statistics for dataset array

Syntax summary(A)

Description summary(A) displays summaries of the variables in the dataset array A.

Summary information depends on the type of the variables in the data
set:

• For numerical variables, summary computes a five-number summary
of the data, giving the minimum, the first quartile, the median, the
third quartile, and the maximum.

• For logical variables, summary counts the number of trues and
falses in the data.

• For categorical variables, summary counts the number of data at
each level.

Examples Example 1

Summarize Fisher’s iris data:

load fisheriris
species = nominal(species);
data = dataset(species,meas);
summary(data)
species: [150x1 nominal]

setosa versicolor virginica <undefined>
50 50 50 0

meas: [150x4 double]
min 4.3000 2 1 0.1000
1st Q 5.1000 2.8000 1.6000 0.3000
median 5.8000 3 4.3500 1.3000
3rd Q 6.4000 3.3000 5.1000 1.8000
max 7.9000 4.4000 6.9000 2.5000
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Example 2

Summarize the data in hospital.mat:

load hospital
summary(hospital)

A dataset array created from the data file hospital.dat.
It has the first column of that file as observations
names, and has had several other columns converted to a
more convenient form.

LastName: [100x1 cell string]
Sex: [100x1 nominal]

Female Male
53 47

Age: [100x1 double, Units = Yrs]
min 1st Q median 3rd Q max
25 32 39 44 50

Weight: [100x1 double, Units = Lbs]
min 1st Q median 3rd Q max
111 130.5000 142.5000 180.5000 202

Smoker: [100x1 logical]
true false

34 66
BloodPressure: [100x2 double, Units = mm Hg]

min 109 68
1st Q 117.5000 77.5000
median 122 81.5000
3rd Q 127.5000 89
max 138 99

Trials: [100x1 cell, Units = Counts]

See Also get, set, grpstats (dataset)
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Purpose Interactive contour plot

Syntax surfht(Z)
surfht(x,y,Z)

Description surfht(Z) is an interactive contour plot of the matrix Z treating the
values in Z as height above the plane. The x-values are the column
indices of Z while the y-values are the row indices of Z.

surfht(x,y,Z) where x and y are vectors specify the x and y-axes on
the contour plot. The length of x must match the number of columns in
Z, and the length of y must match the number of rows in Z.

There are vertical and horizontal reference lines on the plot whose
intersection defines the current x-value and y-value. You can drag
these dotted white reference lines and watch the interpolated z-value
(at the top of the plot) update simultaneously. Alternatively, you can
get a specific interpolated z-value by typing the x-value and y-value into
editable text fields on the x-axis and y-axis respectively.
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Purpose Frequency table

Syntax TABLE = tabulate(x)
tabulate(x)

Description TABLE = tabulate(x) creates a frequency table of data in vector x.
Information in TABLE is arranged as follows:

• 1st column — The unique values of x

• 2nd column — The number of instances of each value

• 3rd column — The percentage of each value

If x is a numeric array, TABLE is a numeric matrix. If the elements of x
are non-negative integers, TABLE includes 0 counts for integers between
1 and max(x) that do not appear in x.

If x is a categorical variable, character array, or cell array of strings,
TABLE is a cell array.

tabulate(x) with no output arguments displays the table in the
command window.

Example tabulate([1 2 4 4 3 4])
Value Count Percent
1 1 16.67%
2 1 16.67%
3 1 16.67%
4 3 50.00%

See Also pareto

14-767



tblread

Purpose Read tabular data from file

Syntax [data,varnames,casenames] = tblread
[data,varnames,casenames] = tblread(filename)
[data,varnames,casenames] = tblread(filename,delimiter)

Description [data,varnames,casenames] = tblread displays the File Open dialog
box for interactive selection of a tabular data file. The file format has
variable names in the first row, case names in the first column and data
starting in the (2, 2) position. Outputs are:

• data — Numeric matrix with a value for each variable-case pair

• varnames — String matrix containing the variable names in the first
row of the file

• casenames — String matrix containing the names of each case in
the first column of the file

[data,varnames,casenames] = tblread(filename) allows command
line specification of the name of a file in the current directory, or the
complete path name of any file, using the string filename.

[data,varnames,casenames] = tblread(filename,delimiter)
reads from the file using delimiter as the delimiting character.
Accepted values for delimiter are:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

The default value of delimiter is 'space'.
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Example [data,varnames,casenames] = tblread('sat.dat')
data =

470 530
520 480

varnames =
Male
Female

casenames =
Verbal
Quantitative

See Also tblwrite, tdfread, caseread
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Purpose Write tabular data to file

Syntax tblwrite(data,varnames,casenames)
tblwrite(data,varnames,casenames,filename)
tblwrite(data,varnames,casenames,filename,delimiter)

Description tblwrite(data,varnames,casenames) displays the File Open dialog
box for interactive specification of the tabular data output file. The
file format has variable names in the first row, case names in the first
column and data starting in the (2,2) position.

varnames is a string matrix containing the variable names. casenames
is a string matrix containing the names of each case in the first column.
data is a numeric matrix with a value for each variable-case pair.

tblwrite(data,varnames,casenames,filename) specifies a file in the
current directory, or the complete path name of any file in the string
filename.

tblwrite(data,varnames,casenames,filename,delimiter) writes
to the file using delimiter as the delimiting character. The following
table lists the accepted character values for delimiter and their
equivalent string values.

Character String

' ' 'space'

'\t' 'tab'

',' 'comma'

';' 'semi'

'|' 'bar'

The default value of 'delimiter' is 'space'.

Example Continuing the example from tblread:

tblwrite(data,varnames,casenames,'sattest.dat')
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type sattest.dat
Male Female

Verbal 470 530
Quantitative 520 480

See Also casewrite, tblread
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Purpose Student’s t cumulative distribution function

Syntax P = tcdf(X,V)

Description P = tcdf(X,V) computes Student’s t cdf at each of the values in X
using the corresponding degrees of freedom in V. X and V can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs.

The t cdf is

The result, p, is the probability that a single observation from the
t distribution with ν degrees of freedom will fall in the interval [–∞, x).

Examples mu = 1; % Population mean
sigma = 2; % Population standard deviation
n = 100; % Sample size
x = normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean
s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =

0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic
p =

0.4020

This probability is the same as the p-value returned by a t-test of the
null hypothesis that the sample comes from a normal population with
mean μ:
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[h,ptest] = ttest(x,mu,0.05,'right')
h =

0
ptest =

0.4020

See Also cdf, tinv, tpdf, trnd, tstat
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Purpose Read file containing tab-delimited numeric and text values

Syntax tdfread
tdfread(filename)
tdfread(filename,delimiter)
s = tdfread(filename,...)

Description tdfread displays the File Open dialog box for interactive selection
of a data file, then reads data from the file. The file should have
variable names separated by tabs in the first row, and data values
separated by tabs in the remaining rows. tdfread creates variables in
the workspace, one for each column of the file. The variable names
are taken from the first row of the file. If a column of the file contains
only numeric data in the second and following rows, tdfread creates a
double variable. Otherwise, tdfread creates a char variable. After all
values are imported, tdfread displays information about the imported
values using the format of the tdfread command.

tdfread(filename) allows command line specification of the name of
a file in the current directory, or the complete path name of any file,
using the string filename.

tdfread(filename,delimiter) indicates that the character specified
by delimiter separates columns in the file. Accepted values for
delimiter are:

• ' ' or 'space'

• '\t' or 'tab'

• ',' or 'comma'

• ';' or 'semi'

• '|' or 'bar'

The default delimiter is 'tab'.

s = tdfread(filename,...) returns a scalar structure s whose fields
each contain a variable.
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Example type sat2.dat

Test,Gender,Score
Verbal,Male,470
Verbal,Female,530
Quantitative,Male,520
Quantitative,Female,480

tdfread('sat2.dat',',')

Name Size Bytes Class
Gender 4x6 48 char array
Score 4x1 32 double array
Test 4x12 96 char array

Grand total is 76 elements using 176 bytes

See Also tblread, caseread
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Purpose Error rate of tree

Syntax cost = test(t,'resubstitution')
cost = test(t,'test',X,y)
cost = test(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = test(...)
[...] = test(...,param1,val1,param2,val2,...)

Description cost = test(t,'resubstitution') computes the cost of the tree
t using a resubstitution method. t is a decision tree as created by
classregtree. The cost of the tree is the sum over all terminal nodes
of the estimated probability of a node times the cost of a node. If t is a
classification tree, the cost of a node is the sum of the misclassification
costs of the observations in that node. If t is a regression tree, the cost
of a node is the average squared error over the observations in that
node. cost is a vector of cost values for each subtree in the optimal
pruning sequence for t. The resubstitution cost is based on the same
sample that was used to create the original tree, so it under estimates
the likely cost of applying the tree to new data.

cost = test(t,'test',X,y) uses the matrix of predictors X and the
response vector y as a test sample, applies the decision tree t to that
sample, and returns a vector cost of cost values computed for the test
sample. X and y should not be the same as the learning sample, that
is, the sample that was used to fit the tree t.

cost = test(t,'crossvalidate',X,y) uses 10-fold cross-validation
to compute the cost vector. X and y should be the learning sample, that
is, the sample that was used to fit the tree t. The function partitions the
sample into 10 subsamples, chosen randomly but with roughly equal
size. For classification trees, the subsamples also have roughly the same
class proportions. For each subsample, test fits a tree to the remaining
data and uses it to predict the subsample. It pools the information from
all subsamples to compute the cost for the whole sample.

[cost,secost,ntnodes,bestlevel] = test(...) also returns the
vector secost containing the standard error of each cost value, the
vector ntnodes containing the number of terminal nodes for each
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subtree, and the scalar bestlevel containing the estimated best level
of pruning. A bestlevel of 0 means no pruning. The best level is the
one that produces the smallest tree that is within one standard error of
the minimum-cost subtree.

[...] = test(...,param1,val1,param2,val2,...) specifies
optional parameter name/value pairs chosen from the following:

• 'nsamples' — The number of cross-validation samples (default is
10).

• 'treesize' — Either 'se' (default) to choose the smallest tree whose
cost is within one standard error of the minimum cost, or 'min' to
choose the minimal cost tree (not meaningful for resubstitution error
calculations).

Example Find the best tree for Fisher’s iris data using cross-validation. Start
with a large tree:

load fisheriris;

t = classregtree(meas,species,...
'names',{'SL' 'SW' 'PL' 'PW'},...
'splitmin',5)

t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 if PW<1.55 then node 10 else node 11
8 class = versicolor
9 class = virginica

10 class = virginica
11 class = versicolor
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view(t)

Find the minimum-cost tree:

[c,s,n,best] = test(t,'cross',meas,species);
tmin = prune(t,'level',best)
tmin =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
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3 if PW<1.75 then node 4 else node 5
4 class = versicolor
5 class = virginica

view(tmin)

Plot the smallest tree within one standard error of the minimum cost
tree:

[mincost,minloc] = min(c);
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plot(n,c,'b-o',...
n(best+1),c(best+1),'bs',...
n,(mincost+s(minloc))*ones(size(n)),'k--')

xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

The solid line shows the estimated cost for each tree size, the dashed
line marks one standard error above the minimum, and the square
marks the smallest tree under the dashed line.

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.
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See Also classregtree, eval, view, prune
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Purpose Compute ranks of sample, adjusting for ties

Syntax [R,TIEADJ] = tiedrank(X)
[R,TIEADJ] = tiedrank(X,1)
[R,TIEADJ] = tiedrank(X,0,1)

Description [R,TIEADJ] = tiedrank(X) computes the ranks of the values in the
vector X. If any X values are tied, tiedrank computes their average
rank. The return value TIEADJ is an adjustment for ties required by the
nonparametric tests signrank and ranksum, and for the computation
of Spearman’s rank correlation.

[R,TIEADJ] = tiedrank(X,1) computes the ranks of the values in
the vector X. TIEADJ is a vector of three adjustments for ties required
in the computation of Kendall’s tau.tiedrank(X,0) is the same as
tiedrank(X).

[R,TIEADJ] = tiedrank(X,0,1) computes the ranks from each end, so
that the smallest and largest values get rank 1, the next smallest and
largest get rank 2, etc. These ranks are used in the Ansari-Bradley test.

See Also ansaribradley, corr, partialcorr, ranksum, signrank
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Purpose Inverse of Student’s t cumulative distribution function

Syntax X = tinv(P,V)

Description X = tinv(P,V) computes the inverse of Student’s t cdf with parameter
V for the corresponding probabilities in P. P and V can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar
input is expanded to a constant array with the same dimensions as the
other inputs. The values in P must lie on the interval [0 1].

The t inverse function in terms of the t cdf is

where

The result, x, is the solution of the cdf integral with parameter ν, where
you supply the desired probability p.

Examples What is the 99th percentile of the t distribution for one to six degrees
of freedom?

percentile = tinv(0.99,1:6)
percentile =

31.8205 6.9646 4.5407 3.7469 3.3649 3.1427

See Also icdf, tcdf, tpdf, trnd, tstat
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Purpose Student’s t probability density function

Syntax Y = tpdf(X,V)

Description Y = tpdf(X,V) computes Student’s t pdf at each of the values in X
using the corresponding degrees of freedom in V. X and V can be vectors,
matrices, or multidimensional arrays that have the same size. A scalar
input is expanded to a constant array with the same dimensions as
the other inputs.

Student’s t pdf is

Examples The mode of the t distribution is at x = 0. This example shows that
the value of the function at the mode is an increasing function of the
degrees of freedom.

tpdf(0,1:6)
ans =

0.3183 0.3536 0.3676 0.3750 0.3796 0.3827

The t distribution converges to the standard normal distribution as the
degrees of freedom approaches infinity. How good is the approximation
for v = 30?

difference = tpdf(-2.5:2.5,30)-normpdf(-2.5:2.5)
difference =

0.0035 -0.0006 -0.0042 -0.0042 -0.0006 0.0035

See Also pdf, tcdf, tinv, trnd, tstat
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Purpose Plot classification and regression trees

Syntax treedisp(t)
treedisp(t,param1,val1,param2,val2,...)

Description
Note This function is superseded by the view method for the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t created with the classregtree constructor.

treedisp(t) takes as input a decision tree t as computed by the
treefit function, and displays it in a figure window. Each branch in
the tree is labeled with its decision rule, and each terminal node is
labeled with the predicted value for that node.

For each branch node, the left child node corresponds to the points that
satisfy the condition, and the right child node corresponds to the points
that do not satisfy the condition.

The Click to display pop-up menu at the top of the figure enables you
to display more information about each node:

Identity The node number, whether the node is a branch
or a leaf, and the rule that governs the node

Variable ranges The range of each of the predictor variables for
that node

Node statistics Descriptive statistics for the observations falling
into this node

After you select the type of information you want, click any node to
display the information for that node.

The Pruning level button displays the number of levels that have
been cut from the tree and the number of levels in the unpruned tree.
For example, 1 of 6 indicates that the unpruned tree has six levels,
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and that one level has been cut from the tree. Use the spin button to
change the pruning level.

treedisp(t,param1,val1,param2,val2,...) specifies optional
parameter name-value pairs. Valid parameter strings are:

'names' A cell array of names for the predictor variables,
in the order in which they appear in the X matrix
from which the tree was created (see treefit)

'prunelevel' Initial pruning level to display

Examples Create and graph classification tree for Fisher’s iris data. The names in
this example are abbreviations for the column contents (sepal length,
sepal width, petal length, and petal width).

load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
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Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also treefit, treeprune, treetest
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Purpose Fit tree-based model for classification or regression

Syntax t = treefit(X,y)
t = treefit(X,y,param1,val1,param2,val2,...)

Description
Note This function is superseded by the classregtree constructor
and is maintained only for backwards compatibility. It returns objects t
in the classregtree class.

t = treefit(X,y) creates a decision tree t for predicting response y as
a function of predictors X. X is an n-by-m matrix of predictor values. y is
either a vector of n response values (for regression), or a character array
or cell array of strings containing n class names (for classification).
Either way, t is a binary tree where each non-terminal node is split
based on the values of a column of X.

t = treefit(X,y,param1,val1,param2,val2,...) specifies optional
parameter name-value pairs. Valid parameter strings are:

For all trees:

'catidx' Vector of indices of the columns of X. treefit
treats these columns as unordered categorical
values.

'method' Either 'classification' (default if y is text) or
'regression' (default if y is numeric).

'splitmin' A number n such that impure nodes must have n
or more observations to be split (default 10).

'prune' 'on' (default) to compute the full tree and a
sequence of pruned subtrees, or 'off' for the full
tree without pruning.
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For classification trees only:

'cost' p-by-p matrix C, where p is the number of distinct
response values or class names in the input y.
C(i,j) is the cost of classifying a point into class
j if its true class is i. (The default has C(i,j)=1
if i~=j, and C(i,j)=0 if i=j.) C can also be a
structure S with two fields: S.group containing
the group names (see “Grouped Data” on page
2-41), and S.cost containing a matrix of cost
values.

'splitcriterion' Criterion for choosing a split: either 'gdi'
(default) for Gini’s diversity index, 'twoing' for
the twoing rule, or 'deviance' for maximum
deviance reduction.

'priorprob' Prior probabilities for each class, specified as
a vector (one value for each distinct group
name) or as a structure S with two fields:
S.group containing the group names, and S.prob
containing a vector of corresponding probabilities.

Examples Create a classification tree for Fisher’s iris data:

load fisheriris;
t = treefit(meas,species);
treedisp(t,'names',{'SL' 'SW' 'PL' 'PW'});
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Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also treedisp, treetest
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Purpose Produce sequence of subtrees by pruning

Syntax t2 = treeprune(t1,'level',level)
t2 = treeprune(t1,'nodes',nodes)
t2 = treeprune(t1)

Description
Note This function is superseded by the prune method for the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t1 created with the classregtree constructor and
returns objects t2 in the classregtree class.

t2 = treeprune(t1,'level',level) takes a decision tree t1 as
created by the treefit function, and a pruning level, and returns the
decision tree t2 pruned to that level. Setting level to 0 means no
pruning. Trees are pruned based on an optimal pruning scheme that
first prunes branches giving less improvement in error cost.

t2 = treeprune(t1,'nodes',nodes) prunes the nodes listed in the
nodes vector from the tree. Any t1 branch nodes listed in nodes become
leaf nodes in t2, unless their parent nodes are also pruned. The
treedisp function can display the node numbers for any node you select.

t2 = treeprune(t1) returns the decision tree t2 that is the same as
t1, but with the optimal pruning information added. This is useful
only if you created t1 by pruning another tree, or by using the treefit
function with pruning set 'off'. If you plan to prune a tree multiple
times, it is more efficient to create the optimal pruning sequence first.

Pruning is the process of reducing a tree by turning some branch nodes
into leaf nodes, and removing the leaf nodes under the original branch.

Examples Display the full tree for Fisher’s iris data, as well as the next largest
tree from the optimal pruning sequence:

load fisheriris;
t1 = treefit(meas,species,'splitmin',5);
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treedisp(t1,'names',{'SL' 'SW' 'PL' 'PW'});

t2 = treeprune(t1,'level',1);
treedisp(t2,'names',{'SL' 'SW' 'PL' 'PW'});
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Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also treefit, treetest, treedisp
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Purpose Compute error rate for tree

Syntax cost = treetest(t,'resubstitution')
cost = treetest(t,'test',X,y)
cost = treetest(t,'crossvalidate',X,y)
[cost,secost,ntnodes,bestlevel] = treetest(...)
[...] = treetest(...,param1,val1,param2,val2,...)

Description
Note This function is superseded by the test method for the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t created with the classregtree constructor.

cost = treetest(t,'resubstitution') computes the cost of the tree
t using a resubstitution method. t is a decision tree as created by the
treefit function. The cost of the tree is the sum over all terminal nodes
of the estimated probability of that node times the node’s cost. If t is a
classification tree, the cost of a node is the sum of the misclassification
costs of the observations in that node. If t is a regression tree, the cost
of a node is the average squared error over the observations in that
node. cost is a vector of cost values for each subtree in the optimal
pruning sequence for t. The resubstitution cost is based on the same
sample that was used to create the original tree, so it underestimates
the likely cost of applying the tree to new data.

cost = treetest(t,'test',X,y) uses the predictor matrix X and
response y as a test sample, applies the decision tree t to that sample,
and returns a vector cost of cost values computed for the test sample.
X and y should not be the same as the learning sample, which is the
sample that was used to fit the tree t.

cost = treetest(t,'crossvalidate',X,y) uses 10-fold
cross-validation to compute the cost vector. X and y should be the
learning sample, which is the sample that was used to fit the tree t. The
function partitions the sample into 10 subsamples, chosen randomly but
with roughly equal size. For classification trees, the subsamples also
have roughly the same class proportions. For each subsample, treetest
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fits a tree to the remaining data and uses it to predict the subsample. It
pools the information from all subsamples to compute the cost for the
whole sample.

[cost,secost,ntnodes,bestlevel] = treetest(...) also returns
the vector secost containing the standard error of each cost value,
the vector ntnodes containing number of terminal nodes for each
subtree, and the scalar bestlevel containing the estimated best level
of pruning. bestlevel = 0 means no pruning, i.e., the full unpruned
tree. The best level is the one that produces the smallest tree that is
within one standard error of the minimum-cost subtree.

[...] = treetest(...,param1,val1,param2,val2,...) specifies
optional parameter name-value pairs chosen from the following:

'nsamples' The number of cross-validations samples (default
is 10).

'treesize' Either 'se' (default) to choose the smallest tree
whose cost is within one standard error of the
minimum cost, or 'min' to choose the minimal cost
tree.

Examples Find the best tree for Fisher’s iris data using cross-validation. The solid
line shows the estimated cost for each tree size, the dashed line marks
one standard error above the minimum, and the square marks the
smallest tree under the dashed line.

% Start with a large tree.
load fisheriris;
t = treefit(meas,species','splitmin',5);

% Find the minimum-cost tree.
[c,s,n,best] = treetest(t,'cross',meas,species);
tmin = treeprune(t,'level',best);

% Plot smallest tree within 1 std of minimum cost tree.
[mincost,minloc] = min(c);
plot(n,c,'b-o',n,c+s,'r:',...
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n(best+1),c(best+1),'bs',...
n,(mincost+s(minloc))*ones(size(n)),'k ');

xlabel('Tree size (number of terminal nodes)')
ylabel('Cost')

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also treefit, treedisp
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Purpose Compute fitted value for decision tree applied to data

Syntax yfit = treeval(t,X)
yfit = treeval(t,X,subtrees)
[yfit,node] = treeval(...)
[yfit,node,cname] = treeval(...)

Description
Note This function is superseded by the eval method for the
classregtree class and is maintained only for backwards compatibility.
It accepts objects t created with the classregtree constructor.

yfit = treeval(t,X) takes a classification or regression tree t as
produced by the treefit function and a matrix X of predictor values,
and produces a vector yfit of predicted response values. For a
regression tree, yfit(i) is the fitted response value for a point having
the predictor values X(i,:). For a classification tree, yfit(i) is the
class number into which the tree would assign the point with data
X(i,:). To convert the number into a class name, use the third output
argument, cname (described below).

yfit = treeval(t,X,subtrees) takes an additional vector subtrees
of pruning levels, with 0 representing the full, unpruned tree. T must
include a pruning sequence as created by the treefit or prunetree
function. If subtree has k elements and X has n rows, the output yfit
is an n-by-k matrix, with the jth column containing the fitted values
produced by the subtrees(j) subtree. subtrees must be sorted in
ascending order.

[yfit,node] = treeval(...) also returns an array node of the same
size as yfit containing the node number assigned to each row of X. The
treedisp function can display the node numbers for any node you select.

[yfit,node,cname] = treeval(...) is valid only for classification
trees. It returns a cell array cname containing the predicted class names.
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Examples Find the predicted classifications for Fisher’s iris data:

load fisheriris;
t = treefit(meas,species); % Create decision tree
sfit = treeval(t,meas); % Find assigned class numbers
sfit = t.classname(sfit); % Get class names
mean(strcmp(sfit,species)) % Proportion correctly classified
ans =

0.9800

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also treefit, treeprune, treetest
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Purpose Mean of sample, excluding extreme values

Syntax m = trimmean(X,percent)
trimmean(X,percent,dim)

Description m = trimmean(X,percent) calculates the mean of a sample X excluding
the highest and lowest (percent/2)% of the observations. For a vector
input, m is the trimmed mean of X. For a matrix input, m is a row vector
containing the trimmed mean of each column of X. For N-dimensional
arrays, trimmean operates along the first nonsingleton dimension of X.
percent is a scalar between 0 and 100.

trimmean(X,percent,dim) takes the trimmed mean along dimension
dim of X.

Remarks The trimmed mean is a robust estimate of the location of a sample.
If there are outliers in the data, the trimmed mean is a more
representative estimate of the center of the body of the data than the
mean. However, if the data is all from the same probability distribution,
then the trimmed mean is less efficient than the sample mean as an
estimator of the location of the data.

Examples This example shows a Monte Carlo simulation of the efficiency of the
10% trimmed mean relative to the sample mean for normal data.

x = normrnd(0,1,100,100);
m = mean(x);
trim = trimmean(x,10);
sm = std(m);
strim = std(trim);
efficiency = (sm/strim).^2
efficiency =

0.9702

See Also mean, median, geomean, harmmean
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Purpose Random numbers from Student’s t distribution

Syntax R = trnd(V)
R = trnd(v,m)
R = trnd(V,m,n)

Description R = trnd(V) generates random numbers from Student’s t distribution
with V degrees of freedom. V can be a vector, a matrix, or a
multidimensional array. The size of R is the size of V.

R = trnd(v,m) generates random numbers from Student’s t
distribution with v degrees of freedom, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = trnd(V,m,n) generates random numbers from Student’s t
distribution with V degrees of freedom, where scalars m and n are the
row and column dimensions of R.

Example noisy = trnd(ones(1,6))
noisy =

19.7250 0.3488 0.2843 0.4034 0.4816 -2.4190

numbers = trnd(1:6,[1 6])
numbers =

-1.9500 -0.9611 -0.9038 0.0754 0.9820 1.0115

numbers = trnd(3,2,6)
numbers =
-0.3177 -0.0812 -0.6627 0.1905 -1.5585 -0.0433
0.2536 0.5502 0.8646 0.8060 -0.5216 0.0891

See Also tcdf, tinv, tpdf, tstat
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Purpose Mean and variance of Student’s t distribution

Syntax [M,V] = tstat(NU)

Description [M,V] = tstat(NU) returns the mean of and variance for Student’s
t distribution with parameters specified by NU. M and V are the same
size as NU.

The mean of the Student’s t distribution with parameter ν is zero for
values of ν greater than 1. If ν is one, the mean does not exist. The
variance for values of ν greater than 2 is .

Examples Find the mean of and variance for 1 to 30 degrees of freedom.

[m,v] = tstat(reshape(1:30,6,5))
m =

NaN 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

v =
NaN 1.4000 1.1818 1.1176 1.0870
NaN 1.3333 1.1667 1.1111 1.0833

3.0000 1.2857 1.1538 1.1053 1.0800
2.0000 1.2500 1.1429 1.1000 1.0769
1.6667 1.2222 1.1333 1.0952 1.0741
1.5000 1.2000 1.1250 1.0909 1.0714

Note that the variance does not exist for one and two degrees of freedom.

See Also tcdf, tinv, tpdf, trnd
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Purpose One-sample or paired-sample t-test

Syntax h = ttest(x)
h = ttest(x,m)
h = ttest(x,y)
h = ttest(...,alpha)
h = ttest(...,alpha,tail)
h = ttest(...,alpha,tail,dim)
[h,p] = ttest(...)
[h,p,ci] = ttest(...)
[h,p,ci,stats] = ttest(...)

Description h = ttest(x) performs a t-test of the null hypothesis that data in the
vector x are a random sample from a normal distribution with mean 0
and unknown variance, against the alternative that the mean is not 0.
The result of the test is returned in h. h = 1 indicates a rejection of the
null hypothesis at the 5% significance level. h = 0 indicates a failure to
reject the null hypothesis at the 5% significance level.

x can also be a matrix or an N-dimensional array. For matrices, ttest
performs separate t-tests along each column of x and returns a vector
of results. For N-dimensional arrays, ttest works along the first
non-singleton dimension of x.

The test treats NaN values as missing data, and ignores them.

h = ttest(x,m) performs a t-test of the null hypothesis that data in
the vector x are a random sample from a normal distribution with mean
m and unknown variance, against the alternative that the mean is not m.

h = ttest(x,y) performs a paired t-test of the null hypothesis
that data in the difference x-y are a random sample from a normal
distribution with mean 0 and unknown variance, against the alternative
that the mean is not 0. x and y must be vectors of the same length,
or arrays of the same size.

h = ttest(...,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.
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h = ttest(...,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both' — Mean is not 0 (or m) (two-tailed test). This is the default,
when tail is unspecified.

• 'right' — Mean is greater than 0 (or m) (right-tail test)

• 'left' — Mean is less than 0 (or m) (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.

h = ttest(...,alpha,tail,dim) works along dimension dim of x, or
of x-y for a paired test. Use [] to pass in default values for m, alpha,
or tail.

[h,p] = ttest(...) returns the p-value of the test. The p-value is the
probability, under the null hypothesis, of observing a value as extreme
or more extreme of the test statistic

t
x
s n

= − μ
/

where is the sample mean, μ = 0 (or m) is the hypothesized population
mean, s is the sample standard deviation, and n is the sample size.
Under the null hypothesis, the test statistic will have Student’s t
distribution with n – 1 degrees of freedom.

[h,p,ci] = ttest(...) returns a 100*(1 – alpha)% confidence
interval on the population mean, or on the difference of population
means for a paired test.

[h,p,ci,stats] = ttest(...) returns the structure stats with the
following fields:

• tstat — Value of the test statistic

• df — Degrees of freedom of the test

• sd — Sample standard deviation
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Example Simulate a random sample of size 100 from a normal distribution with
mean 0.1:

x = normrnd(0.1,1,1,100);

Test the null hypothesis that the sample comes from a normal
distribution with mean 0:

[h,p,ci] = ttest(x,0)
h =

0
p =

0.8323
ci =

-0.1650 0.2045

The test fails to reject the null hypothesis at the default α = 0.05
significance level. Under the null hypothesis, the probability of
observing a value as extreme or more extreme of the test statistic, as
indicated by the p-value, is much greater than α. The 95% confidence
interval on the mean contains 0.

Simulate a larger random sample of size 1000 from the same
distribution:

y = normrnd(0.1,1,1,1000);

Test again if the sample comes from a normal distribution with mean 0:

[h,p,ci] = ttest(y,0)
h =

1
p =

0.0160
ci =

0.0142 0.1379
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This time the test rejects the null hypothesis at the default α = 0.05
significance level. The p-value has fallen below α = 0.05 and the 95%
confidence interval on the mean does not contain 0.

Because the p-value of the sample y is greater than 0.01, the test will
fail to reject the null hypothesis when the significance level is lowered
to α = 0.01:

[h,p,ci] = ttest(y,0,0.01)
h =

0
p =

0.0160
ci =

-0.0053 0.1574

Notice that at the lowered significance level the 99% confidence interval
on the mean widens to contain 0.

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest2, ztest
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Purpose Two-sample t-test

Syntax h = ttest2(x,y)
h = ttest2(x,y,alpha)
h = ttest2(x,y,alpha,tail)
h = ttest2(x,y,alpha,tail,vartype)
h = ttest(x,y,alpha,tail,vartype,dim)
[h,p] = ttest2(...)
[h,p,ci] = ttest2(...)
[h,p,ci,stats] = ttest2(...)

Description h = ttest2(x,y) performs a t-test of the null hypothesis that data
in the vectors x and y are independent random samples from normal
distributions with equal means and equal but unknown variances,
against the alternative that the means are not equal. The result of the
test is returned in h. h = 1 indicates a rejection of the null hypothesis
at the 5% significance level. h = 0 indicates a failure to reject the null
hypothesis at the 5% significance level. x and y need not be vectors
of the same length.

x and y can also be matrices or N-dimensional arrays. Matrices x and y
must have the same number of columns, in which case ttest2 performs
separate t-tests along each column and returns a vector of results.
N-dimensional arrays x and y must have the same size along all but
the first non-singleton dimension, in which case ttest2 works along
the first non-singleton dimension.

The test treats NaN values as missing data, and ignores them.

h = ttest2(x,y,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.

h = ttest2(x,y,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both' — Means are not equal (two-tailed test). This is the default,
when tail is unspecified.

• 'right' — Mean of x is greater than mean of y (right-tail test)
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• 'left' — Mean of x is less than mean of y (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.

h = ttest2(x,y,alpha,tail,vartype) performs the test under the
assumption of equal or unequal population variances, as specified by
the string vartype. There are two options for vartype:

• 'equal' — Assumes equal variances. This is the default, when
vartype is unspecified.

• 'unequal' — Does not assume equal variances. This is the
Behrens-Fisher problem.

vartype must be a single string, even when x is a matrix or an
N-dimensional array.

If vartype is 'equal', the test computes a pooled sample standard
deviation using

s
n s m s

n m
x y=

− + −
+ −

( ) ( )1 1

2

2 2

where sx and sy are the sample standard deviations of x and y,
respectively, and n and m are the sample sizes of x and y, respectively.

h = ttest(x,y,alpha,tail,vartype,dim) works along dimension dim
of x and y. Use [] to pass in default values for alpha, tail, or vartype.

[h,p] = ttest2(...) returns the p-value of the test. The p-value
is the probability, under the null hypothesis, of observing a value as
extreme or more extreme of the test statistic

t
x y

s
n

s

m
x y

= −

+
2 2
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where and are the sample means, sx and sy are the sample standard
deviations (replaced by the pooled standard deviation s in the default
case where vartype is 'equal'), and n and m are the sample sizes.

In the default case where vartype is 'equal', the test statistic, under
the null hypothesis, has Student’s t distribution with n + m – 2 degrees
of freedom.

In the case where vartype is 'unequal', the test statistic, under the
null hypothesis, has an approximate Student’s t distribution with a
number of degrees of freedom given by Satterthwaite’s approximation.

[h,p,ci] = ttest2(...) returns a 100*(1 – alpha)% confidence
interval on the difference of population means.

[h,p,ci,stats] = ttest2(...) returns structure stats with the
following fields:

• tstat — Value of the test statistic

• df — Degrees of freedom of the test

• sd — Pooled sample standard deviation (in the default case where
vartype is 'equal') or a vector with the sample standard deviations
(in the case where vartype is 'unequal').

Example Simulate random samples of size 1000 from normal distributions
with means 0 and 0.1, respectively, and standard deviations 1 and 2,
respectively:

x = normrnd(0,1,1,1000);
y = normrnd(0.1,2,1,1000);

Test the null hypothesis that the samples come from populations with
equal means, against the alternative that the means are unequal.
Perform the test assuming unequal variances:

[h,p,ci] = ttest2(x,y,[],[],'unequal')
h =

1
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p =
0.0102

ci =
-0.3227 -0.0435

The test rejects the null hypothesis at the default α = 0.05 significance
level. Under the null hypothesis, the probability of observing a value
as extreme or more extreme of the test statistic, as indicated by the
p-value, is less than α. The 95% confidence interval on the mean of
the difference does not contain 0.

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest, ztest
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Purpose Type of tree

Syntax ttype = type(t)

Description ttype = type(t) returns the type of the tree t. ttype is 'regression'
for regression trees and 'classification' for classification trees.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
7 class = virginica
8 class = versicolor
9 class = virginica

view(t)
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ttype = type(t)
ttype =
classification

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

See Also classregtree
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Purpose Discrete uniform cumulative distribution function

Syntax P = unidcdf(X,N)

Description P = unidcdf(X,N) computes the discrete uniform cdf at each of the
values in X using the corresponding parameters in N. X and N can be
vectors, matrices, or multidimensional arrays that have the same
size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The maximum observable values in N
must be positive integers.

The discrete uniform cdf is

The result, p, is the probability that a single observation from the
discrete uniform distribution with maximum N will be a positive integer
less than or equal to x. The values x do not need to be integers.

Examples What is the probability of drawing a number 20 or less from a hat with
the numbers from 1 to 50 inside?

probability = unidcdf(20,50)
probability =

0.4000

See Also cdf, unidinv, unidpdf, unidrnd, unidstat
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Purpose Inverse of discrete uniform cumulative distribution function

Syntax X = unidinv(P,N)

Description X = unidinv(P,N) returns the smallest positive integer X such that the
discrete uniform cdf evaluated at X is equal to or exceeds P. You can
think of P as the probability of drawing a number as large as X out of a
hat with the numbers 1 through N inside.

P and N can be vectors, matrices, or multidimensional arrays that have
the same size, which is also the size of X. A scalar input for N or P is
expanded to a constant array with the same dimensions as the other
input. The values in P must lie on the interval [0 1] and the values in N
must be positive integers.

Examples x = unidinv(0.7,20)
x =

14

y = unidinv(0.7 + eps,20)
y =

15

A small change in the first parameter produces a large jump in output.
The cdf and its inverse are both step functions. The example shows
what happens at a step.

See Also icdf, unidcdf, unidpdf, unidrnd, unidstat
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Purpose Discrete uniform probability density function

Syntax Y = unidpdf(X,N)

Description Y = unidpdf(X,N) computes the discrete uniform pdf at each of the
values in X using the corresponding parameters in N. X and N can be
vectors, matrices, or multidimensional arrays that have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs. The parameters in N must be positive integers.

The discrete uniform pdf is

You can think of y as the probability of observing any one number
between 1 and n.

Examples For fixed n, the uniform discrete pdf is a constant.

y = unidpdf(1:6,10)
y =

0.1000 0.1000 0.1000 0.1000 0.1000 0.1000

Now fix x, and vary n.

likelihood = unidpdf(5,4:9)
likelihood =

0 0.2000 0.1667 0.1429 0.1250 0.1111

See Also pdf, unidcdf, unidinv, unidrnd, unidstat
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Purpose Random numbers from discrete uniform distribution

Syntax R = unidrnd(N)
R = unidrnd(N,v)
R = unidrnd(N,m,n)

Description The discrete uniform distribution arises from experiments equivalent to
drawing a number from one to N out of a hat.

R = unidrnd(N) generates random numbers for the discrete uniform
distribution with maximum N. The parameters in N must be positive
integers. N can be a vector, a matrix, or a multidimensional array. The
size of R is the size of N.

R = unidrnd(N,v) generates random numbers for the discrete uniform
distribution with maximum N, where v is a row vector. If v is a 1-by-2
vector, R is a matrix with v(1) rows and v(2) columns. If v is 1-by-n, R
is an n-dimensional array.

R = unidrnd(N,m,n) generates random numbers for the discrete
uniform distribution with maximum N, where scalars m and n are the
row and column dimensions of R.

Example In the Massachusetts lottery, a player chooses a four-digit number.
Generate random numbers for Monday through Saturday.

numbers = unidrnd(10000,1,6)-1
numbers =

4564 185 8214 4447 6154 7919

See Also unidcdf, unidinv, unidpdf, unidstat
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Purpose Mean of and variance for discrete uniform distribution

Syntax [M,V] = unidstat(N)

Description [M,V] = unidstat(N) returns the mean of and variance for the discrete
uniform distribution with parameter N.

The mean of the discrete uniform distribution with parameter N is

. The variance is .

Examples [m,v] = unidstat(1:6)
m =

1.0000 1.5000 2.0000 2.5000 3.0000 3.5000
v =

0 0.2500 0.6667 1.2500 2.0000 2.9167

See Also unidcdf, unidinv, unidpdf, unidrnd
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Purpose Continuous uniform cumulative distribution function

Syntax P = unifcdf(X,A,B)

Description P = unifcdf(X,A,B) computes the uniform cdf at each of the values
in X using the corresponding parameters in A and B (the minimum and
maximum values, respectively). X, A, and B can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant matrix with the same dimensions as the other
inputs.

The uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the probability that an observation from a standard uniform
distribution will be less than 0.75?

probability = unifcdf(0.75)
probability =

0.7500

What is the probability that an observation from a uniform distribution
with a = -1 and b = 1 will be less than 0.75?

probability = unifcdf(0.75,-1,1)
probability =

0.8750

See Also cdf, unifinv, unifit, unifpdf, unifrnd, unifstat
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Purpose Inverse of continuous uniform cumulative distribution function

Syntax X = unifinv(P,A,B)

Description X = unifinv(P,A,B) computes the inverse of the uniform cdf with
parameters A and B (the minimum and maximum values, respectively)
at the corresponding probabilities in P. P, A, and B can be vectors,
matrices, or multidimensional arrays that all have the same size. A
scalar input is expanded to a constant array with the same dimensions
as the other inputs.

The inverse of the uniform cdf is

The standard uniform distribution has A = 0 and B = 1.

Examples What is the median of the standard uniform distribution?

median_value = unifinv(0.5)
median_value =

0.5000

What is the 99th percentile of the uniform distribution between -1
and 1?

percentile = unifinv(0.99,-1,1)
percentile =

0.9800

See Also icdf, unifcdf, unifit, unifpdf, unifrnd, unifstat
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Purpose Parameter estimates for uniformly distributed data

Syntax [ahat,bhat] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data)
[ahat,bhat,ACI,BCI] = unifit(data,alpha)

Description [ahat,bhat] = unifit(data) returns the maximum likelihood
estimates (MLEs) of the parameters of the uniform distribution given
the data in data.

[ahat,bhat,ACI,BCI] = unifit(data) also returns 95% confidence
intervals, ACI and BCI, which are matrices with two rows. The first
row contains the lower bound of the interval for each column of the
matrix data. The second row contains the upper bound of the interval.

[ahat,bhat,ACI,BCI] = unifit(data,alpha) enables you to control
of the confidence level alpha. For example, if alpha = 0.01 then ACI
and BCI are 99% confidence intervals.

Example r = unifrnd(10,12,100,2);
[ahat,bhat,aci,bci] = unifit(r)
ahat =

10.0154 10.0060
bhat =

11.9989 11.9743
aci =

9.9551 9.9461
10.0154 10.0060

bci =
11.9989 11.9743
12.0592 12.0341

See Also betafit, binofit, expfit, gamfit, normfit, poissfit, unifcdf,
unifinv, unifpdf, unifrnd, unifstat, wblfit
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Purpose Continuous uniform probability density function

Syntax Y = unifpdf(X,A,B)

Description Y = unifpdf(X,A,B) computes the continuous uniform pdf at each of
the values in X using the corresponding parameters in A and B. X, A, and
B can be vectors, matrices, or multidimensional arrays that all have the
same size. A scalar input is expanded to a constant array with the same
dimensions as the other inputs. The parameters in B must be greater
than those in A.

The continuous uniform distribution pdf is

The standard uniform distribution has A = 0 and B = 1.

Examples For fixed a and b, the uniform pdf is constant.

x = 0.1:0.1:0.6;
y = unifpdf(x)
y =

1 1 1 1 1 1

What if x is not between a and b?

y = unifpdf(-1,0,1)
y =

0

See Also pdf, unifcdf, unifinv, unifrnd, unifstat
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Purpose Random numbers from continuous uniform distribution

Syntax R = unifrnd(A,B)
R = unifrnd(A,B,m)
R = unifrnd(A,B,m,n)

Description R = unifrnd(A,B) generates uniform random numbers with
parameters A and B. Vector or matrix inputs for A and B must have the
same size, which is also the size of R. A scalar input for A or B is expanded
to a constant matrix with the same dimensions as the other input.

R = unifrnd(A,B,m) generates uniform random numbers with
parameters A and B, where m is a 1-by-2 vector that contains the row
and column dimensions of R.

R = unifrnd(A,B,m,n) generates uniform random numbers with
parameters A and B, where scalars m and n are the row and column
dimensions of R.

Examples random = unifrnd(0,1:6)
random =

0.2190 0.0941 2.0366 2.7172 4.6735 2.3010

random = unifrnd(0,1:6,[1 6])
random =

0.5194 1.6619 0.1037 0.2138 2.6485 4.0269

random = unifrnd(0,1,2,3)
random =

0.0077 0.0668 0.6868
0.3834 0.4175 0.5890

See Also unifcdf, unifinv, unifpdf, unifstat
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Purpose Mean and variance of continuous uniform distribution

Syntax [M,V] = unifstat(A,B)

Description [M,V] = unifstat(A,B) returns the mean of and variance for the
continuous uniform distribution with parameters specified by A and B.
Vector or matrix inputs for A and B must have the same size, which
is also the size of M and V. A scalar input for A or B is expanded to a
constant matrix with the same dimensions as the other input.

The mean of the continuous uniform distribution with parameters a and

b is , and the variance is .

Examples a = 1:6;
b = 2.*a;
[m,v] = unifstat(a,b)
m =

1.5000 3.0000 4.5000 6.0000 7.5000 9.0000
v =

0.0833 0.3333 0.7500 1.3333 2.0833 3.0000

See Also unifcdf, unifinv, unifpdf, unifrnd
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Purpose Parameters of generalized Pareto distribution upper tail

Syntax params = upperparams(obj)

Description params = upperparams(obj) returns the 2-element vector params of
shape and scale parameters, respectively, of the upper tail of the Pareto
tails object obj. upperparams does not return a location parameter.

Example Fit Pareto tails to a t distribution at cumulative probabilities 0.1 and 0.9:

t = trnd(3,100,1);
obj = paretotails(t,0.1,0.9);

lowerparams(obj)
ans =

-0.1901 1.1898
upperparams(obj)
ans =

0.3646 0.5103

See Also paretotails, lowerparams
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Purpose Variance of sample

Syntax y = var(X)
y = var(x)
y = var(x,1)
y = var(X,w)
var(X,w,dim)

Description y = var(X) computes the variance of the data in X. For vectors, var(x)
is the variance of the elements in x. For matrices, var(X) is a row vector
containing the variance of each column of X.

y = var(x) normalizes by n – 1 where n is the sequence length. For
normally distributed data, this makes var(x) the minimum variance
unbiased estimator MVUE of σ 2(the second parameter).

y = var(x,1) normalizes by n and yields the second moment of the
sample data about its mean (moment of inertia).

y = var(X,w) computes the variance using the vector of positive
weights w. The number of elements in w must equal the number of rows
in the matrix X. For vector x, w and x must match in length.

var(X,w,dim) takes the variance along the dimension dim of X. Pass in
0 for w to use the default normalization by n – 1, or 1 to use n.

var supports both common definitions of variance. Let SS be the sum of
the squared deviations of the elements of a vector x from their mean.
Then, var(x) = SS/(n – 1) is the MVUE, and var(x,1) = SS/n is the
maximum likelihood estimator (MLE) of σ 2.

Examples x = [-1 1];
w = [1 3];

v1 = var(x)
v1 =

2

v2 = var(x,1)
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v2 =
1

v3 = var(x,w)
v3 =

0.7500

See Also cov, std
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Purpose One-sample chi-square variance test

Syntax H = vartest(X,V)
H = vartest(X,V,alpha)
H = vartest(X,V,alpha,tail)
[H,P] = vartest(...)
[H,P,CI] = vartest(...)
[H,P,CI,STATS] = vartest(...)
[...] = vartest(X,V,alpha,tail,dim)

Description H = vartest(X,V) performs a chi-square test of the hypothesis that
the data in the vector X comes from a normal distribution with variance
V, against the alternative that X comes from a normal distribution with
a different variance. The result is H = 0 if the null hypothesis (variance
is V) cannot be rejected at the 5% significance level, or H = 1 if the null
hypothesis can be rejected at the 5% level.

X may also be a matrix or an n-dimensional array. For matrices,
vartest performs separate tests along each column of X, and returns a
row vector of results. For n-dimensional arrays, vartest works along
the first nonsingleton dimension of X. V must be a scalar.

H = vartest(X,V,alpha) performs the test at the significance level
(100*alpha)%. alpha has a default value of 0.05 and must be a scalar.

H = vartest(X,V,alpha,tail) performs the test against the
alternative hypothesis specified by tail, where tail is a single string
from the following choices:

• 'both' — Variance is not V (two-tailed test). This is the default.

• 'right' — Variance is greater than V (right-tailed test).

• 'left' — Variance is less than V (left-tailed test).

[H,P] = vartest(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis is true. Small values of P cast doubt on the validity of the
null hypothesis.
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[H,P,CI] = vartest(...) returns a 100*(1-alpha)% confidence
interval for the true variance.

[H,P,CI,STATS] = vartest(...) returns the structure STATS with
the following fields:

• 'chisqstat' — Value of the test statistic

• 'df' — Degrees of freedom of the test

[...] = vartest(X,V,alpha,tail,dim) works along dimension dim
of X. Pass in [] for alpha or tail to use their default values.

Example Determine whether the standard deviation is significantly different
from 7?

load carsmall

[h,p,ci] = vartest(MPG,7^2)

See Also ttest, ztest,vartest2
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Purpose Two-sample F-test for equal variances

Syntax H = vartest2(X,Y)
H = vartest2(X,Y,alpha)
H = vartest2(X,Y,alpha,tail)
[H,P] = vartest2(...)
[H,P,CI] = vartest2(...)
[H,P,CI,STATS] = vartest2(...)
[...] = vartest2(X,Y,alpha,tail,dim)

Description H = vartest2(X,Y) performs an F test of the hypothesis that two
independent samples, in the vectors X and Y, come from normal
distributions with the same variance, against the alternative that they
come from normal distributions with different variances. The result is H
= 0 if the null hypothesis (variances are equal) cannot be rejected at the
5% significance level, or H = 1 if the null hypothesis can be rejected at
the 5% level. X and Y can have different lengths. X and Y can also be
matrices or n-dimensional arrays.

For matrices, vartest2 performs separate tests along each column,
and returns a vector of results. X and Y must have the same number
of columns. For n-dimensional arrays, vartest2 works along the first
nonsingleton dimension. X and Y must have the same size along all
the remaining dimensions.

H = vartest2(X,Y,alpha) performs the test at the significance level
(100*alpha)%. alpha must be a scalar.

H = vartest2(X,Y,alpha,tail) performs the test against the
alternative hypothesis specified by tail, where tail is one of the
following single strings:

• 'both' — Variance is not Y (two-tailed test). This is the default.

• 'right' — Variance is greater than Y (right-tailed test).

• 'left' — Variance is less than Y (left-tailed test).
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[H,P] = vartest2(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis is true. Small values of P cast doubt on the validity of the
null hypothesis.

[H,P,CI] = vartest2(...) returns a 100*(1-alpha)% confidence
interval for the true variance ratio var(X)/var(Y).

[H,P,CI,STATS] = vartest2(...) returns a structure with the
following fields:

• 'fstat' — Value of the test statistic

• 'df1' — Numerator degrees of freedom of the test

• 'df2' — Denominator degrees of freedom of the test

[...] = vartest2(X,Y,alpha,tail,dim) works along dimension
dim of X. To pass in the default values for alpha or tail use [].

Example Is the variance significantly different for two model years, and what is a
confidence interval for the ratio of these variances?

load carsmall

[H,P,CI] =
vartest2(MPG(Model_Year==82),MPG(Model_Year==76))

See Also ansaribradley, vartest, vartestn, ttest2
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Purpose Bartlett multiple-sample test for equal variances

Syntax vartestn(X)
vartestn(X,group)
P = vartestn(...)
[P,STATS] = vartestn(...)
[...] = vartestn(...,displayopt)
[...] = vartestn(...,testtype)

Description vartestn(X) performs Bartlett’s test for equal variances for the
columns of the matrix X. This is a test of the null hypothesis that the
columns of X come from normal distributions with the same variance,
against the alternative that they come from normal distributions with
different variances. The result is a display of a box plot of the groups,
and a summary table of statistics.

vartestn(X,group) requires a vector X, and a group argument that is
a categorical variable, vector, string array, or cell array of strings with
one row for each element of X. The X values corresponding to the same
value of group are placed in the same group. (See “Grouped Data” on
page 2-41.) The function tests for equal variances across groups.

vartestn treats NaNs as missing values and ignores them.

P = vartestn(...) returns the p-value, i.e., the probability of
observing the given result, or one more extreme, by chance if the null
hypothesis of equal variances is true. Small values of P cast doubt on
the validity of the null hypothesis.

[P,STATS] = vartestn(...) returns a structure with the following
fields:

• 'chistat' — Value of the test statistic

• 'df' — Degrees of freedom of the test

[...] = vartestn(...,displayopt) determines if a box plot and
table are displayed. displayopt may be 'on' (the default) or 'off' .
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[...] = vartestn(...,testtype) sets the test type. When testtype
is 'robust', vartestn performs Levene’s test in place of Bartlett’s
test, which is a useful alternative when the sample distributions are
not normal, and especially when they are prone to outliers. For this
test the STATS output structure has a field named 'fstat' containing
the test statistic, and 'df1' and 'df2' containing its numerator and
denominator degrees of freedom. When testtype is 'classical'
vartestn performs Bartlett’s test.

Example Does the variance of mileage measurements differ significantly from
one model year to another?

load carsmall

vartestn(MPG,Model_Year)

See Also vartest, vartest2, anova1
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Purpose View tree

Syntax view(t)
view(t,param1,val1,param2,val2,...)

Description view(t) displays the decision tree t as computed by classregtree in a
figure window. Each branch in the tree is labeled with its decision rule,
and each terminal node is labeled with the predicted value for that
node. Click any node to get more information about it. The information
displayed is specified by the Click to display pop-up menu at the top
of the figure.

view(t,param1,val1,param2,val2,...) specifies optional parameter
name/value pairs:

• 'names' — A cell array of names for the predictor variables, in the
order in which they appear in the matrix X from which the tree was
created. (See classregtree.)

• 'prunelevel' — Initial pruning level to display.

For each branch node, the left child node corresponds to the points that
satisfy the condition, and the right child node corresponds to the points
that do not satisfy the condition.

Example Create a classification tree for Fisher’s iris data:

load fisheriris;

t = classregtree(meas,species,'names',{'SL' 'SW' 'PL' 'PW'})
t =
Decision tree for classification
1 if PL<2.45 then node 2 else node 3
2 class = setosa
3 if PW<1.75 then node 4 else node 5
4 if PL<4.95 then node 6 else node 7
5 class = virginica
6 if PW<1.65 then node 8 else node 9
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7 class = virginica
8 class = versicolor
9 class = virginica

view(t)

Reference [1] Breiman, L., et al., Classification and Regression Trees, Chapman
& Hall, Boca Raton, 1993.

14-833



view

See Also classregtree, eval, test, prune
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Purpose Weibull cumulative distribution function

Syntax P = wblcdf(X,A,B)
[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha)

Description P = wblcdf(X,A,B) computes the cdf of the Weibull distribution with
scale parameter A and shape parameter B, at each of the values in X. X,
A, and B can be vectors, matrices, or multidimensional arrays that all
have the same size. A scalar input is expanded to a constant array of
the same size as the other inputs. The default values for A and B are
both 1. The parameters A and B must be positive.

[P,PLO,PUP] = wblcdf(X,A,B,PCOV,alpha) returns confidence
bounds for P when the input parameters A and B are estimates. PCOV is
the 2-by-2 covariance matrix of the estimated parameters. alpha has a
default value of 0.05, and specifies 100(1 - alpha)% confidence bounds.
PLO and PUP are arrays of the same size as P containing the lower and
upper confidence bounds.

The function wblcdf computes confidence bounds for P using a normal
approximation to the distribution of the estimate

and then transforms those bounds to the scale of the output P. The
computed bounds give approximately the desired confidence level when
you estimate mu, sigma, and PCOV from large samples, but in smaller
samples other methods of computing the confidence bounds might be
more accurate.

The Weibull cdf is

Examples What is the probability that a value from a Weibull distribution with
parameters a = 0.15 and b = 0.8 is less than 0.5?
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probability = wblcdf(0.5, 0.15, 0.8)
probability =

0.9272

How sensitive is this result to small changes in the parameters?

[A, B] = meshgrid(0.1:0.05:0.2,0.2:0.05:0.3);
probability = wblcdf(0.5, A, B)
probability =

0.7484 0.7198 0.6991
0.7758 0.7411 0.7156
0.8022 0.7619 0.7319

See Also cdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd, wblstat
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Purpose Parameter estimates and confidence intervals for Weibull distributed
data

Syntax parmhat = wblfit(data)
[parmhat,parmci] = wblfit(data)
parmhat,parmci] = wblfit(data,alpha)
[...] = wblfit(data,alpha,censoring)
[...] = wblfit(data,alpha,censoring,freq)
[...] = wblfit(...,options)

Description parmhat = wblfit(data) returns the maximum likelihood estimates,
parmhat, of the parameters of the Weibull distribution given the values
in the vector data, which must be positive. parmhat is a two-element
row vector: parmhat(1) estimates the Weibull parameter a, and
parmhat(2) estimates the Weibull parameter b, in the pdf

[parmhat,parmci] = wblfit(data) returns 95% confidence intervals
for the estimates of a and b in the 2-by-2 matrix parmci. The first
row contains the lower bounds of the confidence intervals for the
parameters, and the second row contains the upper bounds of the
confidence intervals.

[parmhat,parmci] = wblfit(data,alpha) returns 100(1 - alpha)%
confidence intervals for the parameter estimates.

[...] = wblfit(data,alpha,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = wblfit(data,alpha,censoring,freq) accepts a frequency
vector, freq, of the same size as data. The vector freq typically
contains integer frequencies for the corresponding elements in data, but
can contain any non-negative values. Pass in [] for alpha, censoring,
or freq to use their default values.
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[...] = wblfit(...,options) accepts a structure, options, that
specifies control parameters for the iterative algorithm the function
uses to compute maximum likelihood estimates. The Weibull fit
function accepts an options structure that can be created using the
function statset. Enter statset ('wblfit') to see the names and
default values of the parameters that lognfit accepts in the options
structure. See the reference page for statset for more information
about these options.

Example data = wblrnd(0.5,0.8,100,1);
[parmhat, parmci] = wblfit(data)
parmhat =

0.5861 0.8567
parmci =

0.4606 0.7360
0.7459 0.9973

See Also wblcdf, wblinv, wbllike, wblpdf, wblrnd, wblstat, mle, statset

14-838



wblinv

Purpose Inverse of Weibull cumulative distribution function

Syntax X = wblinv(P,A,B)
[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha)

Description X = wblinv(P,A,B) returns the inverse cumulative distribution
function (cdf) for a Weibull distribution with scale parameter A and
shape parameter B, evaluated at the values in P. P, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size as
the other inputs. The default values for A and B are both 1.

[X,XLO,XUP] = wblinv(P,A,B,PCOV,alpha) returns confidence
bounds for X when the input parameters A and B are estimates.
PCOV is a 2-by-2 matrix containing the covariance matrix of the
estimated parameters. alpha has a default value of 0.05, and specifies
100(1 - alpha)% confidence bounds. XLO and XUP are arrays of the same
size as X containing the lower and upper confidence bounds.

The function wblinv computes confidence bounds for X using a normal
approximation to the distribution of the estimate

where q is the Pth quantile from a Weibull distribution with scale
and shape parameters both equal to 1. The computed bounds give
approximately the desired confidence level when you estimate mu,
sigma, and PCOV from large samples, but in smaller samples other
methods of computing the confidence bounds might be more accurate.

The inverse of the Weibull cdf is
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Examples The lifetimes (in hours) of a batch of light bulbs has a Weibull
distribution with parameters a = 200 and b = 6. What is the median
lifetime of the bulbs?

life = wblinv(0.5, 200, 6)
life =
188.1486

What is the 90th percentile?

life = wblinv(0.9, 200, 6)
life =

229.8261

See Also wblcdf, wblfit, wbllike, wblpdf, wblrnd, wblstat, icdf
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Purpose Negative log-likelihood for Weibull distribution

Syntax nlogL = wbllike(params,data)
[logL,AVAR] = wbllike(params,data)
[...] = wbllike(params,data,censoring)
[...] = wbllike(params,data,censoring,freq)

Description nlogL = wbllike(params,data) returns the Weibull log-likelihood
with parameters params(1) = a and params(2) = b given the data xi.

[logL,AVAR] = wbllike(params,data) also returns AVAR, which is the
asymptotic variance-covariance matrix of the parameter estimates if
the values in params are the maximum likelihood estimates. AVAR is the
inverse of Fisher’s information matrix. The diagonal elements of AVAR
are the asymptotic variances of their respective parameters.

[...] = wbllike(params,data,censoring) accepts a Boolean vector,
censoring, of the same size as data, which is 1 for observations that
are right-censored and 0 for observations that are observed exactly.

[...] = wbllike(params,data,censoring,freq) accepts a
frequency vector, freq, of the same size as data. freq typically contains
integer frequencies for the corresponding elements in data, but can
contain any nonnegative values. Pass in [] for censoring to use its
default value.

The Weibull negative log-likelihood for uncensored data is

where f is the Weibull pdf.

wbllike is a utility function for maximum likelihood estimation.

Example This example continues the example from wblfit.

r = wblrnd(0.5,0.8,100,1);
[logL, AVAR] = wbllike(wblfit(r),r)
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logL =
47.3349

AVAR =
0.0048 0.0014
0.0014 0.0040

Reference [1] Patel, J. K., C. H. Kapadia, and D. B. Owen, Handbook of Statistical
Distributions, Marcel-Dekker, 1976.

See Also betalike, gamlike, mle, normlike, wblcdf, wblfit, wblinv, wblpdf,
wblrnd, wblstat
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Purpose Weibull probability density function

Syntax Y = wblpdf(X,A,B)

Description Y = wblpdf(X,A,B) computes the Weibull pdf at each of the values in
X using the corresponding parameters in A and B. X, A, and B can be
vectors, matrices, or multidimensional arrays that all have the same
size. A scalar input is expanded to a constant array of the same size as
the other inputs. The parameters in A and B must be positive.

The Weibull pdf is

Some references refer to the Weibull distribution with a single
parameter. This corresponds to wblpdf with A = 1.

Examples The exponential distribution is a special case of the Weibull distribution.

lambda = 1:6;
y = wblpdf(0.1:0.1:0.6,lambda,1)
y =

0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

y1 = exppdf(0.1:0.1:0.6,lambda)
y1 =

0.9048 0.4524 0.3016 0.2262 0.1810 0.1508

Reference [1] Devroye, L., Non-Uniform Random Variate Generation,
Springer-Verlag, 1986.

See Also pdf, wblcdf, wblfit, wblinv, wbllike, wblplot, wblrnd, wblstat
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Purpose Weibull probability plot

Syntax wblplot(X)
h = wblplot(X)

Description wblplot(X) displays a Weibull probability plot of the data in X. If X is a
matrix, wblplot displays a plot for each column.

h = wblplot(X) returns handles to the plotted lines.

The purpose of a Weibull probability plot is to graphically assess
whether the data in X could come from a Weibull distribution. If the
data are Weibull the plot will be linear. Other distribution types might
introduce curvature in the plot. wblplot uses midpoint probability
plotting positions. Use probplot when the data included censored
observations.

Example r = wblrnd(1.2,1.5,50,1);
wblplot(r)
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See Also probplot, normplot, wblcdf, wblfit, wblinv, wbllike, wblpdf,
wblrnd, wblstat
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Purpose Random numbers from Weibull distribution

Syntax R = wblrnd(A,B)
R = wblrnd(A,B,v)
R = wblrnd(A,B,m,n)

Description R = wblrnd(A,B) generates random numbers for the Weibull
distribution with parameters A and B. The input arguments A and B
can be either scalars or matrices. A and B, can be vectors, matrices, or
multidimensional arrays that all have the same size. A scalar input is
expanded to a constant array of the same size as the other input.

R = wblrnd(A,B,v) generates random numbers for the Weibull
distribution with parameters A and B, where v is a row vector. If v is a
1-by-2 vector, R is a matrix with v(1) rows and v(2) columns. If v is
1-by-n, R is an n-dimensional array.

R = wblrnd(A,B,m,n) generates random numbers for the Weibull
distribution with parameters A and B, where scalars m and n are the
row and column dimensions of R.

Devroye [1] refers to the Weibull distribution with a single parameter;
this is wblrnd with A = 1.

Example n1 = wblrnd(0.5:0.5:2,0.5:0.5:2)
n1 =

0.0178 0.0860 2.5216 0.9124

n2 = wblrnd(1/2,1/2,[1 6])
n2 =

0.0046 1.7214 2.2108 0.0367 0.0531 0.0917

Reference [1] Devroye, L., Non-Uniform Random Variate Generation,
Springer-Verlag, 1986.

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblstat
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Purpose Mean and variance of Weibull distribution

Syntax [M,V] = wblstat(A,B)

Description [M,V] = wblstat(A,B) returns the mean of and variance for the
Weibull distribution with parameters specified by A and B. Vector or
matrix inputs for A and B must have the same size, which is also the size
of M and V. A scalar input for A or B is expanded to a constant matrix
with the same dimensions as the other input.

The mean of the Weibull distribution with parameters a and b is

and the variance is

Examples [m,v] = wblstat(1:4,1:4)
m =

1.0000 1.7725 2.6789 3.6256
v =

1.0000 0.8584 0.9480 1.0346

wblstat(0.5,0.7)
ans =

0.6329

See Also wblcdf, wblfit, wblinv, wbllike, wblpdf, wblplot, wblrnd
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Purpose Random numbers from Wishart distribution

Syntax W = wishrnd(sigma,df)
W = wishrnd(sigma,df,D)
[W,D] = wishrnd(sigma,df)

Description W = wishrnd(sigma,df) generates a random matrix W having the
Wishart distribution with covariance matrix sigma and with df degrees
of freedom.

W = wishrnd(sigma,df,D) expects D to be the Cholesky factor of sigma.
If you call wishrnd multiple times using the same value of sigma, it’s
more efficient to supply D instead of computing it each time.

[W,D] = wishrnd(sigma,df) returns D so you can provide it as input
in future calls to wishrnd.

See Also iwishrnd
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Purpose Convert predictor matrix to design matrix

Syntax D = x2fx(X,model)
D = x2fx(X,model,categ)
D = x2fx(X,model,categ,catlevels)

Description D = x2fx(X,model) converts a matrix of predictors X to a design matrix
D for regression analysis. Distinct predictor variables should appear
in different columns of X.

The optional input model controls the regression model. By default,
x2fx returns the design matrix for a linear additive model with a
constant term. model can be any one of the following strings:

• 'linear' — Constant and linear terms (the default)

• 'interaction' — Constant, linear, and interaction terms

• 'quadratic' — Constant, linear, interaction, and squared terms

• 'purequadratic' — Constant, linear, and squared terms

If X has n columns, the order of the columns of D for a full quadratic
model is:

1 The constant term

2 The linear terms (the columns of X, in order 1, 2, ..., n)

3 The interaction terms (pairwise products of the columns of X, in order
(1, 2), (1, 3), ..., (1, n), (2, 3), ..., (n–1, n))

4 The squared terms (in order 1, 2, ..., n)

Other models use a subset of these terms, in the same order.

Alternatively, model can be a matrix specifying polynomial terms of
arbitrary order. In this case, model should have one column for each
column in X and one row for each term in the model. The entries in
any row of model are powers for the corresponding columns of X. For
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example, if X has columns X1, X2, and X3, then a row [0 1 2] in model
would specify the term (X1.^0).*(X2.^1).*(X3.^2). A row of all zeros
in model specifies a constant term, which can be omitted.

D = x2fx(X,model,categ) treats columns with numbers listed in
the vector categ as categorical variables. Terms involving categorical
variables produce dummy variable columns in D. Dummy variables
are computed under the assumption that possible categorical levels
are completely enumerated by the unique values that appear in the
corresponding column of X.

D = x2fx(X,model,categ,catlevels) accepts a vector catlevels
the same length as categ, specifying the number of levels in each
categorical variable. In this case, values in the corresponding column of
X must be integers in the range from 1 to the specified number of levels.
Not all of the levels need to appear in X.

Examples Example 1

The following converts 2 predictors X1 and X2 (the columns of X) into a
design matrix for a full quadratic model with terms constant, X1, X2,
X1.*X2, X1.^2, and X2.^2.

X = [1 10
2 20
3 10
4 20
5 15
6 15];

D = x2fx(X,'quadratic')
D =

1 1 10 10 1 100
1 2 20 40 4 400
1 3 10 30 9 100
1 4 20 80 16 400
1 5 15 75 25 225
1 6 15 90 36 225
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Example 2

The following converts 2 predictors X1 and X2 (the columns of X) into
a design matrix for a quadratic model with terms constant, X1, X2,
X1.*X2, and X1.^2.

X = [1 10
2 20
3 10
4 20
5 15
6 15];

model = [0 0
1 0
0 1
1 1
2 0];

D = x2fx(X,model)
D =

1 1 10 10 1
1 2 20 40 4
1 3 10 30 9
1 4 20 80 16
1 5 15 75 25
1 6 15 90 36

See Also x2fx is a utility used by a variety of other functions, such as rstool,
regstats, candexch, candgen, cordexch, and rowexch.
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Purpose Standardized z-scores

Syntax Z = zscore(X)
[Z,mu,sigma] = zscore(X)

Description Z = zscore(X) returns a centered, scaled version of X, the same
size as X. For vector input x, output is the vector of z-scores z =
(x mean(x))./std(x). For matrix input X, z-scores are computed
using the mean and standard deviation along each column of X. For
higher-dimensional arrays, z-scores are computed using the mean and
standard deviation along the first non-singleton dimension.

The columns of Z have mean zero and standard deviation one (unless a
column of X is constant, in which case that column of Z is constant at 0).
z-scores are used to put data on the same scale before further analysis.

[Z,mu,sigma] = zscore(X) also returns mean(X) in mu and std(X) in
sigma.

Example Compare the predictors in the Moore data on original and standardized
scales:

load moore
predictors = moore(:,1:5);
subplot(2,1,1),plot(predictors)
subplot(2,1,2),plot(zscore(predictors))
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See Also mean, std
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Purpose One-sample z-test

Syntax h = ztest(x,m,sigma)
h = ztest(...,alpha)
h = ztest(...,alpha,tail)
h = ztest(...,alpha,tail,dim)
[h,p] = ztest(...)
[h,p,ci] = ztest(...)
[h,p,ci,zval] = ztest(...)

Description h = ztest(x,m,sigma) performs a z-test of the null hypothesis that
data in the vector x are a random sample from a normal distribution
with mean m and standard deviation sigma, against the alternative
that the mean is not m. The result of the test is returned in h. h =
1 indicates a rejection of the null hypothesis at the 5% significance
level. h = 0 indicates a failure to reject the null hypothesis at the 5%
significance level.

x can also be a matrix or an N-dimensional array. For matrices, ztest
performs separate z-tests along each column of x and returns a vector
of results. For N-dimensional arrays, ztest works along the first
non-singleton dimension of x.

The test treats NaN values as missing data, and ignores them.

h = ztest(...,alpha) performs the test at the (100*alpha)%
significance level. The default, when unspecified, is alpha = 0.05.

h = ztest(...,alpha,tail) performs the test against the alternative
specified by the string tail. There are three options for tail:

• 'both' — Mean is not m (two-tailed test). This is the default, when
tail is unspecified.

• 'right' — Mean is greater than m (right-tail test)

• 'left' — Mean is less than m (left-tail test)

tail must be a single string, even when x is a matrix or an
N-dimensional array.
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h = ztest(...,alpha,tail,dim) works along dimension dim of x. Use
[] to pass in default values for alpha or tail.

[h,p] = ztest(...) returns the p-value of the test. The p-value is the
probability, under the null hypothesis, of observing a value as extreme
or more extreme of the test statistic

z
x

n
= − μ
σ /

where is the sample mean, μ = m is the hypothesized population
mean, σ is the population standard deviation, and n is the sample
size. Under the null hypothesis, the test statistic will have a standard
normal distribution, N(0,1).

[h,p,ci] = ztest(...) returns a 100*(1 – alpha)% confidence
interval on the population mean.

[h,p,ci,zval] = ztest(...) returns the value of the test statistic.

Example Simulate a random sample of size 100 from a normal distribution with
mean 0.1 and standard deviation 1:

x = normrnd(0.1,1,1,100);

Test the null hypothesis that the sample comes from a standard normal
distribution:

[h,p,ci] = ztest(x,0,1)
h =

0
p =

0.1391
ci =

-0.0481 0.3439

The test fails to reject the null hypothesis at the default α = 0.05
significance level. Under the null hypothesis, the probability of
observing a value as extreme or more extreme of the test statistic, as
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indicated by the p-value, is greater than α. The 95% confidence interval
on the mean contains 0.

Simulate a larger random sample of size 1000 from the same
distribution:

y = normrnd(0.1,1,1,1000);

Test again if the sample comes from a normal distribution with mean 0:

[h,p,ci] = ztest(y,0,1)
h =

1
p =

5.5160e-005
ci =

0.0655 0.1895

This time the test rejects the null hypothesis at the default α = 0.05
significance level. The p-value has fallen below α = 0.05 and the 95%
confidence interval on the mean does not contain 0.

Because the p-value of the sample y is less than 0.01, the test will still
reject the null hypothesis when the significance level is lowered to α
= 0.01:

[h,p,ci] = ztest(y,0,1,0.01)
h =

1
p =

5.5160e-005
ci =

0.0461 0.2090

This example will produce slightly different results each time it is run,
because of the random sampling.

See Also ttest, ttest2
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