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1 Getting Started

What Is Statistics Toolbox?

1-2

Statistics Toolbox extends MATLAB® to support a wide range of common
statistical tasks. The toolbox contains two categories of tools:

¢ Building-block statistical functions for use in MATLAB programming

¢ Graphical user interfaces (GUIs) for interactive use of the functions

Code for the building-block functions is open and extensible. You can use the
MATLAB Editor to review, copy, and edit the M-file code for any function. You
can extend the toolbox by copying code to new M-files or by writing M-files
that call toolbox functions.

Toolbox GUIs allow you to perform statistical visualization and analysis
without writing code. You interact with the GUIs through controls such
as sliders, push buttons, and input fields, and the GUIs interact with the
building-block functions in the background.



Primary Topic Areas

Primary Topic Areas

® “Descriptive Statistics” on page 1-3

e “Statistical Visualization” on page 1-3

® “Probability Distributions” on page 1-3
* “Hypothesis Tests” on page 1-4

¢ “Linear Models” on page 1-4

® “Nonlinear Models” on page 1-4

e “Multivariate Statistics” on page 1-4

e “Statistical Process Control” on page 1-4
® “Design of Experiments” on page 1-5

¢ “Hidden Markov Models” on page 1-5

Descriptive Statistics

Statistics Toolbox includes functions for computing common measures of
location, scale, and shape of a numerical data sample. The functions allow for
convenient handling of multidimensional data and missing data values.

Statistical Visualization

Statistics Toolbox adds many specialized statistical plots to the plot types
already found in MATLAB. Relevant functions accept grouping variables for
the simultaneous visualization of different data groups. Interactive features
allow you to explore data sets and experiment with different data models.

Probability Distributions

Statistics Toolbox supports computations involving over 30 different common
probability distributions, plus custom distributions which you can define. For
each distribution, a selection of relevant functions is available, including
density functions, cumulative distribution functions, parameter estimation
functions, and random number generators. The toolbox also supports
nonparametric methods for density estimation.
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Hypothesis Tests

Statistics Toolbox provides functions that implement many common
hypothesis tests, including distribution tests, analysis of variance tests, and
tests of randomness.

Linear Models

In the area of linear regression, Statistics Toolbox has functions to compute
parameter estimates, predicted values, and confidence intervals for simple
and multiple regression, stepwise regression, ridge regression, and regression
using response surface models. In the area of analysis of variance (ANOVA),
Statistics Toolbox has functions to perform one-way, two-way, and higher-way
ANOVA, analysis of covariance (ANOCOVA), multivariate analysis of
variance (MANOVA), and multiple comparisons of the estimates produced by
ANOVA and ANOCOVA functions.

Nonlinear Models

For nonlinear regression models, Statistics Toolbox provides additional
parameter estimation functions and tools for interactive prediction and
visualization of multidimensional nonlinear fits. The toolbox also includes
functions that create classification and regression trees to approximate
regression relationships.

Multivariate Statistics

Statistics Toolbox supports methods for the visualization and analysis of
multidimensional data, including principal components analysis, factor
analysis, one-way multivariate analysis of variance, cluster analysis, and
classical multidimensional scaling.

Statistical Process Control

In the area of process control and quality management, Statistics Toolbox
provides functions for creating a variety of control charts, performing process
capability studies, and evaluating Design for Six Sigma (DFSS) methodologies.
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Design of Experiments

Statistics Toolbox provides tools for generating and augmenting full and
fractional factorial designs, response surface designs, and D-optimal designs.
The toolbox also provides functions for the optimal assignment of units with
fixed covariates.

Hidden Markov Models

Statistics Toolbox provides functions for the analysis of hidden Markov
models, including the generation of random data, maximum likelihood
estimation of model parameters, calculation of most probable state sequences,
and calculation of posterior state probabilities.
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Data Sets

The following data sets are provided with Statistics Toolbox.

acetylene.mat

carbig.mat
carsmall.mat
census.mat
cereal.mat
cities.mat

discrim.mat

examgrades.mat
fisheriris.mat

gas.mat

hald.mat
hogg.mat
kmeansdata.mat

lawdata.mat

mileage.mat
moore.mat
morse.mat
parts.mat
polydata.mat
popcorn.mat

reaction.mat

Chemical reaction data with correlated predictors

Measurements of large model cars, 1970-1982
Measurements of small model cars, 1970-1982
U.S. census data from 1790 to 1980
Breakfast cereal ingredients

Quality of life ratings for U.S. metropolitan areas

A version of cities.mat used for discriminant
analysis

Exam grades on a scale of 0-100
Fisher’s iris data (1936)

Gasoline prices around the state of Massachusetts
in 1993

Heat of cement vs. mix of ingredients
Bacteria counts in different shipments of milk
Four-dimensional clustered data

Grade point average and LSAT test scores from 15
law schools

Mileage data for three car models from two factories
Biochemical oxygen demand on five predictors
Recognition of Morse code distinctions by non-coders
Dimensional run out on 36 circular parts

Data for polytool demo

Popcorn yield by popper type and brand

Reaction kinetics data for Hougen-Watson model



Data Sets

sat.dat

sat2.dat

stockreturns.mat

Scholastic Aptitude Test averages by gender and
test (table)

Scholastic Aptitude Test averages by gender and
test (csv)

Simulated stock return data for factor analysis
example
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Organizing Data

Introduction (p. 2-2)
MATLAB Arrays (p. 2-4)
Statistical Arrays (p. 2-11)
Grouped Data (p. 2-41)

Variables as data containers
Using MATLAB data types
Using statistical data types

Using grouping variables




2 Organizing Data

Introduction

In MATLAB, data is placed into “data containers” in the form of workspace
variables. All workspace variables organize data into some form of array. For
statistical purposes, arrays are viewed as tables of values.

MATLAB variables use different structures to organize data:

¢ 2-D numerical arrays (matrices) organize observations and measured
variables by rows and columns, respectively. (See “Data Structures” in the
MATLAB documentation.)

e Multidimensional arrays organize multidimensional observations or
experimental designs. (See “Multidimensional Arrays” in the MATLAB
documentation.)

¢ (Cell and structure arrays organize heterogeneous data of different types,
sizes, units, etc. (See “Cell Arrays” and “Structures” in the MATLAB
documentation.)

Data types determine the kind of data variables contain. (See “Data Types” in
the MATLAB documentation.)

These basic MATLAB container variables are reviewed, in a statistical
context, in the section on “MATLAB Arrays” on page 2-4.

These variables are not specifically designed for statistical data, however.
Statistical data generally involves observations of multiple variables, with
measurements of heterogeneous type and size. Data may be numerical,
categorical, or in the form of descriptive metadata. Fitting statistical data
into basic MATLAB variables, and accessing it efficiently, can be cumbersome.

Statistics Toolbox offers two additional types of container variables specifically
designed for statistical data:

e “Categorical Arrays” on page 2-13 accommodate data in the form of discrete
levels, together with its descriptive metadata.

e “Dataset Arrays” on page 2-28 encapsulate heterogeneous data and
metadata, including categorical data, which is accessed and manipulated
using familiar methods analogous to those for numerical matrices.
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These statistical container variables are discussed in the section on
“Statistical Arrays” on page 2-11.
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MATLAB Arrays

This section describes the array-based organization of data in MATLAB and
the statistical functions that operate on data arrays.

Numerical Data (p. 2-4) Using matrices and
multidimensional arrays

Heterogeneous Data (p. 2-7) Using cell and structure arrays

Statistical Functions (p. 2-9) Computing statistics with

array-based data

Numerical Data

In MATLAB, two-dimensional numerical arrays (matrices) containing
statistical data use rows to represent observations and columns to represent
measured variables. For example,

load fisheriris % Fisher's iris data (1936)

loads the variables meas and species into the MATLAB workspace. The meas
variable is a 150-by-4 numerical matrix, representing 150 observations of 4
different measured variables (by column: sepal length, sepal width, petal
length, and petal width, respectively).

2-4



MATLAB Arrays

The observations in meas are of three different species of iris (setosa,
versicolor, and virginica), which can be separated from one another using the
150-by-1 cell array of strings species:

setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

The resulting setosa variable is 50-by-4, representing 50 observations of the
4 measured variables for iris setosa.

To access and display the first five observations in the setosa data, use row,
column parenthesis indexing:

SetosaObs = setosa(1:5,:)

SetosalObs =
5.1000 3.5000 1.4000 0.2000
4.9000 3.0000 1.4000 0.2000
4.7000 3.2000 1.3000 0.2000
4.6000 3.1000 1.5000 0.2000
5.0000 3.6000 1.4000 0.2000

The data are organized into a table with implicit column headers “Sepal
Length,” “Sepal Width,” “Petal Length,” and “Petal Width.” Implicit row
headers are “Observation 1,” “Observation 2,” “Observation 3,” etc.

Similarly, 50 observations for iris versicolor and iris virginica can be extracted
from the meas container variable:

versicolor_indices = strcmp('versicolor',species);
versicolor = meas(versicolor_indices,:);

virginica_indices = strcmp('virginica',species);
virginica = meas(virginica_indices,:);

Because the data sets for the three species happen to be of the same size, they
can be reorganized into a single 50-by-4-by-3 multidimensional array:

iris = cat(3,setosa,versicolor,virginica);

The iris array is a three-layer table with the same implicit row and column
headers as the setosa, versicolor, and virginica arrays. The implicit layer
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2 Organizing Data

names, along the third dimension, are “Setosa,” “Versicolor,” and “Virginica.”
The utility of such a multidimensional organization depends on assigning
meaningful properties of the data to each dimension.

To access and display data in a multidimensional array, use parenthesis
indexing, as for 2-D arrays. The following gives the first five observations
of sepal lengths in the setosa data:

SetosaSL = iris(1:5,1,1)
SetosaSL =

5.1000
4.9000
4.7000
4.6000
5.0000

Multidimensional arrays provide a natural way to organize numerical data
for which the observations, or experimental designs, have many dimensions.
If, for example, data with the structure of iris are collected by multiple
observers, in multiple locations, over multiple dates, the entirety of the data
can be organized into a single higher dimensional array with dimensions
for “Observer,” “Location,” and “Date.” Likewise, an experimental design
calling for m observations of n p-dimensional variables could be stored in
an m-by-n-by-p array.

Numerical arrays have limitations when organizing more general statistical
data. One limitation is the implicit nature of the metadata. Another is the
requirement that multidimensional data be of commensurate size across all
dimensions. If variables have different lengths, or the number of variables
differs by layer, then multidimensional arrays must be artificially padded
with NaNs to indicate “missing values.” These limitations are addressed by
dataset arrays (see “Dataset Arrays” on page 2-28), which are specifically
designed for statistical data.
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Heterogeneous Data

Two data types in MATLAB—cell arrays and structure arrays—provide
container variables that allow you to combine metadata with variables of
different types and sizes.

The data in the variables setosa, versicolor, and virginica created in
“Numerical Data” on page 2-4 can be organized in a cell array, as follows:

iris1t = cell(51,5,3); % Container variable

obsnames = strcat({'Obs'},num2str((1:50)','%d"'));
iristi(2:end,1,:) = repmat(obsnames,[1 1 3]);

varnames = {'SepallLength', 'SepalWidth',...
'PetallLength', 'PetalWidth'};
irisi(1,2:end,:) = repmat(varnames,[1 1 3]);

irisi(2:end,2:end,1) = num2cell(setosa);
irisi(2:end,2:end,2) num2cell(versicolor);
irist1(2:end,2:end,3) = num2cell(virginica);

iris1{1,1,1} = 'Setosa’';
iris1{1,1,2} = 'Versicolor';
iris1{1,1,3} = 'Virginica';

To access and display the cells, use parenthesis indexing. The following
displays the first five observations in the setosa sepal data:

SetosaSLSW = iris1(1:6,1:3,1)

SetosaSLSW =
'Setosa’ 'SepallLength'’ 'Sepalwidth’
'Obs1! [ 5.1000] [ 3.5000]
'Obs2' [ 4.9000] [ 3]
'Obs3' [ 4.7000] [ 3.2000]
'Obs4 ' [ 4.6000] [ 3.1000]
'Obs5' [ 5] [ 3.6000]

Here, the row and column headers have been explicitly labeled with metadata.

To extract the data subset, use row, column curly brace indexing:
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subset = reshape([iris1{2:6,2:3,1}],5,2)

subset =
5.1000 3.5000
4.9000 3.0000
4.7000 3.2000
4.6000 3.1000
5.0000 3.6000

While cell arrays are useful for organizing heterogeneous data, they may

be cumbersome when it comes to manipulating and analyzing the data.
Statistical functions in MATLAB and Statistics Toolbox do not accept data

in the form of cell arrays. For processing, data must be extracted from the
cell array to a numerical container variable, as in the preceding example.
The indexing can become complicated for large, heterogeneous data sets.
This shortcoming of cell arrays is addressed directly by dataset arrays (see
“Dataset Arrays” on page 2-28), which are designed to store general statistical
data and provide easy access

The data in the preceding example can also be organized in a structure array,
as follows:

iris2.data = cat(3,setosa,versicolor,virginica);
iris2.varnames = {'SepallLength’','SepalWidth',...
'PetallLength', 'PetalWidth'};
iris2.obsnames = strcat({'Obs'},num2str((1:50)','%d"));
iris2.species = {'setosa', 'versicolor','virginica'};

The data subset is then returned using a combination of dot and parenthesis
indexing:

subset = iris2.data(1:5,1:2,1)
subset =

5.1000 3.5000

4.9000 3.0000

4.7000 3.2000

4.6000 3.1000

5.0000 3.6000

For statistical data, structure arrays have many of the same shortcomings of
cell arrays. Once again, dataset arrays (see “Dataset Arrays” on page 2-28),
designed specifically for general statistical data, address these shortcomings.
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Statistical Functions

One of the advantages of working in MATLAB is that functions operate on
entire arrays of data, not just on single scalar values. The functions are said
to be vectorized. Vectorization allows for both efficient problem formulation,
using array-based data, and efficient computation, using vectorized statistical
functions.

When statistical functions in MATLAB and Statistics Toolbox operate on a
vector of numerical data (either a row vector or a column vector), they return
a single computed statistic:

% Fisher's setosa data:

load fisheriris

setosa_indices = strcmp('setosa',species);
setosa = meas(setosa_indices,:);

% Single variable from the data:
setosa_sepal_length = setosa(:,1);

% Standard deviation of the variable:
std(setosa_sepal_length)
ans =

0.3525

When statistical functions operate on a matrix of numerical data, they treat
the columns independently, as separate measured variables, and return a
vector of statistics—one for each variable:

std(setosa)
ans =
0.3525 0.3791 0.1737 0.1054

The four standard deviations are for measurements of sepal length, sepal
width, petal length, and petal width, respectively.

Compare this to

std(setosa(:))
ans =
1.8483
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which gives the standard deviation across the entire array (all measurements).

Compare the preceding statistical calculations to the more generic
mathematical operation

sin(setosa)

This operation returns a 50-by-4 array the same size as setosa. The sin
function is vectorized in a different way than the std function, computing one
scalar value for each element in the array.

Statistical functions in MATLAB and Statistics Toolbox, like std, must

be distinguished from general mathematical functions like sin. Both are
vectorized, and both are useful for working with array-based data, but

only statistical functions summarize data across observations (rows) while
preserving variables (columns). This property of statistical functions may be
explicit, as with std, or implicit, as with regress. To see how a particular
function handles array-based data, consult its reference page.

Statistical functions in MATLAB expect data input arguments to be in the
form of numerical arrays. If data is stored in a cell or structure array, it must
be extracted to a numerical array, via indexing, for processing. Functions

in Statistics Toolbox are more flexible. Many Statistics Toolbox functions
accept data input arguments in the form of both numerical arrays and dataset
arrays (see “Dataset Arrays” on page 2-28), which are specifically designed
for storing general statistical data.
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Statistical Arrays

Introduction (p. 2-11) Introduction to statistical arrays

Categorical Arrays (p. 2-13) Working with categorical data

Dataset Arrays (p. 2-28) Working with heterogeneous data
Introduction

As discussed in “MATLAB Arrays” on page 2-4, MATLAB offers array types
for numerical, logical, and character data, as well as cell and structure arrays
for heterogeneous collections of data.

Statistics Toolbox offers two additional types of arrays specifically designed
for statistical data:

o “Categorical Arrays” on page 2-13
® “Dataset Arrays” on page 2-28

Categorical arrays store data with values in a discrete set of levels. Each level
is meant to capture a single, defining characteristic of an observation. If no
ordering is encoded in the levels, the data and the array are nominal. If an
ordering is encoded, the data and the array are ordinal.

Categorical arrays also store labels for the levels. Nominal labels typically
suggest the type of an observation, while ordinal labels suggest the position
or rank.

Dataset arrays collect heterogeneous statistical data and metadata, including
categorical data, into a single container variable. Like the numerical matrices
discussed in “Numerical Data” on page 2-4, dataset arrays can be viewed as
tables of values, with rows representing different observations and columns
representing different measured variables. Like the cell and structure
arrays discussed in “Heterogeneous Data” on page 2-7, dataset arrays can
accommodate variables of different types, sizes, units, etc.

Dataset arrays combine the organizational advantages of these basic

MATLAB data types while addressing their shortcomings with respect to
storing complex statistical data.
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Both categorical and dataset arrays have associated families of functions for
assembling, accessing, manipulating, and processing the collected data. Basic
array operations parallel those for numerical, cell, and structure arrays.
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Categorical Arrays

Categorical Data (p. 2-13) What is categorical data?
Categorical Arrays (p. 2-14) Arrays for categorical data
Categorical Array Operations Accessing and manipulating
(p. 2-16) categorical arrays

Using Categorical Arrays (p. 2-21) An example

Categorical Data

Categorical data take on values from only a finite, discrete set of categories
or levels. Levels may be determined before the data are collected, based on
the application, or they may be determined by the distinct values in the data
when converting them to categorical form. Predetermined levels, such as a
set of states or numerical intervals, are independent of the data they contain.
Any number of values in the data may attain a given level, or no data at all.
Categorical data show which measured values share common levels, and
which do not.

Levels may have associated labels. Labels typically express a defining
characteristic of an observation, captured by its level.

If no ordering is encoded in the levels, the data are nominal. Nominal
labels typically indicate the type of an observation. Examples of nominal
labels are {false, true}, {male, female}, and {Afghanistan, ... , Zimbabwe}.
For nominal data, the numeric or lexicographic order of the labels is
irrelevant—Afghanistan is not considered to be less than, equal to, or greater
than Zimbabwe.

If an ordering is encoded in the levels—for example, if levels labeled “red”,
“green”, and “blue” represent wavelengths—the data are ordinal. Labels

for ordinal levels typically indicate the position or rank of an observation.
Examples of ordinal labels are {0, 1}, {mm, cm, m, km}, and {poor, satisfactory,
outstanding}. The ordering of the levels may or may not correspond to the
numeric or lexicographic order of the labels.
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Categorical Arrays

Categorical data can be represented in MATLAB using integer arrays, but
this method has a number of drawbacks. First, it removes all of the useful
metadata that might be captured in labels for the levels. Labels must be
stored separately, in character arrays or cell arrays of strings. Secondly, this
method suggests that values stored in the integer array have their usual
numeric meaning, which, for categorical data, they may not. Finally, integer
types have a fixed set of levels (for example, -128:127 for all int8 arrays),
which cannot be changed.

Categorical arrays, available in Statistics Toolbox, are specifically designed
for storing, manipulating, and processing categorical data and metadata.
Unlike integer arrays, each categorical array has its own set of levels, which
can be changed. Categorical arrays also accommodate labels for levels in

a natural way. Like numerical arrays, categorical arrays take on different
shapes and sizes, from scalars to N-D arrays.

Organizing data in a categorical array can be an end in itself. Often, however,
categorical arrays are used for further statistical processing. They can be used
to index into other variables, creating subsets of data based on the category
of observation, or they can be used with statistical functions that accept
categorical inputs. For examples, see “Grouped Data” on page 2-41.

Categorical arrays come in two types, depending on whether the collected
data is understood to be nominal or ordinal. Nominal arrays are constructed
with the nominal function; ordinal arrays are constructed with the ordinal
function. For example,

load fisheriris
ndata = nominal(species,{'A','B','C'});

creates a nominal array with levels A, B, and C from the species data in
fisheriris.mat, while

odata = ordinal(ndata,{},{'C','A','B'});

encodes an ordering of the levels with C < A < B. See “Using Categorical
Arrays” on page 2-21, and the reference pages for nominal and ordinal, for
further examples.
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Functions associated with categorical arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary (categorical), double, horzcat, and getlabels, respectively.
Many of these functions are invoked using operations analogous to those for
numerical arrays, and do not need to be called directly. (For example, horzcat
is invoked by [].) Other functions are used to manipulate levels and labels
and must be called directly (for example, addlevels and setlabels). There
are functions that apply to both nominal and ordinal arrays (for example,
getlabels), functions that apply only to one type (for example, sortrows
(ordinal)), and functions that are applied differently to the two types (for
example, horzcat). For a complete list of functions with descriptions of their
use, see “Categorical Array Operations” on page 2-16.

Categorical arrays are implemented as objects in MATLAB, and the associated
functions are their methods. It is not necessary to understand MATLAB
objects and methods to make use of categorical arrays—in fact, categorical
arrays are designed to behave as much as possible like other, familiar
MATLAB arrays.

However, understanding the class structure of categorical arrays can be
helpful when selecting an appropriate method. The data type categorical
is an abstract class that defines properties and methods common to both the
nominal and ordinal classes. Never call the constructor for the categorical
class directly. Instead, use either the nominal or ordinal constructor. The
nominal and ordinal classes are subclasses derived directly from the parent
class categorical.

categorical
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Categorical Array Operations

The tables in this section list available methods for categorical (ordinal and
nominal) arrays. Many of the methods are invoked by familiar MATLAB
operators and do not need to be called directly. For full descriptions of
individual methods, type one of the following, depending on the class:

help ordinal/methodname
help nominal/methodname

Methods with supporting reference pages, including examples, are linked from
the tables. “Using Categorical Arrays” on page 2-21 contains an extended
example that makes use of many categorical methods.

The following table lists methods available for all categorical arrays (nominal

and ordinal).

Categorical Description

Method

addlevels Add levels to categorical array.

cellstr Convert categorical array to cell array of strings.

char Convert categorical array to character array.

circshift Shift categorical array circularly.

ctranspose Transpose categorical matrix. This method is invoked by
the ' operator.

disp Display categorical array, without printing array name.

display Display categorical array, printing array name. This
method is invoked when the name of a categorical array is
entered at the command prompt.

double Convert categorical array to double array.

droplevels Remove levels from categorical array.

end Last index in indexing expression for categorical array.

flipdim Flip categorical array along specified dimension.

fliplr Flip categorical matrix in left/right direction.

flipud Flip categorical matrix in up/down direction.
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Categorical Description

Method

getlabels Get level labels of categorical array.

int8 Convert categorical array to int8 array.
int16 Convert categorical array to int16 array.
int32 Convert categorical array to int32 array.
int64 Convert categorical array to int64 array.
ipermute Inverse permute dimensions of categorical array.
isempty True for empty categorical array.

isequal True if categorical arrays are equal.

islevel Test for categorical array levels.

isscalar True if categorical array is scalar.
isundefined True for elements of categorical array that are undefined.
isvector True if categorical array is vector.

length Length of categorical array.

levelcounts Element counts by level for categorical array.
ndims Number of dimensions of categorical array.
numel Number of elements in categorical array.
permute Permute dimensions of categorical array.
reorderlevels | Reorder levels in categorical array.

repmat Replicate and tile a categorical array.
reshape Change size of categorical array.

rot90 Rotate categorical matrix 90 degrees.
setlabels Relabel levels for categorical array.
shiftdim Shift dimensions of categorical array.

single Convert categorical array to single array.
size Size of categorical array.
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Categorical Description

Method

squeeze Squeeze singleton dimensions from categorical array.

subsasgn Subscripted assignment for categorical array. This
method is invoked by parenthesis indexing, as described
in “Accessing Categorical Arrays” on page 2-23.

subsref Subscripted reference for categorical array. This method
is invoked by parenthesis indexing, as described in
“Accessing Categorical Arrays” on page 2-23.

summary Summary of categorical array.

(categorical)

times Product of categorical arrays. This method is invoked by
the .* operator.

transpose Transpose categorical matrix. This method is invoked by
the .' operator.

uint8 Convert categorical array to uint8 array.

uint16 Convert categorical array to uint16 array.

uint32 Convert categorical array to uint32 array.

uint64 Convert categorical array to uint64 array.

unique Unique values in categorical array.

The following table lists additional methods for nominal arrays.

Nominal Description

Method

cat Concatenate nominal arrays. The horzcat and vertcat
methods implement special cases.

eq Equality for nominal array.

horzcat Horizontal concatenation for nominal arrays. This method

is invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.
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Nominal Description

Method

intersect Set intersection for nominal arrays.

ismember True for set member.

mergelevels | Merge levels of nominal array.

ne Not equal for nominal arrays. This method is invoked by
the ~= operator.

nominal Create nominal array.

setdiff Set difference for nominal arrays.

setxor Set exclusive or for nominal arrays.

union Set union for nominal arrays.

vertcat Vertical concatenation for nominal arrays. This method is

invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.

The following table lists additional methods for ordinal arrays.

Ordinal Description

Method

cat Concatenate ordinal arrays. The horzcat and vertcat
methods implement special cases.

eq Equality for ordinal arrays. This method is invoked by the
== operator.

ge Greater than or equal to for ordinal arrays. This method is
invoked by the >= operator.

gt Greater than for ordinal arrays. This method is invoked
by the > operator.

horzcat Horizontal concatenation for ordinal arrays. This method
is invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.

intersect Set intersection for ordinal arrays.
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Ordinal Description

Method

ismember True for set member.

issorted True for sorted ordinal array.

le Less than or equal to for ordinal arrays. This method is
invoked by the <= operator.

1t Less than for ordinal arrays. This method is invoked by
the < operator.

max Largest element in ordinal array.

mergelevels | Merge levels of ordinal array.

min Smallest element in ordinal array.

ne Not equal for ordinal arrays. This method is invoked by
the ~= operator.

ordinal Create ordinal array.

setdiff Set difference for ordinal arrays.

setxor Set exclusive or for ordinal arrays.

sort Sort ordinal array in ascending or descending order.

sortrows Sort rows of ordinal matrix in ascending order.

(ordinal)

union Set union for ordinal arrays.

vertcat Vertical concatenation for ordinal arrays. This method is

invoked by square brackets, as described in “Combining
Categorical Arrays” on page 2-24.
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Using Categorical Arrays

This section provides an extended tutorial example demonstrating the use of
categorical arrays and associated functions. The example introduces many
available functions, but is not meant to be comprehensive. “Categorical Array
Operations” on page 2-16 contains a complete list of available functions, with
descriptions. For examples detailing the use of particular functions, alone or
in combination with other functions, see the corresponding reference pages.

Constructing Categorical Arrays The nominal and ordinal
(p. 2-21) constructors

Accessing Categorical Arrays Indexing methods

(p. 2-23)

Combining Categorical Arrays Concatenation methods

(p. 2-24)

Computing with Categorical Arrays Subsetting and grouping
(p. 2-26)

Constructing Categorical Arrays. Load the 150-by-4 numerical array meas
and the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Use nominal to create a nominal array from species:

ni = nominal(species);

Open species and n1 side by side in the Array Editor (see “Viewing and
Editing Workspace Variables with the Array Editor”). Note that the string
information in species has been converted to categorical form, leaving only
information on which data share the same values, indicated by the labels
for the levels.
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By default, levels are labeled with the distinct values in the data (in this case,
the strings in species). Alternate labels are given with additional input
arguments to the nominal constructor:

n2 = nominal(species,{'species1', 'species2', 'species3'});

Open n2 in the Array Editor, and compare it with species and n1. The levels
have been relabeled.

Suppose that the data are considered to be ordinal. A characteristic of the
data that is not reflected in the labels is the diploid chromosome count, which
orders the levels corresponding to the three species as follows:

speciesl < species3 < species2

The ordinal constructor is used to cast n2 as an ordinal array:
ol = ordinal(n2,{},{'speciesi', 'species3', 'species2'});

The second input argument to ordinal is the same as for nominal—a list of
labels for the levels in the data. If it is unspecified, as above, the labels are
inherited from the data, in this case n2. The third input argument of ordinal
indicates the ordering of the levels, in ascending order.

When displayed side by side in the Array Editor, o1 does not appear any
different than n2. This is because the data in 01 have not been sorted. It is
important to recognize the difference between the ordering of the levels in an
ordinal array and sorting the actual data according to that ordering. The sort
function sorts ordinal data in ascending order:

02 = sort(o1);

When displayed in the Array Editor, 02 shows the data sorted by diploid
chromosome count.

To find which elements moved up in the sort, use the < operator for ordinal
arrays:

moved_up = (o1 < 02);

The operation returns a logical array moved_up, indicating which elements
have moved up (the data for species3).
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Use the getlabels function to display the labels for the levels in ascending
order:

labels2 = getlabels(02)
labels2
'speciest’ 'species3’ 'species2’

The sort function reorders the display of the data, but not the order of the
levels. To reorder the levels, use reorderlevels:

03 = reorderlevels(o2,labels2([1 3 2]));

labels3 = getlabels(03)
labels3 =
'speciest’ 'species2’ 'species3’

04 = sort(03);

These operations return the levels in the data to their original ordering, by
species number, and then sort the data for display purposes.

Accessing Categorical Arrays. Categorical arrays are accessed using
parenthesis indexing, with syntax that parallels similar operations for
numerical arrays (see “Numerical Data” on page 2-4).

Parenthesis indexing on the right-hand side of an assignment is used to
extract the lowest 50 elements from the ordinal array o4:

low50 = 04(1:50);

Suppose you want to categorize the data in 04 with only two levels: low (the
data in 1ow50) and high (the rest of the data). One way to do this is to use an
assignment with parenthesis indexing on the left-hand side:

05 = 04; % Copy o4
Warning: Categorical level 'low' being added.
o5(51:end) = 'high';

Warning: Categorical level 'high' being added.

Note the warnings: the assignments move data to new levels. The old levels,
though empty, remain:

getlabels(05)
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ans =
'species1' 'species2' 'species3' 'low' 'high'

The old levels are removed using droplevels:
05 = droplevels(o5,{'species1’', 'species2', 'species3'});

Another approach to creating two categories in 05 from the three categories in
04 is to merge levels, using mergelevels:

05 = mergelevels(o4,{'speciest1'}, 'low');

05 = mergelevels(o5,{'species2', 'species3'}, 'high');
getlabels(05)

ans =

"low' "high'
The merged levels are removed and replaced with the new levels.

Combining Categorical Arrays. Categorical arrays are concatenated using
square brackets. Again, the syntax parallels similar operations for numerical
arrays (see “Numerical Data” on page 2-4). There are, however, restrictions:

® Only categorical arrays of the same type can be combined. You cannot
concatenate a nominal array with an ordinal array.

® Only ordinal arrays with the same levels, in the same order, can be
combined.

® Nominal arrays with different levels can be combined to produce a nominal
array whose levels are the union of the levels in the component arrays.

First use the ordinal constructor to create ordinal arrays from the variables
for sepal length and sepal width in meas. Categorize the data as short

or 1long depending on whether they are below or above the median of the
variable, respectively:

sl = meas(:,1); % Sepal length data
sw = meas(:,2); % Sepal width data

SL1 = ordinal(sl,{'short','long'},[1,...
[min(sl),median(sl),max(sl)]);
SW1 = ordinal(sw,{'short','long'},[1,...



Statistical Arrays

[min(sw),median(sw),max(sw)]);

Because SL1 and SW1 are ordinal arrays with the same levels, in the same
order, they can be concatenated:

S1 = [SL1,SW1];

S1(1:10,:)

ans =
short long
short long
short long
short long
short long
short long
short long
short long
short short
short long

The result is an ordinal array S1 with two columns.

If, on the other hand, the measurements are cast as nominal, different levels
can be used for the different variables, and the two nominal arrays can still
be combined:

SL2

nominal(sl,{'short','long'},[1,...
[min(sl),median(sl),max(sl)]);
SW2 = nominal(sw,{'skinny', 'wide'},[],...
[min(sw),median(sw),max(sw)]);
S2 = [SL2,SW2];

getlabels(S2)

ans =
‘short' 'long' 'skinny' ‘'wide'’

S2(1:10,:)

ans =
short wide
short wide
short wide
short wide
short wide
short wide
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short wide
short wide
short skinny
short wide

Computing with Categorical Arrays. Categorical arrays are used to
index into other variables, creating subsets of data based on the category
of observation, and they are used with statistical functions that accept
categorical inputs, such as those described in “Grouped Data” on page 2-41.

The ismember function is used to create logical variables based on the
category of observation. For example, the following creates a logical index the
same size as species that is true for observations of iris setosa and false
elsewhere. Recall that n1 = nominal(species):

SetosaObs = ismember(ni, 'setosa’');

Since the code above compares elements of n1 to a single value, the same
operation is carried out by the equality operator:

SetosaObs = (n1 == 'setosa');

The SetosaObs variable is used to index into meas to extract only the setosa
data:

SetosaData = meas(SetosaObs,:);

Categorical arrays are also used as grouping variables. The following plot
summarizes the sepal length data in meas by category:

boxplot(sl,ni)



Statistical Arrays

Yalues

75

65

55

45

T
I |
|
r T |
|
I |
i |
L | —
| |
B J_ +
|
I 1
1 1 1
setosa wersicolor wirginica

2-27



2 Organizing Data

2-28

Dataset Arrays

Statistical Data (p. 2-28) What is statistical data?

Dataset Arrays (p. 2-29) Arrays for statistical data

Dataset Array Operations (p. 2-31) Accessing and manipulating dataset
arrays

Using Dataset Arrays (p. 2-33) An example

Statistical Data

MATLAB has “data containers” suitable for completely homogeneous data
(numeric, character, and logical arrays) and for completely heterogeneous
data (cell and structure arrays). Statistical data, however, are often a mixture
of homogeneous variables of heterogeneous types and sizes. Dataset arrays
are suitable containers for this kind of data.

Dataset arrays can be viewed as tables of values, with rows representing
different observations or cases and columns representing different measured
variables. In this sense, dataset arrays are analogous to the numerical
arrays for statistical data discussed in “Numerical Data” on page 2-4. Basic
methods for creating and manipulating dataset arrays parallel the syntax of
corresponding methods for numerical arrays.

While each column of a dataset array must be a variable of a single type,
each row may contain an observation consisting of measurements of different
types. In this sense, dataset arrays lie somewhere between variables that
enforce complete homogeneity on the data and those that enforce nothing.
Because of the potentially heterogeneous nature of the data, dataset arrays
have indexing methods with syntax that parallels corresponding methods for
cell and structure arrays (see “Heterogeneous Data” on page 2-7).
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Dataset Arrays

Dataset arrays are MATLAB variables created with the dataset function,
and then manipulated with associated dataset functions.

For example, the following creates a dataset array from observations that are
a combination of categorical and numerical measurements:

load fisheriris

NumObs = size(meas,1);

ObsNames = strcat({'Obs'},num2str((1:NumObs)"','%d"'));

iris = dataset({nominal(species), 'species'},...
{meas, 'SL"',"'SW','PL','PW"},...
"obsnames' ,ObsNames) ;

iris(1:5,:)

ans =
species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

When creating a dataset array, variable names and observation names can be
assigned together with the data. Other metadata associated with the array
can be assigned with the set function and accessed with the get function.
For example:

iris = set(iris, 'Description','Fisher''s Iris Data');
get(iris)

Description: 'Fisher's Iris Data'

Units: {}

DimNames: {'Observations' 'Variables'}

UserData: []

ObsNames: {150x1 cell}

VarNames: {'species' 'SL' 'SW' 'PL' 'PW'}

See “Using Dataset Arrays” on page 2-33 and the reference page for dataset
for further examples.

The following table lists the accessible properties of dataset arrays.
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Dataset Value

Property

Description | A string describing the data set. The default is an empty
string.

Units A cell array of strings giving the units of the variables

in the data set. The number of strings must equal the
number of variables. Strings may be empty. The default
is an empty cell array.

DimNames A cell array of two strings giving the names of the rows
and columns, respectively, of the data set. The default is
{'Observations' 'Variables'}.

UserData Any MATLAB variable containing additional information
to be associated with the data set. The default is an empty
array.

ObsNames A cell array of nonempty, distinct strings giving the names

of the observations in the data set. The number of strings
must equal the number of observations. The default is an
empty cell array.

VarNames A cell array of nonempty, distinct strings giving the names
of the variables in the data set. The number of strings
must equal the number of variables. The default is the
cell array of string names for the variables used to create
the data set.

Functions associated with dataset arrays are used to display, summarize,
convert, concatenate, and access the collected data. Examples include disp,
summary (dataset), double, horzcat, and get, respectively. Many of these
functions are invoked using operations analogous to those for numerical
arrays, and do not need to be called directly. (For example, horzcat is invoked
by [1.) Other functions access the collected data and must be called directly
(for example, grpstats and replacedata). For a complete list of functions
with descriptions of their use, see “Dataset Array Operations” on page 2-31.

Dataset arrays are implemented as objects in MATLAB, and the associated
functions are their methods. It isn’t necessary to understand MATLAB objects
and methods to make use of dataset arrays—in fact, dataset arrays are
designed to behave as much as possible like other, familiar MATLAB arrays.
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Dataset Array Operations

The table in this section lists available methods for dataset arrays. Many of
the methods are invoked by familiar MATLAB operators and do not need to
be called directly. For full descriptions of individual methods, type

help dataset/methodname

Methods with supporting reference pages, including examples, are linked
from the table. “Using Dataset Arrays” on page 2-33 contains an extended
example that makes use of many dataset methods.

Dataset Description

Method

cat Concatenate dataset arrays. The horzcat and vertcat
methods implement special cases.

dataset Create dataset array.

datasetfun Apply function to each variable of dataset array.

disp Display dataset array, without printing data set name.

display Display dataset array, printing data set name. This method
is invoked when the name of a dataset array is entered at
the command prompt.

double Convert dataset variables to double array.

end Last index in indexing expression for dataset array.

get Get dataset array property.

grpstats A version of the grpstats function that accepts dataset

(dataset) arrays and categorical grouping variables as inputs.

horzcat Horizontal concatenation for dataset arrays (add
variables). This method is invoked by square brackets, as
described in “Combining Dataset Arrays” on page 2-37.

isempty True for empty dataset array.

join Merge observations from two dataset arrays.

length Length of dataset array.

ndims Number of dimensions of dataset array.
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Dataset Description

Method

numel Number of elements in dataset array.

replacedata | Convert array to dataset variables.

set Set dataset array property value.

single Convert dataset variables to single array.

size Size of dataset array.

sortrows Sort rows of dataset array.

(dataset)

subsasgn Subscripted assignment for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing
described in “Accessing Dataset Arrays” on page 2-35.

subsref Subscripted reference for dataset array. This method is
invoked by the parenthesis, dot, and curly brace indexing
described in “Accessing Dataset Arrays” on page 2-35.

summary Print summary statistics for dataset array.

(dataset)

unique Unique observations in dataset.

vertcat Vertical concatenation for dataset arrays (add

observations). This method is invoked by square brackets,
as described in “Combining Dataset Arrays” on page 2-37.
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Using Dataset Arrays

This section provides an extended tutorial example demonstrating the use
of dataset arrays and associated functions. The example introduces many
available functions, but is not meant to be comprehensive. “Dataset Array
Operations” on page 2-31 contains a complete list of available functions, with
descriptions. For examples detailing the use of particular functions, alone or
in combination with other functions, see the corresponding reference pages.

Constructing Dataset Arrays The dataset constructor
(p. 2-33)

Accessing Dataset Arrays (p. 2-35) Indexing methods
Combining Dataset Arrays (p. 2-37) Concatenation methods

Computing with Dataset Arrays Data statistics
(p. 2-39)

Constructing Dataset Arrays. Load the 150-by-4 numerical array meas and
the 150-by-1 cell array of strings species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Create a dataset array iris from the data, assigning variable names species,
SL, SW, PL, and PW and observation names Obs1, Obs2, Obs3, etc.:

NumObs = size(meas,1);

ObsNames = strcat({'Obs'},num2str((1:NumObs)"','%d"'));

iris = dataset({nominal(species), 'species'},...
{meas, 'SL"',"'SW','PL','PW"},...
‘obsnames’' ,ObsNames) ;
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iris(1:5,:)

ans =
species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs3 setosa 4.7 3.2 1.3 0.2
Obs4 setosa 4.6 3.1 1.5 0.2
Obs5 setosa 5 3.6 1.4 0.2

The cell array of strings species is first converted to a categorical array of
type nominal before inclusion in the dataset array. For further information on
categorical arrays, see “Categorical Arrays” on page 2-13.

Use the set function to set properties of the array:

desc = 'Fisher''s iris data (1936)"';
units = [{''} repmat({'cm'},1,4)];
info ‘http://en.wikipedia.org/wiki/R.A._Fisher';

iris = set(iris, 'Description’',desc,...
‘Units',units,...
'UserData’',info);

Use the get function to view properties of the array:

get(iris)
Description: 'Fisher's iris data (1936)'
Units: {'' ‘'cm' ‘'cm' ‘cm' ‘cm'}
DimNames: {'Observations' 'Variables'}

UserData: 'http://en.wikipedia.org/wiki/R.A._Fisher'
ObsNames: {150x1 cell}
VarNames: {'species' 'SL' 'SwW' 'PL' 'PW'}

get(iris(1:5,:), 'ObsNames')
ans =

'Obs1'

'Obs2'

'Obs3'

'Obs4'

'Obs5'
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For a table of accessible properties of dataset arrays, with descriptions, see
“Dataset Arrays” on page 2-29.

Accessing Dataset Arrays. Dataset arrays support multiple types of
indexing. Like the numerical matrices described in “Numerical Data” on page
2-4, parenthesis () indexing is used to access data subsets. Like the cell

and structure arrays described in “Heterogeneous Data” on page 2-7, dot .
indexing is used to access data variables and curly brace {} indexing is used
to access data elements.

Use parenthesis indexing to assign a subset of the data in iris to a new
dataset array iris1:

iris1 = iris(1:5,2:3)

irist1 =
SL SW
Obs1 5.1 3.5
Obs2 4.9 3
Obs3 4.7 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Similarly, use parenthesis indexing to assign new data to the first variable
in iris1:

iris1(:,1) = dataset([5.2;4.9;4.6;4.6;5])

irist1 =
SL SW
Obs1 5.2 3.5
Obs2 4.9 3
Obs3 4.6 3.2
Obs4 4.6 3.1
Obs5 5 3.6

Variable and observation names can also be used to access data:
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SepalObs = iris1({'Obs1','Obs3','Obs5'}, 'SL")

SepalObs =
SL
Obs1 5.1
Obs3 4.7
Obs5 5

Dot indexing is used to access variables in a dataset array, and can be
combined with other indexing methods. For example, the zscore function is
applied to the data in SepalObs as follows:

ScaledSepalObs = zscore(irisi1.SL([1 3 5]))
ScaledSepalObs
0.8006
-1.1209
0.3203

The following code extracts the sepal lengths in iris1 corresponding to sepal
widths greater than 3:

BigSWLengths

BigSWLengths
5.2000
4.6000
4.6000
5.0000

iris1.SL(iris1.SW > 3)

Dot indexing also allows entire variables to be deleted from a dataset array:

iris1.SL = []

irist1 =
SW
Obs1 3.5
Obs2 3
Obs3 3.2
Obs4 3.1
Obs5 3.6

Dynamic variable naming works for dataset arrays just as it does for structure
arrays. For example, the units of the SW variable are changed in iris1 as
follows:
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varname = 'SW';
iris1.(varname) = irisi.(varname)*10
irist =
Sw

Obs1 35

Obs2 30

Obs3 32

Obs4 31

Obs5 36

iris1 = set(irisi1, 'Units',{'mm'});

Curly brace indexing is used to access individual data elements. The following
are equivalent:

irist{1,1}
ans =
35

iris1{'Obst1','SW'}
ans =
35

Combining Dataset Arrays. Combine two dataset arrays into a single
dataset array using square brackets:

SepalData iris(:,{'SL','SW'});
PetalData = iris(:,{'PL','PW'});
newiris = [SepalData,PetalData];
size(newiris)
ans =

150 4

For horizontal concatenation, as in the preceding example, the number of
observations in the two dataset arrays must agree. Observations are matched
up by name (if given), regardless of their order in the two data sets.

The following concatenates variables within a dataset array and then deletes
the component variables:

newiris.SepalData = [newiris.SL,newiris.SW];
newiris.PetalData [newiris.PL,newiris.PW];
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newiris(:,{'SL','SW','PL','PW'}) = [];
size(newiris)

ans =
150 2
size(newiris.SepalData)
ans =
150 2

newiris is now a 150-by-2 dataset array containing two 150-by-2 numerical
arrays as variables.

Vertical concatenation is also handled in a manner analogous to numerical
arrays:

newobs = dataset({[5.3 4.2; 5.0 4.1], 'PetalData'},...
{[5.5 2; 4.8 2.1], 'SepalData'});
newiris = [newiris;newobs];
size(newiris)
ans =
152 2

For vertical concatenation, as in the preceding example, the names of the
variables in the two dataset arrays must agree. Variables are matched up by
name, regardless of their order in the two data sets.

Expansion of variables is also accomplished using direct assignment to new
rows:

newiris(153,:) = dataset({[5.1 4.0], 'PetalData'},...
{[5.1 4.2], 'SepalData'});

A different type of concatenation is performed by the join function, which
takes the data in one dataset array and assigns it to the rows of another
dataset array, based on matching values in a common key variable. For
example, the following creates a dataset array with diploid chromosome
counts for each species of iris:
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snames = nominal({'setosa';'versicolor';'virginica'})
CC = dataset({snames, 'species'},{[38;108;70], 'cc'})
CcC =

species cc

setosa 38
versicolor 108
virginica 70

This data is broadcast to the rows of iris using join:

iris2 = join(iris,CC);
iris2([1 2 51 52 101 102],:)

ans =

species SL SW PL PW
Obs1 setosa 5.1 3.5 1.4 0.2
Obs2 setosa 4.9 3 1.4 0.2
Obs51 versicolor 7 3.2 4.7 1.4
Obs52 versicolor 6.4 3.2 4.5 1.5
Obs101 virginica 6.3 3.3 6 2.5
Obs102 virginica 5.8 2.7 5.1 1.9

H

cC
38
38

108

108
70
70

Computing with Dataset Arrays. The summary (dataset) function
provides summary statistics for the component variables of a dataset array:

summary (newiris)
Fisher's iris data (1936)
SepalData: [153x2 double]

min 4.3000 2
1st Q 5.1000 2.8000
median 5.8000 3
3rd Q 6.4000 3.3250
max 7.9000 4.4000
PetalData: [153x2 double]
min 1 0.1000
1st Q 1.6000 0.3000
median 4.4000 1.3000
3rd Q 5.1000 1.8000
max 6.9000 4.2000

To apply other statistical functions, use dot indexing to access relevant

variables:
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SepalMeans = mean(newiris.SepalData)
SepalMeans
5.8294 3.0503

The same result is obtained with the datasetfun function, which applies
functions to dataset array variables:

means = datasetfun(@mean,newiris, 'UniformOutput',false)

means =

[1x2 double] [1x2 double]
SepalMeans = means{1}
SepalMeans =

5.8294 3.0503

An alternative approach is to cast data in a dataset array as double and
apply statistical functions directly. Compare the following two methods
for computing the covariance of the length and width of the SepalData in
newiris:

covs = datasetfun(@cov,newiris, 'UniformOutput’',false)

covs =

[2x2 double] [2x2 double]
SepalCovs = covs{1}
SepalCovs =

0.6835 -0.0373
-0.0373 0.2054

SepalCovs = cov(double(newiris(:,1)))
SepalCovs
0.6835 -0.0373
-0.0373 0.2054

2-40



Grouped Data

Grouped Data

Grouping Variables (p. 2-41) Methods for grouping data
Functions for Grouped Data (p. 2-42) Statistics by group
Using Grouping Variables (p. 2-43) An example

Grouping Variables

Grouping variables are utility variables used to indicate which elements in a
data set are to be considered together when computing statistics and creating
visualizations. They may be numeric vectors, string arrays, cell arrays of
strings, or categorical arrays.

Grouping variables have the same length as the variables (columns) in a data
set. Observations (rows) i and j are considered to be in the same group if the
values of the corresponding grouping variable are identical at those indices.

For example, the following loads the 150-by-4 numerical array meas and the
150-by-1 cell array of strings species into the workspace:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively)

over three species of iris (setosa, versicolor, and virginica). To group the
observations by species, the following are all acceptable (and equivalent)
grouping variables:

group1l = species; % Cell array of strings
group2 = grp2idx(species) % Numeric vector
group3 = char(species); % Character array
group4 nominal (species); % Categorical array

These grouping variables can be supplied as input arguments to any of the
functions described in “Functions for Grouped Data” on page 2-42. Examples
are given in “Using Grouping Variables” on page 2-43.
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Functions for Grouped Data

The following table lists functions in Statistics Toolbox that accept a grouping
variable group as an input argument. The grouping variable may be in the
form of a vector, string array, cell array of strings, or categorical array, as
described in “Grouping Variables” on page 2-41.

For a full description of the syntax of any particular function, and examples
of its use, consult its reference page, linked from the table. “Using Grouping
Variables” on page 2-43 also includes examples.

Function Basic Syntax for Grouped Data
andrewsplot andrewsplot (X, , 'Group',group)
anovail p = anoval(X,group)

anovan p = anovan(x,group)

aoctool aoctool(x,y,group)

boxplot boxplot(x,group)

classify class = classify(sample,training,group)
controlchart controlchart(x,group)

crosstab crosstab(groupi,group?2)

dummyvar D = dummyvar(group)

gagerr gagerr(x,group)

gplotmatrix gplotmatrix(x,y,group)

grp2idx [G,GN] = grp2idx(group)

grpstats means = grpstats(X,group)

gscatter gscatter(x,y,group)

interactionplot | interactionplot (X, group)
kruskalwallis p = kruskalwallis(X,group)
maineffectsplot | maineffectsplot (X,group)

manoval d = manovail (X,group)

multivarichart | multivarichart(x,group)
parallelcoords | parallelcoords(X, , 'Group',group)
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Function Basic Syntax for Grouped Data

silhouette silhouette(X,group)

tabulate tabulate(group)

treefit T = treefit(X,y,'cost',S) or T =
treefit(X,y, 'priorprob',S), where S.group
= group

vartestn vartestn(X,group)

Using Grouping Variables

This section provides an example demonstrating the use of grouping variables
and associated functions. Grouping variables are introduced in “Grouping
Variables” on page 2-41. A list of functions accepting grouping variables as
input arguments is given in “Functions for Grouped Data” on page 2-42.

Load the 150-by-4 numerical array meas and the 150-by-1 cell array of strings
species:

load fisheriris % Fisher's iris data (1936)

The data are 150 observations of four measured variables (by column number:
sepal length, sepal width, petal length, and petal width, respectively) over
three species of iris (setosa, versicolor, and virginica).

Create a categorical array (see “Categorical Arrays” on page 2-13) from
species to use as a grouping variable:

group = nominal(species);

While species, as a cell array of strings, is itself a grouping variable, the
categorical array has the advantage that it can be easily manipulated with
categorical methods. (See “Categorical Array Operations” on page 2-16.)

Compute some basic statistics for the data (median and interquartile range),
by group, using the grpstats function:

[order,number,group_median,group_iqr] = ...
grpstats(meas,group,{'gname', 'numel',@median,@iqr})
order =
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'setosa’
‘versicolor'
'virginica'
number =
50 50 50 50
50 50 50 50
50 50 50 50
group_median =
5.0000 3.4000

—_

.5000 0.2000

5.9000 2.8000 4.3500 1.3000

6.5000 3.0000 5.5500 2.0000
group_iqr =

0.4000 0.5000 0.2000 0.1000

0.7000 0.5000 0.6000 0.3000

0.7000 0.4000 0.8000 0.5000

The statistics appear in 3-by-4 arrays, corresponding to the 3 groups
(categories) and 4 variables in the data. The order of the groups (not encoded
in the nominal array group) is indicated by the group names in order.

To improve the labeling of the data, create a dataset array (see “Dataset
Arrays” on page 2-28) from meas:

NumObs = size(meas,1);
ObsNames = strcat({'Obs'},num2str((1:NumObs)"','%d"'));
iris = dataset({group, 'species'},...
{meas, 'SL','SW','PL','PW"},...
"obsnames' ,ObsNames) ;

When you call grpstats with a dataset array as an argument, you invoke
the grpstats method of the dataset class, grpstats (dataset), rather
than the regular grpstats function. The method has a slightly different
syntax than the regular grpstats function, but it returns the same results,
with better labeling:

stats = grpstats(iris, 'species’',{@median,@iqr})
stats =
species GroupCount
setosa setosa 50
versicolor versicolor 50
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virginica virginica 50
median_SL igr_SL
setosa 5 0.4
versicolor 5.9 0.7
virginica 6.5 0.7
median_SW igr_Sw
setosa 3.4 0.5
versicolor 2.8 0.5
virginica 3 0.4
median_PL igr_PL
setosa 1.5 0.2
versicolor 4.35 0.6
virginica 5.55 0.8
median_PW igr_PW
setosa 0.2 0.1
versicolor 1.3 0.3
virginica 2 0.5

Grouping variables are also used to create visualizations based on categories of
observations. The following scatter plot, created with the gscatter function,
shows the correlation between sepal length and sepal width in two species of
iris. The ismember function is used to subset the two species from group:

subset = ismember(group,{'setosa’', 'versicolor'});
scattergroup = group(subset);
gscatter(iris.SL(subset),...

iris.SW(subset),...

scattergroup)
xlabel('Sepal Length')
ylabel('Sepal Width')
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Introduction (p. 3-2)

Measures of Central Tendency
(p. 3-3)

Measures of Dispersion (p. 3-5)
Data with Missing Values (p. 3-7)
Graphical Descriptions (p. 3-9)
The Bootstrap (p. 3-18)

Summarizing data

Computing data location

Computing data scale
Working with missing data
Graphical descriptions of data

Uncertainty of statistical estimators



3 Descriptive Statistics

Introduction

A first step in data analysis is often to produce useful summaries of data

characteristics. This section introduces basic methods for producing summary
statistics and plots.

Statistics Toolbox functions are introduced in the following sections:

e “Measures of Central Tendency” on page 3-3
e “Measures of Dispersion” on page 3-5

¢ “Data with Missing Values” on page 3-7

e “Graphical Descriptions” on page 3-9

¢ “The Bootstrap” on page 3-18

Note For information on creating summaries of data by group, see “Grouped
Data” on page 2-41.
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Measures of Central Tendency

The purpose of measures of central tendency is to locate the data values on
the number line. Another term for these statistics is measures of location.

The following table lists the functions that calculate the measures of central

tendency.
Function Name | Description
geomean Geometric mean
harmmean Harmonic mean
mean Arithmetic average (in MATLAB)
median 50th percentile (in MATLAB)
mode Most frequent value (in MATLAB)
trimmean Trimmed mean

The average is a simple and popular estimate of location. If the data sample
comes from a normal distribution, then the sample mean is also optimal
(MVUE of p).

Unfortunately, outliers, data entry errors, or glitches exist in almost all real
data. The sample mean is sensitive to these problems. One bad data value
can move the average away from the center of the rest of the data by an
arbitrarily large distance.

The median and trimmed mean are two measures that are resistant (robust)
to outliers. The median is the 50th percentile of the sample, which will only
change slightly if you add a large perturbation to any value. The idea behind
the trimmed mean is to ignore a small percentage of the highest and lowest
values of a sample when determining the center of the sample.

The geometric mean and harmonic mean, like the average, are not robust to
outliers. They are useful when the sample is distributed lognormal or heavily
skewed.
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The following example shows the behavior of the measures of location for a
sample with one outlier.

X = [ones(1,6) 100]
X:
1 1 1 1 1 1 100
locate = [geomean(x) harmmean(x) mean(x) median(x)...
trimmean(x,25)]
locate =

1.9307 1.1647 15.1429 1.0000 1.0000

You can see that the mean is far from any data value because of the influence
of the outlier. The median and trimmed mean ignore the outlying value and
describe the location of the rest of the data values.
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Measures of Dispersion

The purpose of measures of dispersion is to find out how spread out the data
values are on the number line. Another term for these statistics is measures
of spread.

The table gives the function names and descriptions.

Function

Name Description

iqr Interquartile range

mad Mean absolute deviation

range Range

std Standard deviation (in MATLAB)
var Variance (in MATLAB)

The range (the difference between the maximum and minimum values) is the
simplest measure of spread. But if there is an outlier in the data, it will be the
minimum or maximum value. Thus, the range is not robust to outliers.

The standard deviation and the variance are popular measures of spread that
are optimal for normally distributed samples. The sample variance is the
MVUE of the normal parameter 62, The standard deviation is the square root
of the variance and has the desirable property of being in the same units as
the data. That is, if the data is in meters, the standard deviation is in meters
as well. The variance is in meters?, which is more difficult to interpret.

Neither the standard deviation nor the variance is robust to outliers. A data
value that is separate from the body of the data can increase the value of the
statistics by an arbitrarily large amount.

The mean absolute deviation (MAD) is also sensitive to outliers. But the
MAD does not move quite as much as the standard deviation or variance in
response to bad data.
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The interquartile range (IQR) is the difference between the 75th and 25th
percentile of the data. Since only the middle 50% of the data affects this
measure, it is robust to outliers.

The following example shows the behavior of the measures of dispersion for a
sample with one outlier.

X = [ones(1,6) 100]
X =

1 1 1 1 1 1 100
stats = [iqr(x) mad(x) range(x) std(x)]
stats =

0 24.2449 99.0000 37.4185
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Data with Missing Values

Most real-world data sets have one or more missing elements. It is convenient
to code missing entries in a matrix as NaN (Not a Number).

Here is a simple example.

m = magic(3);
m([1 5]) = [NaN NaN]

m =
NaN 1 6
3 NaN 7
4 9 2

Any arithmetic operation that involves the missing values in this matrix
yields NaN, as below.

sum(m)

ans =
NaN NaN 15

Removing cells with NaN would destroy the matrix structure. Removing whole
rows that contain NaN would discard real data. Instead, Statistics Toolbox
has a variety of functions listed in the following table that are similar to
other MATLAB functions, but that treat NaN values as missing and therefore
ignore them in the calculations.

nansum(m)

ans =
7 10 15
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Function Description

nanmax Maximum ignoring NaNs

nanmean Mean ignoring NaNs

nanmedian Median ignoring NaNs

nanmin Minimum ignoring NaNs

nanstd Standard deviation ignoring NaNs
nansum Sum ignoring NaNs

In addition, other Statistics Toolbox functions operate only on the numeric
values, ignoring NaNs. These include iqr, kurtosis, mad, prctile, range,

skewness, and trimmean.
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Graphical Descriptions

Trying to describe a data sample with two numbers, a measure of location and
a measure of spread, is frugal but may be misleading. Here are some other
approaches:

¢ “Quantiles and Percentiles” on page 3-9

e “Probability Density Estimation” on page 3-10

¢ “Empirical Cumulative Distribution Function” on page 3-15

Quantiles and Percentiles

Quantiles and percentiles provide information about the shape of data as
well as its location and spread.

The quantile of order p (0 <p < 1) is the smallest x value where the cumulative
distribution function equals or exceeds p. The function quantile computes
quantiles as follows:

1 n sorted data points are the 0.5/n, 1.5/n, ..., (n—0.5)/n quantiles.
2 Linear interpolation is used to compute intermediate quantiles.
3 The data min or max are assigned to quantiles outside the range.

4 Missing values are treated as NaN, and removed from the data.

Percentiles, computed by the prctile function, are quantiles for a certain
percentage of the data, specified for 0 < p < 100.

The following example shows the result of looking at every quartile (quantiles
with orders that are multiples of 0.25) of a sample containing a mixture of
two distributions.

[normrnd(4,1,1,100) normrnd(6,0.5,1,200)1;
100*(0:0.25:1);

prctile(x,p);

[p;yl

N N< T X
I

0 25.0000 50.0000 75.0000 100.0000
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1.5172 4.6842 5.6706 6.1804 7.6035

A box plot helps to visualize the statistics:

boxplot(x)
I
I
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Column Number

The long lower tail and plus signs show the lack of symmetry in the sample
values. For more information on box plots, see “Box Plots” on page 4-6.

Probability Density Estimation
The distribution of data can be described graphically with a histogram:

cars = load('carsmall', 'MPG','Origin');

MPG = cars.MPG;
hist (MPG)
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You can also describe a data distribution by estimating its density.

The ksdensity function does this using a kernel smoothing method. A
nonparametric density estimate of the data above, using the default kernel
and bandwidth, is given by:

[f,x] = ksdensity(MPG);

plot(x,f);
title('Density estimate for MPG')
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Density estimate for MPG
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Kernel Bandwidth

The choice of kernel bandwidth controls the smoothness of the probability
density curve. The following graph shows the density estimate for the
same mileage data using different bandwidths. The default bandwidth is in
blue and looks like the preceding graph. Estimates for smaller and larger
bandwidths are in red and green.

The first call to ksdensity returns the default bandwidth, u, of the kernel
smoothing function. Subsequent calls modify this bandwidth.

[f,x,u] = ksdensity(MPG);

plot(x,f)

title('Density estimate for MPG')
hold on

[f,x] = ksdensity(MPG, 'width',u/3);
plot(x,f,'r");

[f,x] = ksdensity(MPG, 'width',u*3);
plot(x,f,'g");
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legend('default width','1/3 default', '3*default')
hold off

Density estimate for MPG
0.06 ‘ ‘ ‘ ‘

T
— default width
— 1/3 default
3*default

0.05f b

0.04 b

0.03f b

0.02+ Y |

0.01f b

0]
-20 -10 0 10 20 30 40 50 60 70

The default bandwidth seems to be doing a good job—reasonably smooth,
but not so smooth as to obscure features of the data. This bandwidth is
the one that is theoretically optimal for estimating densities for the normal
distribution.

The green curve shows a density with the kernel bandwidth set too high.
This curve smooths out the data so much that the end result looks just like
the kernel function. The red curve has a smaller bandwidth and is rougher
looking than the blue curve. It may be too rough, but it does provide an
indication that there might be two major peaks rather than the single peak
of the blue curve. A reasonable choice of width might lead to a curve that is
intermediate between the red and blue curves.

3-13
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Kernel Smoothing Function

You can also specify a kernel function by supplying either the function
name or a function handle. The four preselected functions, 'normal’,
‘epanechnikov', 'box', and 'triangle', are all scaled to have standard
deviation equal to 1, so they perform a comparable degree of smoothing.

Using default bandwidths, you can now plot the same mileage data, using
each of the available kernel functions.

hname = {'normal' 'epanechnikov' 'box' 'triangle'};
hold on;
colors = {'r'" 'b" 'g' 'm'};
for j=1:4
[f,x] = ksdensity(MPG, 'kernel',hname{j});
plot(x,f,colors{j});

end
legend(hname{:});
hold off
0.051
— normal o
0.045r- — Eginecmmkov
— triangle

60



Graphical Descriptions

The density estimates are roughly comparable, but the box kernel produces a
density that is rougher than the others.

Usefulness of Smooth Density Estimates

In addition to the aesthetic appeal of the smooth density estimate, there

are other appeals as well. While it is difficult to overlay two histograms to
compare them, you can easily overlay smooth density estimates. For example,
the following graph shows the MPG distributions for cars from different
countries of origin.

Density estimates for MPG by Origin
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For piecewise probability density estimation, using kernel smoothing in the
center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-106 and paretotails.

Empirical Cumulative Distribution Function

The ksdensity function described in the last section produces an empirical
version of a probability density function (pdf). That is, instead of selecting

3-15



3 Descriptive Statistics

3-16

a density with a particular parametric form and estimating the parameters,
it produces a nonparametric density estimate that tries to adapt itself to
the data.

Similarly, it is possible to produce an empirical version of the cumulative
distribution function (cdf). The ecdf function computes this empirical cdf. It
returns the values of a function F such that ¥(x) represents the proportion of
observations in a sample less than or equal to x.

The idea behind the empirical cdf is simple. It is a function that assigns
probability 1/n to each of n observations in a sample. Its graph has a
stair-step appearance. If a sample comes from a distribution in a parametric
family (such as a normal distribution), its empirical cdf is likely to resemble
the parametric distribution. If not, its empirical distribution still gives an
estimate of the cdf for the distribution that generated the data.

The following example generates 20 observations from a normal distribution
with mean 10 and standard deviation 2. You can use ecdf to calculate the
empirical cdf and stairs to plot it. Then you overlay the normal distribution
curve on the empirical function.

X = normrnd(10,2,20,1);[f,xf] = ecdf(x);
stairs(xf,f)

xx=linspace(5,15,100);

yy = normcdf (xx,10,2);

hold on; plot(xx,yy,'r:'); hold off
legend('Empirical cdf', 'Normal cdf',2)



Graphical Descriptions
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The empirical cdf is especially useful in survival analysis applications. In
such applications the data may be censored, that is, not observed exactly.
Some individuals may fail during a study, and you can observe their failure
time exactly. Other individuals may drop out of the study, or may not fail until
after the study is complete. The ecdf function has arguments for dealing
with censored data. In addition, you can use the coxphfit function with
individuals that have predictors that are not the same.

For piecewise probability density estimation, using the empirical cdf in the

center of the distribution and Pareto distributions in the tails, see “Fitting
Piecewise Distributions” on page 5-106 and paretotails.
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The bootstrap is a procedure that involves choosing random samples with
replacement from a data set and analyzing each sample the same way.
Sampling with replacement means that every sample is returned to the data
set after sampling. So a particular data point from the original data set could
appear multiple times in a given bootstrap sample. The number of elements
in each bootstrap sample equals the number of elements in the original data
set. The range of sample estimates you obtain enables you to establish the
uncertainty of the quantity you are estimating.

Here is an example taken from Efron and Tibshirani [18] comparing Law
School Admission Test (LSAT) scores and subsequent law school grade point
average (GPA) for a sample of 15 law schools.

load lawdata
plot(1lsat,gpa, '+')
1sline
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The Bootstrap

The least squares fit line indicates that higher LSAT scores go with higher
law school GPAs. But how certain is this conclusion? The plot provides some
intuition, but nothing quantitative.

You can calculate the correlation coefficient of the variables using the corr
function.

rhohat = corr(lsat,gpa)

rhohat

0.7764

Now you have a number, 0.7764, describing the positive connection between
LSAT and GPA, but though 0.7764 may seem large, you still do not know if
it is statistically significant.

Using the bootstrp function you can resample the 1sat and gpa vectors as
many times as you like and consider the variation in the resulting correlation
coefficients.

Here is an example.

rhos1000 = bootstrp (1000, 'corr',lsat,gpa);

This command resamples the 1sat and gpa vectors 1000 times and computes
the corr function on each sample. Here is a histogram of the result.

hist(rhos1000(:,2),30)
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Nearly all the estimates lie on the interval [0.4 1.0].

Bootstrap Confidence Intervals

It is often desirable to construct a confidence interval for a parameter
estimate in statistical inferences. Using the bootci function, you can use
bootstrapping to obtain a confidence interval. The confidence interval for the
lsat and gpa data is computed as:

ci = bootci(5000,@corr,lsat,gpa)
ci =

0.3265

0.9389

Therefore, a 95% confidence interval for the correlation coefficient between
LSAT and GPA is [0.33 0.94]. This is strong quantitative evidence that LSAT
and subsequent GPA are positively correlated. Moreover, this evidence does
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The Bootstrap

not require any strong assumptions about the probability distribution of the
correlation coefficient.

Although the bootci function computes the Bias Corrected and accelerated
(BCa) interval as the default type, it is also able to compute various other
types of bootstrap confidence intervals, such as the studentized bootstrap
confidence interval.
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4 siaistical Visualization

Introduction

Statistics Toolbox adds many data visualization functions to the extensive
graphics capabilities already in MATLAB. Of general use are:

e Scatter plots are a basic visualization tool for multivariate data. They
are used to identify relationships among variables. Grouped versions of
these plots use different plotting symbols to indicate group membership.
The gname function can label points on these plots with a text label or an
observation number.

® Box plots display a five number summary of a set of data: the median,
the two ends of the interquartile range (the box), and two extreme values
(the whiskers) above and below the box. Because they show less detail
than histograms, box plots are most useful for side-by-side comparisons
of two distributions.

® Distribution plots help you identify an appropriate distribution family
for your data. They include normal and Weibull probability plots,
quantile-quantile plots, and empirical cumulative distribution plots.

These plots are described further in the sections:

e “Scatter Plots” on page 4-3
¢ “Box Plots” on page 4-6
e “Distribution Plots” on page 4-8

Advanced visualization functions for specialized statistical analyses are listed
under Statistical Visualization.

Note For information on creating visualizations of data by group, see
“Grouped Data” on page 2-41.




Scatter Plots

Scatter Plots

A scatter plot is a simple plot of one variable against another. The MATLAB
plot and scatter functions can produce scatter plots. The MATLAB
plotmatrix function can produce a matrix of such plots showing the
relationship between several pairs of variables.

Statistics Toolbox adds the functions gscatter and gplotmatrix to produce
grouped versions of these plots. These are useful for determining whether the
values of two variables or the relationship between those variables is the
same in each group.

Suppose you want to examine the weight and mileage of cars from three
different model years.

load carsmall
gscatter(Weight,MPG,Model_Year,'', 'xo0s')
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This shows that not only is there a strong relationship between the weight of
a car and its mileage, but also that newer cars tend to be lighter and have

better gas mileage than older cars.

The default arguments for gscatter produce a scatter plot with the different
groups shown with the same symbol but different colors. The last two
arguments above request that all groups be shown in default colors and with

different

The carsmall data set contains other variables that describe different aspects
of cars. You can examine several of them in a single display by creating a

symbols.

grouped plot matrix.

xvars = [Weight Displacement Horsepower];
yvars = [MPG Acceleration];
gplotmatrix(xvars,yvars,Model_Year,'', 'xo0s')
[m [m) [m
[m
40 [m [m [m
EEIID %]D [uis]
oo ini} oo
30l 8 74 B B@-
x j%mdg N x %ﬁ
20 x® © x @ e
X ;2( X ;(X X XXX
xR O 5RO K B2 XX
10 £ x g% X
25 & = 0
20 X o a X@D X -
i m x oo x
BR e B8 > Bl
B Fa L@y &%D
15 File ] x % n <0 * 0o o0 x
ju) x X =) QX O N
xD XD o X
o % Xxx o e % A
10 x T, x X %sz oK x x
2000 3000 4000 100 200 300 400 50 100 150 200




Scatter Plots

The upper right subplot displays MPG against Horsepower, and shows that
over the years the horsepower of the cars has decreased but the gas mileage
has improved.

The gplotmatrix function can also graph all pairs from a single list of
variables, along with histograms for each variable. See “Multivariate Analysis
of Variance” on page 9-23.
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Box Plots

The graph below, created with the boxplot command, compares petal lengths
in samples from two species of iris.

load fisheriris
s1 = meas(51:100,3);
s2 = meas(101:150,3);
boxplot([s1 s2], 'notch','on',...
‘labels’', {'versicolor','virginica'})
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This plot has the following features:

® The tops and bottoms of each “box” are the 25th and 75th percentiles of the
samples, respectively. The distances between the tops and bottoms are the
interquartile ranges.

® The line in the middle of each box is the sample median. If the median is
not centered in the box, it shows sample skewness.

® The "whiskers” are lines extending above and below each box. Whiskers are
drawn from the ends of the interquartile ranges to the furthest observations
within the whisker length (the adjacent values).



Box Plots

® Observations beyond the whisker length are marked as outliers. By
default, an outlier is a value that is more than 1.5 times the interquartile
range away from the top or bottom of the box, but this value can be adjusted
with additional input arguments. Outliers are displayed with a red + sign.

® Notches display the variability of the median between samples. The width
of a notch is computed so that box plots whose notches do not overlap (as
above) have different medians at the 5% significance level. The significance
level is based on a normal distribution assumption, but comparisons of
medians are reasonably robust for other distributions. Comparing box-plot
medians is like a visual hypothesis test, analogous to the ¢ test used for
means.

4-7
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Distribution Plots

There are several types of plots for assessing the distribution of statistics and
data samples, as described in the following sections:

“Normal Probability Plots” on page 4-8
“Quantile-Quantile Plots” on page 4-10
“Empirical Cumulative Distribution Function Plots” on page 4-12

“Other Probability Plots” on page 4-13

Normal Probability Plots

Normal probability plots are used to assess whether data comes from a
normal distribution. Many statistical procedures make the assumption that
an underlying distribution is normal, so normal probability plots can provide
some assurance that the assumption is justified, or else provide a warning of
problems with the assumption. An analysis of normality typically combines
normal probability plots with hypothesis tests for normality, as described in
Chapter 6, “Hypothesis Tests”.

The following example shows a normal probability plot created with the
normplot function.

x = normrnd(10,1,25,1);
normplot(x)



Distribution Plots

Marral Probability Plot
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The plus signs plot the empirical probability versus the data value for each
point in the data. A solid line connects the 25th and 75th percentiles in the
data, and a dashed line extends it to the ends of the data. The y-axis values
are probabilities from zero to one, but the scale is not linear. The distance
between tick marks on the y-axis matches the distance between the quantiles
of a normal distribution. The quantiles are close together near the median
(probability = 0.5) and stretch out symmetrically as you move away from

the median.

In a normal probability plot, if all the data points fall near the line, an
assumption of normality is reasonable. Otherwise, the points will curve away
from the line, and an assumption of normality is not justified.

For example:

X = exprnd(10,100,1);
normplot(x)
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Marmal Probability Plot

Probability

The plot is strong evidence that the underlying distribution is not normal.

Quantile-Quantile Plots

Quantile-quantile plots are used to determine whether two samples come from
the same distribution family. They are scatter plots of quantiles computed
from each sample, with a line drawn between the first and third quartiles. If
the data falls near the line, it is reasonable to assume that the two samples
come from the same distribution. The method is robust with respect to
changes in the location and scale of either distribution.

To create a quantile-quantile plot, use the qqplot function.

The following example shows a quantile-quantile plot of two samples from
Poisson distributions.

X = poissrnd(10,50,1);
y = poissrnd(5,100,1);
qgplot(x,y);



Distribution Plots
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Even though the parameters and sample sizes are different, the approximate
linear relationship suggests that the two samples may come from the same
distribution family. As with normal probability plots, hypothesis tests,

as described in Chapter 6, “Hypothesis Tests”, can provide additional
justification for such an assumption. For statistical procedures that depend
on the two samples coming from the same distribution, however, a linear
quantile-quantile plot is often sufficient.

The following example shows what happens when the underlying distributions
are not the same.

x = normrnd(5,1,100,1);
y = wblrnd(2,0.5,100,1);
qgplot(x,y);
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These samples clearly are not from the same distribution family.

Empirical Cumulative Distribution Function Plots

An empirical cumulative distribution function (cdf) plot shows the proportion
of data less than each x value, as a function of x. The scale on the y-axis is
linear; in particular, it is not scaled to any particular distribution. Empirical
cdf plots are used to compare data cdfs to cdfs for particular distributions.

To create an empirical cdf plot, use the cdfplot function (or ecdf and stairs).

The following example compares the empirical cdf for a sample from an
extreme value distribution with a plot of the cdf for the sampling distribution.
In practice, the sampling distribution would be unknown, and would be
chosen to match the empirical cdf.

y = evrnd(0,3,100,1);

cdfplot(y)

hold on

X = -20:0.1:10;

f evcdf(x,0,3);

plot(x,f,'m")

legend('Empirical', 'Theoretical', 'Location','NW")



Distribution Plots
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Other Probability Plots

A probability plot, like the normal probability plot, is just an empirical cdf plot
scaled to a particular distribution. The y-axis values are probabilities from
zero to one, but the scale is not linear. The distance between tick marks is the
distance between quantiles of the distribution. In the plot, a line is drawn
between the first and third quartiles in the data. If the data falls near the
line, it is reasonable to choose the distribution as a model for the data.

To create probability plots for different distributions, use the probplot
function.

For example, the following plot assesses two samples, one from a Weibull
distribution and one from a Rayleigh distribution, to see if they may have
come from a Weibull population.

x1 wblrnd(3,3,100,1);

X2 = raylrnd(3,100,1);

probplot('weibull',[x1 x21])

legend('Weibull Sample', 'Rayleigh Sample', 'Location', 'NW")
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Probability plot for Weibull distribution
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The plot gives justification for modeling the first sample with a Weibull
distribution; much less so for the second sample.

A distribution analysis typically combines probability plots with hypothesis
tests for a particular distribution, as described in Chapter 6, “Hypothesis
Tests”.
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5 Probability Distributions

Introduction

A typical data sample is distributed over a range of values, with some values
occurring more frequently than others. Some of the variability may be the
result of measurement error or sampling effects. For large random samples,
however, the distribution of the data typically reflects the variability of the
source population and can be used to model the data-producing process.

Statistics computed from data samples also vary from sample to sample.
Modeling distributions of statistics is important for drawing inferences from
statistical summaries of data.

Probability distributions are theoretical distributions, based on assumptions
about a source population. They assign probability to the event that a random
variable, such as a data value or a statistic, takes on a specific, discrete value,
or falls within a specified range of continuous values.

Choosing a model often means choosing a parametric family of probability
distributions and then adjusting the parameters to fit the data. The choice of
an appropriate distribution family may be based on a priori knowledge, such
as matching the mechanism of a data-producing process to the theoretical
assumptions underlying a particular family, or a posteriori knowledge, such as
information provided by probability plots and distribution tests. Parameters
can then be found that achieve the maximum likelihood of producing the data.

When the source population is unavailable for analysis or repeated sampling
(as, for example, with historical data), nonparametric models, such as

those produced by ksdensity, may be appropriate. These models make no
assumptions about the mechanism producing the data or the form of the
underlying distribution, so no parameter estimates are made. Nonparametric
models are appropriate when data or statistics do not follow any standard
probability distribution (as, for example, with multimodal data).

Once a model is chosen, random number generators produce random values
with the specified probability distribution. Random number generators are
used in Monte Carlo simulations of the original data-producing process.



Supported Distributions

Supported Distributions

Probability distributions supported by Statistics Toolbox are cross-referenced
with their supporting functions and GUIs in the following tables:

“Continuous Distributions (Data)” on page 5-4
“Continuous Distributions (Statistics)” on page 5-6
“Discrete Distributions” on page 5-7

“Multivariate Distributions” on page 5-8

The tables use the following abbreviations for distribution functions:

pdf — Probability density functions

cdf — Cumulative distribution functions

inv — Inverse cumulative distribution functions
stat — Distribution statistics functions

fit — Distribution fitting functions

like — Negative log-likelihood functions

rnd — Random number generators

Note Supported distributions are described more fully in the “Distribution
Reference” on page 5-9.
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Continuous Distributions (Data)

Name pdf cdf inv stat fit like rnd
Beta betapdf, | betacdf, | betainv, | betastat | betafit, betalike | betarnd,
pdf cdf icdf mle random,
randtool
Birnbaum- dfittool
Saunders
Exponential | exppdf, expcdf, expinv, expstat expfit, explike exprnd,
pdf cdf icdf mle, random,
dfittool randtool
Extreme evpdf, evcdf, evinv, evstat evfit, evlike evrnd,
value pdf cdf icdf mle, random,
dfittool randtool
Gamma gampdf, gamcdf, gaminv, gamstat gamfit, gamlike gamrnd,
pdf cdf icdf mle, randg,
dfittool random,
randtool
Generalized | gevpdf, gevcdf, gevinv, gevstat gevfit, gevlike | gevrnd,
extreme pdf cdf icdf dfittool random,
value randtool
Generalized | gppdf, gpcdf, gpinv, gpstat gpfit, gplike gprnd,
Pareto pdf cdf icdf dfittool random,
randtool
Inverse dfittool
Gaussian
Johnson johnsrnd
system
Logistic dfittool
Loglogistic dfittool
Lognormal lognpdf, | logncdf, | logninv, | lognstat | lognfit, lognlike | lognrnd,
pdf cdf icdf mle, random,
dfittool randtool




Supported Distributions

Name pdf cdf inv stat fit like rnd
Nakagami dfittool
Non- ksdensity| ksdensity| ksdensity ksdensity,
parametric dfittool
Normal normpdf, | normcdf, | norminv, | normstat | normfit, normlike | normrnd,
(Gaussian) | pdf cdf icdf mle, randn,
dfittool random,
randtool
Pearson pearsrnd
system
Rayleigh raylpdf, | raylcdf, | raylinv, | raylstat | raylfit, raylrnd,
pdf cdf icdf mle, random,
dfittool randtool
Rician dfittool
t location- dfittool
scale
Uniform unifpdf, |unifcdf, |unifinv, |unifstat | unifit, unifrnd,
(continuous) | pdf cdf icdf mle rand,
random
Weibull wblpdf, wblcdf, wblinv, wblstat |wblfit, wbllike | wblrnd,
pdf cdf icdf mle, random
dfittool
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Continuous Distributions (Statistics)

Name pdf cdf inv stat fit like rnd
Chi-square | chi2pdf, | chi2cdf, | chi2inv, | chi2stat chi2rnd,
pdf cdf icdf random,
randtool
F fpdf, pdf | fcdf, cdf | finv, fstat frnd,
icdf random,
randtool
Noncentral | ncx2pdf, | ncx2cdf, | ncx2inv, | ncx2stat ncx2rnd,
chi-square pdf cdf icdf random,
randtool
Noncentral | ncfpdf, ncfcdf, ncfinv, ncfstat ncfrnd,
F pdf cdf icdf random,
randtool
Noncentral | nctpdf, nctcdf, nctinv, nctstat nctrnd,
t pdf cdf icdf random,
randtool
Student’s ¢ | tpdf, pdf | tcdf, cdf | tinv, tstat trnd,
icdf random,
randtool
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Discrete Distributions

Name pdf cdf inv stat fit like rnd
Binomial binopdf, | binocdf, | binoinv, | binostat | binofit, binornd,
pdf cdf icdf mle, random,
dfittool randtool
Bernoulli mle
Geometric geopdf, geocdf, geoinv, geostat mle geornd,
pdf cdf icdf random,
randtool
Hyper- hygepdf, | hygecdf, | hygeinv, | hygestat hygernd,
geometric pdf cdf icdf random
Multinomial | mnpdf mnrnd
Negative nbinpdf, | nbincdf, | nbininv, | nbinstat | nbinfit, nbinrnd,
binomial pdf cdf icdf mle, random,
dfittool randtool
Poisson poisspdf, | poisscdf, | poissinv, | poisstat | poissfit, poissrnd,
pdf cdf icdf mle, random,
dfittool randtool
Uniform unidpdf, | unidcdf, | unidinv, | unidstat | mle unidrnd,
(discrete) pdf cdf icdf random,
randtool
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Multivariate Distributions

Name pdf cdf inv stat fit like rnd
Gaussian copulapdf| copulacdf copulastat copularnd
copula

t copula copulapdf| copulacdf copulastat copularnd
Clayton copulapdf| copulacdf copulastat copularnd
copula

Frank copulapdf| copulacdf copulastat copularnd
copula

Gumbel copulapdf| copulacdf copulastat copularnd
copula

Inverse iwishrnd
Wishart

Multivariate | mvnpdf mvncdf mvnrnd
normal

Multivariate | mvtpdf mvtcdf mvtrnd

t

Wishart wishrnd
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Distribution Reference

This section provides reference information on the following probability
distributions supported by Statistics Toolbox functions and GUIs:
e “Bernoulli Distribution” on page 5-11

e “Beta Distribution” on page 5-12

e “Binomial Distribution” on page 5-15

¢ “Birnbaum-Saunders Distribution” on page 5-18

e “Chi-Square Distribution” on page 5-19

e “Copulas” on page 5-21

e “Custom Distributions” on page 5-22

¢ “Exponential Distribution” on page 5-23

e “Extreme Value Distribution” on page 5-26

e “F Distribution” on page 5-30

® “Gamma Distribution” on page 5-32

® “Generalized Extreme Value Distribution” on page 5-35
® “Generalized Pareto Distribution” on page 5-39

® “Geometric Distribution” on page 5-43

¢ “Hypergeometric Distribution” on page 5-45

¢ “Inverse Gaussian Distribution” on page 5-47

¢ “Inverse Wishart Distribution” on page 5-48

¢ “Johnson System of Distributions” on page 5-49

e “Logistic Distribution” on page 5-50

¢ “Loglogistic Distribution” on page 5-51

¢ “Lognormal Distribution” on page 5-52

e “Multinomial Distribution” on page 5-54

e “Multivariate Normal Distribution” on page 5-56

e “Multivariate ¢ Distribution” on page 5-60
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“Nakagami Distribution” on page 5-64

“Negative Binomial Distribution” on page 5-65
“Noncentral Chi-Square Distribution” on page 5-69
“Noncentral F Distribution” on page 5-71
“Noncentral ¢ Distribution” on page 5-73
“Nonparametric Distributions” on page 5-75
“Normal Distribution” on page 5-76

“Pearson System of Distributions” on page 5-79
“Poisson Distribution” on page 5-80

“Rayleigh Distribution” on page 5-82

“Rician Distribution” on page 5-84

“Student’s ¢ Distribution” on page 5-85

“t Location-Scale Distribution” on page 5-87
“Uniform Distribution (Continuous)” on page 5-88
“Uniform Distribution (Discrete)” on page 5-89
“Weibull Distribution” on page 5-90

“Wishart Distribution” on page 5-92
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Bernoulli Distribution

Definition of the Bernoulli Distribution
The Bernoulli distribution is a special case of the binomial distribution, with
n=1

5-11
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Beta Distribution

Definition of the Beta Distribution
The beta pdf is

1

a-1,4 _b-1 _
Ba)" (1-x)"""Iig,1)(x)

¥y = flx|a.b) =

where B( - ) is the Beta function. The indicator function [, ;(x) ensures that
only values of x in the range (0 1) have nonzero probability.

Background on the Beta Distribution

The beta distribution describes a family of curves that are unique in that they
are nonzero only on the interval (0 1). A more general version of the function
assigns parameters to the endpoints of the interval.

The beta cdf is the same as the incomplete beta function.

The beta distribution has a functional relationship with the t distribution. If
Y is an observation from Student’s t distribution with v degrees of freedom,
then the following transformation generates X, which is beta distributed.

x-1,1_Y

2 ‘b'+Y2

i)

IFY ~£(v), then X - BG ‘é]

Statistics Toolbox uses this relationship to compute values of the t cdf and
inverse function as well as generating t distributed random numbers.

Parameter Estimation for the Beta Distribution

Suppose you are collecting data that has hard lower and upper bounds of zero
and one respectively. Parameter estimation is the process of determining the
parameters of the beta distribution that fit this data best in some sense.
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One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the beta pdf. But for the pdf, the parameters
are known constants and the variable is x. The likelihood function reverses the
roles of the variables. Here, the sample values (the x’s) are already observed.
So they are the fixed constants. The variables are the unknown parameters.
Maximum likelihood estimation (MLE) involves calculating the values of the
parameters that give the highest likelihood given the particular set of data.

The function betafit returns the MLEs and confidence intervals for the
parameters of the beta distribution. Here is an example using random
numbers from the beta distribution with @ =5 and 6 = 0.2.

r = betarnd(5,0.2,100,1);
[phat, pci] = betafit(r)

phat =
4.5330 0.2301

pci =
2.8051 0.1771
6.2610 0.2832

The MLE for parameter a is 4.5330, compared to the true value of 5. The
95% confidence interval for a goes from 2.8051 to 6.2610, which includes
the true value.

Similarly the MLE for parameter b is 0.2301, compared to the true value
of 0.2. The 95% confidence interval for b goes from 0.1771 to 0.2832, which
also includes the true value. In this made-up example you know the “true
value.” In experimentation you do not.

Example and Plot of the Beta Distribution

The shape of the beta distribution is quite variable depending on the values of
the parameters, as illustrated by the plot below.
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The constant pdf (the flat line) shows that the standard uniform distribution
is a special case of the beta distribution.
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Binomial Distribution

Definition of the Binomial Distribution
The binomial pdf is

k| n,p) = [’; ]pk 1-pr*

where £ is the number of successes in n trials of a Bernoulli process with
probability of success p.

The binomial distribution is discrete, defined for integers 2 =0, 1, 2, ... n,
where it is nonzero.

Background of the Binomial Distribution

The binomial distribution models the total number of successes in repeated
trials from an infinite population under the following conditions:

® Only two outcomes are possible on each of n trials.
® The probability of success for each trial is constant.

o All trials are independent of each other.

James Bernoulli derived the binomial distribution in 1713. Earlier, Blaise
Pascal had considered the special case where p = 1/2.

The binomial distribution is a generalization of the Bernoulli distribution; it
generalizes to the multinomial distribution.

Parameter Estimation for the Binomial Distribution

Suppose you are collecting data from a widget manufacturing process, and
you record the number of widgets within specification in each batch of 100.
You might be interested in the probability that an individual widget is
within specification. Parameter estimation is the process of determining the
parameter, p, of the binomial distribution that fits this data best in some
sense.
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One popular criterion of goodness is to maximize the likelihood function.

The likelihood has the same form as the binomial pdf above. But for the pdf,
the parameters (n and p) are known constants and the variable is x. The
likelihood function reverses the roles of the variables. Here, the sample values
(the x’s) are already observed. So they are the fixed constants. The variables
are the unknown parameters. MLE involves calculating the value of p that
give the highest likelihood given the particular set of data.

The function binofit returns the MLEs and confidence intervals for the
parameters of the binomial distribution. Here is an example using random
numbers from the binomial distribution with n = 100 and p = 0.9.

r binornd(100,0.9)

88
[phat, pci] = binofit(r,100)

phat =
0.8800

pci =
0.7998
0.9364

The MLE for parameter p is 0.8800, compared to the true value of 0.9. The
95% confidence interval for p goes from 0.7998 to 0.9364, which includes
the true value. In this made-up example you know the “true value” of p. In
experimentation you do not.

Example and Plot of the Binomial Distribution

The following commands generate a plot of the binomial pdf for n = 10 and
p =1/2.

x = 0:10;

y = binopdf(x,10,0.5);
plot(x,y,'+")

5-16



Distribution Reference

0.25

0.2

0.15

01

0.05

10

5-17



5 Probability Distributions

5-18

Birnbaum-Saunders Distribution

Definition of the Birnbaum-Saunders Distribution
The Birnbaum-Saunders distribution has the density function

1 EKP{_fM-mF}(fM+MJJ
2>

fon &y

NP

with scale parameter > 0 and shape parameter y > 0, for x > 0.

If x has a Birnbaum-Saunders distribution with parameters B and v, then
i—Lr[J.rf + B/

has a standard normal distribution.

Background on the Birnbaum-Saunders Distribution

The Birnbaum-Saunders distribution was originally proposed as a lifetime
model for materials subject to cyclic patterns of stress and strain, where the
ultimate failure of the material comes from the growth of a prominent flaw. In
materials science, Miner’s Rule suggests that the damage occurring after n
cycles, at a stress level with an expected lifetime of N cycles, is proportional
to n / N. Whenever Miner’s Rule applies, the Birnbaum-Saunders model is a
reasonable choice for a lifetime distribution model.

Parameter Estimation for the Birnbaum-Saunders Distribution
See mle, dfittool.
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Chi-Square Distribution

Definition of the Chi-Square Distribution
The 2 pdf is

Falyy < XD
¥ = x|v) =

92T (v D)

where I'( - ) is the Gamma function, and v is the degrees of freedom.

Background of the Chi-Square Distribution

The 2 distribution is a special case of the gamma distribution where b = 2 in
the equation for gamma distribution below.

x
y = fix|a, &) = El 1 b
L Tia)

The 2 distribution gets special attention because of its importance in normal
sampling theory. If a set of n observations is normally distributed with
variance 62, and s2 is the sample standard deviation, then

in —1352

2
o

—p;gin—lj

Statistics Toolbox uses the above relationship to calculate confidence intervals
for the estimate of the normal parameter 62in the function normfit.

Example and Plot of the Chi-Square Distribution

The %2 distribution is skewed to the right especially for few degrees of freedom
(v). The plot shows the %2 distribution with four degrees of freedom.

X = 0:0.2:15;
y = chi2pdf(x,4);
plot(x,y)
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Copulas

See the “Copulas” on page 5-174 entry in “Random Number Generation” on
page 5-158.
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Custom Distributions

User-defined custom distributions, created using M-files and function handles,
are supported by the Statistics Toolbox functions pdf, cdf, icdf, and mle, and
the Statistics Toolbox GUI dfittool.
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Exponential Distribution

Definition of the Exponential Distribution
The exponential pdf is
.

y = flxjw) = Le®
LL

Background of the Exponential Distribution

Like the chi-square distribution, the exponential distribution is a special case
of the gamma distribution (obtained by setting a = 1)

x
y = filxl|a.b) = — 1 £l ®
E'Tia)

where I'( - ) is the Gamma function.

The exponential distribution is special because of its utility in modeling
events that occur randomly over time. The main application area is in studies
of lifetimes.

Parameter Estimation for the Exponential Distribution

Suppose you are stress testing light bulbs and collecting data on their
lifetimes. You assume that these lifetimes follow an exponential distribution.
You want to know how long you can expect the average light bulb to last.
Parameter estimation is the process of determining the parameters of the
exponential distribution that fit this data best in some sense.

One popular criterion of goodness is to maximize the likelihood function. The
likelihood has the same form as the exponential pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.
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The function expfit returns the MLEs and confidence intervals for the
parameters of the exponential distribution. Here is an example using random
numbers from the exponential distribution with p = 700.

lifetimes = exprnd(700,100,1);
[muhat, muci] = expfit(lifetimes)

muhat =
672.8207
muci =

547.4338
810.9437

The MLE for parameter p is 672, compared to the true value of 700. The 95%
confidence interval for p goes from 547 to 811, which includes the true value.

In the life tests you do not know the true value of 1 so it is nice to have a
confidence interval on the parameter to give a range of likely values.

Example and Plot of the Exponential Distribution

For exponentially distributed lifetimes, the probability that an item will
survive an extra unit of time is independent of the current age of the item.
The example shows a specific case of this special property.

1 =10:10:60;
1pd = 1+0.1;
deltap = (expcdf(1lpd,50)-expcdf(1l,50))./(1-expcdf(1,50))

deltap =
0.0020 0.0020 0.0020 0.0020 0.0020 0.0020

The following commands generate a plot of the exponential pdf with its
parameter (and mean), p, set to 2.

X = 0:0.1:10;
y = exppdf(x,2);
plot(x,y)
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Extreme Value Distribution

Definition of the Extreme Value Distribution

The probability density function for the extreme value distribution with
location parameter  and scale parameter ois

y = fix|u.o) = c_lexp[u]exp(—exp(uj]
o =

If T has a Weibull distribution with parameters a and b, as described in
“Weibull Distribution” on page 5-90, then log T has an extreme value
distribution with parameters p = log ¢ and simoc = 1/b.

Background of the Exireme Value Distribution

Extreme value distributions are often used to model the smallest or largest
value among a large set of independent, identically distributed random values
representing measurements or observations. The extreme value distribution
used in Statistics Toolbox is appropriate for modeling the smallest value
from a distribution whose tails decay exponentially fast, for example, the
normal distribution. It can also model the largest value from a distribution,
such as the normal or exponential distributions, by using the negative of the
original values.

For example, the values generated by the following code have approximately
an extreme value distribution.

xmin = min(randn(1000,5), []1, 1);
negxmax = -max(randn(1000,5), [], 1);

Although the extreme value distribution is most often used as a model for
extreme values, you can also use it as a model for other types of continuous
data. For example, extreme value distributions are closely related to the
Weibull distribution. If T has a Weibull distribution, then log(T) has a type 1
extreme value distribution.

Parameter Estimation for the Extreme Value Distribution

The function evfit returns the maximum likelihood estimates (MLEs) and
confidence intervals for the parameters of the extreme value distribution. The
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following example shows how to fit some sample data using evfit, including
estimates of the mean and variance from the fitted distribution.

Suppose you want to model the size of the smallest washer in each batch

of 1000 from a manufacturing process. If you believe that the sizes are
independent within and between each batch, you can fit an extreme value
distribution to measurements of the minimum diameter from a series of eight
experimental batches. The following code returns the MLEs of the distribution
parameters as parmhat and the confidence intervals as the columns of parmci.

X = [19.774 20.141 19.44 20.511 21.377 19.003 19.66 18.83];
[parmhat, parmci] = evfit(x)

parmhat =
20.2506 0.8223

parmci =
19.644 0.49861
20.857 1.3562

You can find mean and variance of the extreme value distribution with these
parameters using the function evstat.

[meanfit, varfit] = evstat(parmhat(1),parmhat(2))

meanfit =
19.776

varfit =
1.1123

Plot of the Extreme Value Distribution

The following code generates a plot of the pdf for the extreme value
distribution.

t =[-5:.01:2];
y = evpdf(t);
plot(t, vy)
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The extreme value distribution is skewed to the left, and its general shape
remains the same for all parameter values. The location parameter, mu, shifts
the distribution along the real line, and the scale parameter, sigma, expands
or contracts the distribution. This example plots the probability function for
different combinations of mu and sigma.

X = -15:.01:5;
plot(x,evpdf(x,2,1),'-"', x,evpdf(x,0,2),':",

x,evpdf(x,-2,4),'-.");

legend({'mu = 2, sigma = 1' 'mu = 0, sigma = 2' 'mu = -2,'...
'sigma = 4'},2)

xlabel('x")

ylabel('f(x|mu,sigma')
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F Distribution

Definition of the F Distribution
The pdf for the F' distribution is

[i"r'1+1'r'2_:|] 1'.] V-2
2 JMiyg_ o« ®
¥y + Ve

e ™ [ ()]

where I'( - ) is the Gamma function.

¥ = filx|vyve) =

Background of the F distribution

The F distribution has a natural relationship with the chi-square distribution.
If y, and y, are both chi-square with v; and v, degrees of freedom respectively,
then the statistic F below is F-distributed.

11
Y1
FI:".-':I_,"-'QJ = -
ta
Vo
The two parameters, v; and V,, are the numerator and denominator degrees

of freedom. That is, v; and v, are the number of independent pieces of
information used to calculate y; and y,, respectively.

Example and Plot of the F Distribution

The most common application of the F' distribution is in standard tests of
hypotheses in analysis of variance and regression.

The plot shows that the F' distribution exists on the positive real numbers
and is skewed to the right.

Xx = 0:0.01:10;
y = fpdf(x,5,3);
plot(x,y)
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Gamma Distribution

Definition of the Gamma Distribution
The gamma pdf is

X

1 a-1"%
a X [
ETia)

y = flxla.b) =

where I'( - ) is the Gamma function.

Background of the Gamma Distribution

The gamma distribution models sums of exponentially distributed random
variables.

The gamma distribution family is based on two parameters. The chi-square
and exponential distributions, which are children of the gamma distribution,
are one-parameter distributions that fix one of the two gamma parameters.

The gamma distribution has the following relationship with the incomplete
Gamma function.

flx|a,b) = gammainc(%,a)

For b = 1 the functions are identical.

When « is large, the gamma distribution closely approximates a normal
distribution with the advantage that the gamma distribution has density
only for positive real numbers.

Parameter Estimation for the Gamma Distribution

Suppose you are stress testing computer memory chips and collecting data on
their lifetimes. You assume that these lifetimes follow a gamma distribution.
You want to know how long you can expect the average computer memory chip
to last. Parameter estimation is the process of determining the parameters of
the gamma distribution that fit this data best in some sense.
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One popular criterion of goodness is to maximize the likelihood function.
The likelihood has the same form as the gamma pdf above. But for the pdf,
the parameters are known constants and the variable is x. The likelihood
function reverses the roles of the variables. Here, the sample values (the x’s)
are already observed. So they are the fixed constants. The variables are the
unknown parameters. MLE involves calculating the values of the parameters
that give the highest likelihood given the particular set of data.

The function gamfit returns the MLEs and confidence intervals for the
parameters of the gamma distribution. Here is an example using random
numbers from the gamma distribution with ¢ = 10 and b = 5.

lifetimes = gamrnd(10,5,100,1);
[phat, pci] = gamfit(lifetimes)
phat =

10.9821 4.7258

pci

7.4001 3.1543
14.5640 6.2974

Note phat(1) = a and phat(2) = b. The MLE for parameter a is 10.98,
compared to the true value of 10. The 95% confidence interval for a goes from
7.4 to 14.6, which includes the true value.

Similarly the MLE for parameter b is 4.7, compared to the true value of 5.
The 95% confidence interval for b goes from 3.2 to 6.3, which also includes
the true value.

In the life tests you do not know the true value of @ and b so it is nice to have
a confidence interval on the parameters to give a range of likely values.

Example and Plot of the Gamma Distribution

In the example the gamma pdf is plotted with the solid line. The normal
pdf has a dashed line type.

X = gaminv((0.005:0.01:0.995),100,10);
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y = gampdf(x,100,10);
y1 = normpdf(x,1000,100);
plOt(Xsy7l'lsX:y1sl'-l)
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Generalized Extreme Value Distribution

Definition of the Generalized Extreme Value Distribution

The probability density function for the generalized extreme value distribution
with location parameter p, scale parameter ¢, and shape parameter k # 0 is

1 1

1 L1

y=f<x|k,u,c>=(l]eXp _(Mw) K (Hk(x—u)) K
9 o p

for

1+kEW o
(o)

k > 0 corresponds to the Type II case, while k < 0 corresponds to the Type
III case. In the limit for k = 0, corresponding to the Type I case, the density is

(x—u))_(x—u)]

(o} 9

y =f(q0,u,0) =(%)exp(—exp(—

Background of the Generalized Extreme Value Distribution

Like the extreme value distribution, the generalized extreme value
distribution is often used to model the smallest or largest value among a
large set of independent, identically distributed random values representing
measurements or observations. For example, you might have batches of 1000
washers from a manufacturing process. If you record the size of the largest
washer in each batch, the data are known as block maxima (or minima if you
record the smallest). You can use the generalized extreme value distribution
as a model for those block maxima.

The generalized extreme value combines three simpler distributions into a
single form, allowing a continuous range of possible shapes that includes all
three of the simpler distributions. You can use any one of those distributions
to model a particular dataset of block maxima. The generalized extreme
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value distribution allows you to “let the data decide” which distribution is
appropriate.

The three cases covered by the generalized extreme value distribution are
often referred to as the Types I, II, and III. Each type corresponds to the
limiting distribution of block maxima from a different class of underlying
distributions. Distributions whose tails decrease exponentially, such as the
normal, lead to the Type I. Distributions whose tails decrease as a polynomial,
such as Student’s t, lead to the Type II. Distributions whose tails are finite,
such as the beta, lead to the Type III.

Types I, I, and IIT are sometimes also referred to as the Gumbel, Frechet,
and Weibull types, though this terminology can be slightly confusing. The
Type I (Gumbel) and Type III (Weibull) cases actually correspond to the
mirror images of the usual Gumbel and Weibull distributions, for example,
as computed by the functions evcdf and evfit , or wblcdf and wblfit,
respectively. Finally, the Type II (Frechet) case is equivalent to taking the
reciprocal of values from a standard Weibull distribution.

Parameter Estimation for the Generalized Extreme Value
Distribution

If you generate 250 blocks of 1000 random values drawn from Student’s t
distribution with 5 degrees of freedom, and take their maxima, you can fit a
generalized extreme value distribution to those maxima.

blocksize = 1000;

nblocks = 250;

t = trnd(5,blocksize,nblocks);
x = max(t); % 250 column maxima
paramEsts = gevfit(x)

paramksts

0.1507 1.2712 5.8816

Notice that the shape parameter estimate (the first element) is positive,
which is what you would expect based on block maxima from a Student’s t
distribution.

hist(x,2:20);
set(get(gca,'child'), 'FaceColor',[.9 .9 .9])
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xgrid = linspace(2,20,1000);
line(xgrid,nblocks*...
gevpdf (xgrid,paramests(1),paramEsts(2),paramsts(3)));
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Plot of the Generalized Extreme Value Distribution

The following code generates examples of probability density functions for the
three basic forms of the generalized extreme value distribution.

x = linspace(-3,6,1000);

y1 = gevpdf(x,-.5,1,0);

y2 = gevpdf(x,0,1,0);

y3 = gevpdf(x,.5,1,0)

plOt(X:y17l'ls X,y2,'- ] Xsyssl'l)

legend({'K<0, Type III' 'K=0, Type I' 'K>0, Type II'});
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Notice that for k > 0, the distribution has zero probability density for x such
that

X< -2
I(l~l

For k < 0, the distribution has zero probability density for
x> 24
K u

In the limit for k = 0, there is no upper or lower bound.
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Generalized Pareto Distribution

Definition of the Generalized Pareto Distribution

The probability density function for the generalized Pareto distribution with
shape parameter k # 0, scale parameter G, and threshold parameter 6, is

1

_1-=
y=f<94k,c,e)=@(1+k@) ”

o

for 6 < x, when k > 0,orfor 6 < x < —% when k < 0.

In the limit for k = 0, the density is

_(x-0)

y=F(0,6,0) =(1)e o

o

for 6 < x.

If k = 0 and 6 = 0, the generalized Pareto distribution is equivalent to
the exponential distribution. If k > 0 and 6 = G, the generalized Pareto
distribution is equivalent to the Pareto distribution.

Background of the Generalized Pareto Distribution

Like the exponential distribution, the generalized Pareto distribution is
often used to model the tails of another distribution. For example, you might
have washers from a manufacturing process. If random influences in the
process lead to differences in the sizes of the washers, a standard probability
distribution, such as the normal, could be used to model those sizes. However,
while the normal distribution might be a good model near its mode, it might
not be a good fit to real data in the tails and a more complex model might
be needed to describe the full range of the data. On the other hand, only
recording the sizes of washers larger (or smaller) than a certain threshold
means you can fit a separate model to those tail data, which are known as
exceedences. You can use the generalized Pareto distribution in this way, to
provide a good fit to extremes of complicated data.
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The generalized Pareto distribution allows a continuous range of possible
shapes that includes both the exponential and Pareto distributions as special
cases. You can use either of those distributions to model a particular dataset
of exceedences. The generalized extreme value distribution allows you to “let
the data decide” which distribution is appropriate.

The generalized Pareto distribution has three basic forms, each corresponding
to a limiting distribution of exceedence data from a different class of
underlying distributions.

® Distributions whose tails decrease exponentially, such as the normal, lead
to a generalized Pareto shape parameter of zero.

¢ Distributions whose tails decrease as a polynomial, such as Student’s t,
lead to a positive shape parameter.

¢ Distributions whose tails are finite, such as the beta, lead to a negative
shape parameter.

Parameter Estimation for the Generalized Pareto Distribution
If you generate a large number of random values from a Student’s t
distribution with 5 degrees of freedom, and then discard everything less than
2, you can fit a generalized Pareto distribution to those exceedences.

t trnd(5,5000,1);
y = t(t>2) - 2;
paramEsts = gpfit(y)
paramkEsts =

0.1598 0.7968

Notice that the shape parameter estimate (the first element) is positive, which
is what you would expect based on exceedences from a Student’s t distribution.

hist(y+2,2.25:.5:11.75);
set(get(gca, 'child'), 'FaceColor',[.9 .9 .9])
xgrid = linspace(2,12,1000);
line(xgrid,.5*1length(y)*...

gppdf (xgrid,paramgsts(1),paramEsts(2),2));
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Plot of the Generalized Pareto Distribution

The following code generates examples of the probability density functions for
the three basic forms of the generalized Pareto distribution.

x = linspace(0,10,1000);

y1 = gppdf(x,-.25,1,0);

y2 = gppdf(x,0,1,0);

y3 = gppdf(x,1,1,0)
plOt(X5y1sl'I; Xsy25l'|! X;y3;"')
legend({'K<0' 'K=0' 'K>0");
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Notice that for k < 0, the distribution has zero probability density for x > 2 ,
while for k > 0, there is no upper bound. k
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Geometric Distribution

Definition of the Geometric Distribution
The geometric pdf is

x
y=flxlp) = pg Ly, %)

where ¢ =1 - p. The geometric distribution is a special case of the negative
binomial distribution, with r = 1.

Background of the Geometric Distribution
The geometric distribution is discrete, existing only on the nonnegative
integers. It is useful for modeling the runs of consecutive successes (or
failures) in repeated independent trials of a system.

The geometric distribution models the number of successes before one failure

in an independent succession of tests where each test results in success or
failure.

Example and Plot of the Geometric Distribution

Suppose the probability of a five-year-old battery failing in cold weather is
0.03. What is the probability of starting 25 consecutive days during a long
cold snap?

1 - geocdf(25,0.03)
ans =
0.4530

The plot shows the cdf for this scenario.

X = 0:25;
y = geocdf(x,0.03);
stairs(x,y)
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Hypergeometric Distribution

Definition of the Hypergeometric Distribution
The hypergeometric pdf is

o
(%)

Background of the Hypergeometric Distribution

The hypergeometric distribution models the total number of successes in a
fixed-size sample drawn without replacement from a finite population.

y = Flx|M.K.n) =

The distribution is discrete, existing only for nonnegative integers less than
the number of samples or the number of possible successes, whichever is
greater. The hypergeometric distribution differs from the binomial only in
that the population is finite and the sampling from the population is without
replacement.

The hypergeometric distribution has three parameters that have direct
physical interpretations.

e M is the size of the population.

¢ K is the number of items with the desired characteristic in the population.
® 1 is the number of samples drawn.

Sampling “without replacement” means that once a particular sample

is chosen, it is removed from the relevant population for all subsequent
selections.

Example and Plot of the Hypergeometric Distribution

The plot shows the cdf of an experiment taking 20 samples from a group of
1000 where there are 50 items of the desired type.

X
y

0:10;
hygecdf (x,1000,50,20);
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Inverse Gaussian Distribution

Definition of the Inverse Gaussian Distribution
The inverse Gaussian distribution has the density function

h exp{— L IflI—LHE}
Dmx® 2!.[2.1: S

Background on the Inverse Gaussian Distribution

Also known as the Wald distribution, the inverse Gaussian is used to model

nonnegative positively skewed data. The distribution originated in the theory
of Brownian motion, but has been used to model diverse phenomena. Inverse
Gaussian distributions have many similarities to standard Gaussian (normal)

distributions, which lead to applications in inferential statistics.

Parameter estimation for the Inverse Gaussian Distribution

See mle, dfittool.
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Inverse Wishart Distribution

Definition of the Inverse Wishart Distribution

The inverse Wishart distribution is based on the Wishart distribution. If a

random matrix has a Wishart distribution with parameters ! and v, then

the inverse of that random matrix has an inverse Wishart distribution with
parameters > and v. The mean of the distribution is given by

_z
v—-d-1

Statistics Toolbox only supports random matrix generation for the inverse
Wishart, and only for nonsingular ¥ and v greater than d — 1.
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Johnson System of Distributions

See “Pearson and Johnson Systems of Distributions” on page 5-169.
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Logistic Distribution

Definition of the Logistic Distribution
The logistic distribution has the density function

x—

o
[

o
r—p
5[1 e ]

with location parameter u and scale parameter o> 0, for all real x.

Background on the Logistic Distribution

The logistic distribution originated with Verhulst’s work on demography in
the early 1800s. The distribution has been used for various growth models,
and is used in logistic regression. It has longer tails and a higher kurtosis

than the normal distribution.

Parameter estimation for the Logistic Distribution
See mle, dfittool.
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Loglogistic Distribution

Definition of the Loglogistic Distribution

The variable x has a loglogistic distribution with location parameter x and
scale parameter o> 0 if In x has a logistic distribution with parameters z and
o. The relationship is similar to that between the lognormal and normal
distribution.

Parameter estimation for the Loglogistic Distribution
See mle, dfittool.
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Lognormal Distribution

Definition of the Lognormal Distribution

The lognormal pdf is
—ilnx—pi

=
y = Flalo) = —1—e =
XGHf2T

Background of the Lognormal Distribution

The normal and lognormal distributions are closely related. If X is distributed
lognormally with parameters x and o, then log(X) is distributed normally
with mean x and standard deviation o.

The mean m and variance v of a lognormal random variable are functions of u
and othat can be calculated with the lognstat function. They are:

m = exp(u +02/2)
v=exp2u+o2)exp(c? 1)

A lognormal distribution with mean m and variance v has parameters

U= log(m2 /Nv+m?)
o =+logw/m?+1)

The lognormal distribution is applicable when the quantity of interest must
be positive, since log(X) exists only when X is positive.

Example and Plot of the Lognormal Distribution

Suppose the income of a family of four in the United States follows a lognormal
distribution with 1 = 1log(20,000) and ¢2 = 1.0. Plot the income density.

X = (10:1000:125010) ';
y = lognpdf(x,log(20000),1.0);
plot(x,y)
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set(gca, 'xtick',[0 30000 60000 90000 120000])
set(gca, 'xticklabel',str2mat('0', '$30,000','$60,000',...
'$90,000', '$120,000"'))

3.5x 10

2.5}

1.5F

0.5

0 $30,000 $60,000 $90,000 $120,000
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Multinomial Distribution

Definition of the Multinomial Distribution
The multinomial pdf is

n!
(x n, ):— xl... Xp
fx|n,p Y xk!lﬁ Dy,

where x = (x,, ... , x,) gives the number of each of £ outcomes in n trials of a
process with fixed probabilities p = (p,, ... , p,) of individual outcomes in any
one trial. The vector x has non-negative integer components that sum to n.
The vector p has non-negative integer components that sum to 1.

Background of the Multinomial Distribution

The multinomial distribution is a generalization of the binomial distribution.
The binomial distribution gives the probability of the number of “successes”
and “failures” in n independent trials of a two-outcome process. The
probability of “success” and “failure” in any one trial is given by the fixed
probabilities p and g = 1-p. The multinomial distribution gives the probability
of each combination of outcomes in n independent trials of a k-outcome
process. The probability of each outcome in any one trial is given by the fixed
probabilities p,, ... , p.

The expected value of outcome i is np,. The variance of outcome i is np,(1 —p,).
The covariance of outcomes i and j is —npp; for distinct ¢ and j.

Example and Plot of the Multinomial Distribution

% Compute the distribution

p=1[1/2 1/3 1/6]; % Outcome probabilities

n = 10; % Sample size

x1 = 0:n;

x2 = 0:n;

[X1,X2] = meshgrid(x1,x2);

X8 = n-(X1+X2);

Y = mnpdf ([X1(:),X2(:),X3(:)],repmat(p,(n+1)"2,1));
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% Plot the distribution

Y = reshape(Y,n+1,n+1);
bar3(Y)

set(gca, 'XTickLabel',0:n)
set(gca, 'YTickLabel',0:n)
xlabel('x_1")
ylabel('x_2")
zlabel('Probability Mass')

Trinomial Distribution

o o
o o 2
& o =

Probability Mass

Note that the visualization does not show x,, which is determined by the
constraint x; + x, + x; = n.
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Multivariate Normal Distribution

Definition of the Multivariate Normal Distribution

The probability density function of the d-dimensional multivariate normal
distribution is given by

-G ey,

e
= s 52 =
y=f(x,1,x%) |1/2 1

Jend

where x and p are 1-by-d vectors and ¥ is a d-by-d symmetric positive definite
matrix. While it is possible to define the multivariate normal for singular

¥, the density cannot be written as above. Statistics Toolbox supports only
random vector generation for the singular case. Note that while most
textbooks define the multivariate normal with x and p oriented as column
vectors, for the purposes of data analysis software, it is more convenient to
orient them as row vectors, and Statistics Toolbox uses that orientation.

=

Background of the Multivariate Normal Distribution

The multivariate normal distribution is a generalization of the univariate
normal to two or more variables. It is a distribution for random vectors

of correlated variables, each element of which has a univariate normal
distribution. In the simplest case, there is no correlation among variables, and
elements of the vectors are independent univariate normal random variables.

The multivariate normal distribution is parameterized with a mean vector, p,
and a covariance matrix, >.. These are analogous to the mean p and standard
deviation ¢ parameters of a univariate normal distribution. The diagonal
elements of > contain the variances for each variable, while the off-diagonal
elements of 3 contain the covariances between variables.

The multivariate normal distribution is often used as a model for multivariate
data, primarily because it is one of the few multivariate distributions that is
tractable to work with.
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Example and Plot of the Multivariate Normal Distribution

This example shows the probability density function (pdf) and cumulative
distribution function (cdf) for a bivariate normal distribution with unequal
standard deviations. You can use the multivariate normal distribution in a
higher number of dimensions as well, although visualization is not easy.

mu = [0 O];

Sigma = [.25 .3; .3 1];

X1 = -3:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvnpdf ([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]1);

axis([-3 3 -3 3 0 .4])

xlabel('x1"'); ylabel('x2'); zlabel('Probability Density');

Probability Density

F = mvncdf ([X1(:) X2(:)],mu,Sigma);

F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))1]);

5-57



5 Probability Distributions

axis([-3 3 -3 3 0 1])
xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');

=
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Cumulative Probability
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x2 -3

x1

Since the bivariate normal distribution is defined on the plane, you can also
compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour (x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);

xlabel('x"); ylabel('y');
line([0 0O 11 0],[1 001 1],"'linestyle','--","'color','k');
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mvncdf ([0 O],[1 1],mu,Sigma)

ans =
0.20974

Computing a multivariate cumulative probability very precisely can be
significantly more work than computing a univariate probability. Therefore,
the mvncdf function computes values to less than full machine precision by
default, and returns an estimate of the error as an optional second output.
You can also specify a maximum error tolerance; see mvncdf.

[F,err] = mvncdf([O O],[1 1],mu,Sigma)

0.20974

1e-008
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Multivariate t Distribution

Definition of the Multivariate Student’s t Distribution

The probability density function of the d-dimensional multivariate Student’s ¢
distribution is given by

1 1 T(v+d)2) s plyg |V
y = flx, P, V) = vt [1+X X]

|Z|1/2 \/(Vn)d F(V/Z) A%

where x is a 1-by-d vector, P is a d-by-d symmetric, positive definite matrix,
and vis a positive scalar. While it is possible to define the multivariate
Student’s ¢ for singular P, the density cannot be written as above. For the
singular case, Statistics Toolbox only supports random number generation.
Note that while most textbooks define the multivariate Student’s ¢ with x
oriented as a column vector, for the purposes of data analysis software, it is
more convenient to orient x as a row vector, and Statistics Toolbox uses that
orientation.

Background of the Multivariate Student’s t Distribution

The multivariate Student’s ¢ distribution is a generalization of the univariate
Student’s ¢ to two or more variables. It is a distribution for random vectors
of correlated variables, each element of which has a univariate Student’s ¢
distribution. In the same way as the univariate Student’s ¢ distribution can
be constructed by dividing a standard univariate normal random variable by
the square root of a univariate chi-square random variable, the multivariate
Student’s ¢ distribution can be constructed by dividing a multivariate
normal random vector having zero mean and unit variances by a univariate
chi-square random variable.

The multivariate Student’s ¢ distribution is parameterized with a correlation
matrix, P, and a positive scalar degrees of freedom parameter, v. vis
analogous to the degrees of freedom parameter of a univariate Student’s ¢
distribution. The off-diagonal elements of P contain the correlations between
variables. Note that when P is the identity matrix, variables are uncorrelated;
however, they are not independent.

The multivariate Student’s ¢ distribution is often used as a substitute for
the multivariate normal distribution in situations where it is known that
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the marginal distributions of the individual variables have fatter tails than
the normal.

Example and Plot of the Multivariate Student’s t Distribution

This example shows the probability density function (pdf) and cumulative

distribution function (cdf) for a bivariate Student’s ¢ distribution. You can use
the multivariate Student’s ¢ distribution in a higher number of dimensions as
well, although visualization is not easy.

Prebability Density

Rho = [1 .6; .6 1];

nu = 5;

x1 = -8:.2:3; x2 = -3:.2:3;

[X1,X2] = meshgrid(x1,x2);

F = mvtpdf([X1(:) X2(:)],Rho,nu);

F = reshape(F,length(x2),length(x1));
surf(x1,x2,F);
caxis([min(F(:))-.5*range(F(:)),max(F(:))]1);
axis([-3 3 -3 3 0 .2])

xlabel('x1'); ylabel('x2'); zlabel('Probability Density');
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F = mvtcdf ([X1(:) X2(:)],Rho,nu);

F = reshape(F,length(x2),length(x1));

surf(x1,x2,F);

caxis([min(F(:))-.5*range(F(:)),max(F(:))1);

axis([-3 3 -3 3 0 1])

xlabel('x1'); ylabel('x2'); zlabel('Cumulative Probability');
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Since the bivariate Student’s ¢ distribution is defined on the plane, you can
also compute cumulative probabilities over rectangular regions. For example,
this contour plot illustrates the computation that follows, of the probability
contained within the unit square.

contour(x1,x2,F,[.0001 .001 .01 .05:.1:.95 .99 .999 .9999]);

xlabel('x'); ylabel('y');
line([0 O 11 0],[1 001 1],"'linestyle','--","'color','k');

5-62



Distribution Reference

mvtcdf ([0 O],[1 1],Rho,nu)

ans =
0.14013

Computing a multivariate cumulative probability very precisely can be
significantly more work than computing a univariate probability. Therefore,
the mvtcdf function computes values to less than full machine precision by
default, and returns an estimate of the error as an optional second output.
You can also specify a maximum error tolerance; see mvtcdf.

[F,err] = mvtcdf([O O],[1 1],Rho,nu)

0.14013

1e-008
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Nakagami Distribution

Definition of the Nakagami Distribution
The Nakagami distribution has the density function

M2

n 1 T E
E[E] 1 1;[2” l]f w

w) Tlu)

with shape parameter p and scale parameter ® > 0, for x > 0. If x has a
Nakagami distribution with parameters p and o, then x? has a gamma
distribution with shape parameter pn and scale parameter w/j.

Background on the Nakagami Distribution

In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent

of the fading.

Parameter estimation for the Nakagami Distribution
See mle, dfittool.
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Negative Binomial Distribution

Definition of the Negative Binomial Distribution
When the r parameter is an integer, the negative binomial pdf is

r+x-1% r x
y = flx|r.p) = [ N ]P‘ g Ly q 0%

where ¢ = 1 — p. When r is not an integer, the binomial coefficient in the
definition of the pdf is replaced by the equivalent expression

Tir+x)
TirTix+ 1)

Background of the Negative Binomial Distribution

In its simplest form (when r is an integer), the negative binomial distribution
models the number of failures x before a specified number of successes is
reached in a series of independent, identical trials. Its parameters are the
probability of success in a single trial, p, and the number of successes, r. A
special case of the negative binomial distribution, when r = 1, is the geometric
distribution, which models the number of failures before the first success.

More generally, r can take on non-integer values. This form of the negative
binomial distribution has no interpretation in terms of repeated trials, but,
like the Poisson distribution, it is useful in modeling count data. The negative
binomial distribution is more general than the Poisson distribution because it
has a variance that is greater than its mean, making it suitable for count data
that do not meet the assumptions of the Poisson distribution. In the limit,

as r increases to infinity, the negative binomial distribution approaches the
Poisson distribution.

Parameter Estimation for the Negative Binomial Distribution

Suppose you are collecting data on the number of auto accidents on a busy
highway, and would like to be able to model the number of accidents per day.
Because these are count data, and because there are a very large number of
cars and a small probability of an accident for any specific car, you might
think to use the Poisson distribution. However, the probability of having an
accident is likely to vary from day to day as the weather and amount of traffic
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change, and so the assumptions needed for the Poisson distribution are not
met. In particular, the variance of this type of count data sometimes exceeds
the mean by a large amount. The data below exhibit this effect: most days
have few or no accidents, and a few days have a large number.

accident = [2 3 4 2 3 1 12 8 14 31 23 1 10 7 O0];
mean(accident)

ans =
8.0667

var(accident)
ans =

79.352

The negative binomial distribution is more general than the Poisson, and is
often suitable for count data when the Poisson is not. The function nbinfit
returns the maximum likelihood estimates (MLEs) and confidence intervals
for the parameters of the negative binomial distribution. Here are the results
from fitting the accident data:

[phat,pci] = nbinfit(accident)
phat =
1.006 0.11088
pci =
0.015286  0.00037634
1.9967 0.22138

It is difficult to give a physical interpretation in this case to the individual
parameters. However, the estimated parameters can be used in a model
for the number of daily accidents. For example, a plot of the estimated
cumulative probability function shows that while there is an estimated 10%
chance of no accidents on a given day, there is also about a 10% chance that
there will be 20 or more accidents.

plot(0:50,nbincdf (0:50,phat(1),phat(2)),'.-");
xlabel('Accidents per Day')
ylabel('Cumulative Probability')
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Example and Plot of the Negative Binomial Distribution

The negative binomial distribution can take on a variety of shapes ranging
from very skewed to nearly symmetric. This example plots the probability
function for different values of r, the desired number of successes: .1, 1, 3, 6.

X = 0:10;
plot(x,nbinpdf(x,.1,.5),"'s-",
X, nb1npdf(x,1, 5),'o-",
X,nbinpdf (x,3,.5),'d-", .
X, nb1npdf(x,6, 5),'"-");
legend({'r = .1" 'r=1" 'r=38"'" 'r =6'})
xlabel('x")

ylabel('f(x|r,p")
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Noncentral Chi-Square Distribution

Definition of the Noncentral Chi-Square Distribution

There are many equivalent formulas for the noncentral chi-square distribution
function. One formulation uses a modified Bessel function of the first kind.
Another uses the generalized Laguerre polynomials. Statistics Toolbox
computes the cumulative distribution function values using a weighted

sum of 2 probabilities with the weights equal to the probabilities of a
Poisson distribution. The Poisson parameter is one-half of the noncentrality
parameter of the noncentral chi-square

- ((38) -
Fald) = 3| = e’
j=0

2 & e
JI"[‘:"'"W.-+E_,r'h'1']

where 6 is the noncentrality parameter.

Background of the Noncentral Chi-Square Distribution

The y2 distribution is actually a simple special case of the noncentral
chi-square distribution. One way to generate random numbers with a 2
distribution (with v degrees of freedom) is to sum the squares of v standard
normal random numbers (mean equal to zero.)

What if the normally distributed quantities have a mean other than zero? The
sum of squares of these numbers yields the noncentral chi-square distribution.
The noncentral chi-square distribution requires two parameters: the degrees
of freedom and the noncentrality parameter. The noncentrality parameter is
the sum of the squared means of the normally distributed quantities.

The noncentral chi-square has scientific application in thermodynamics and
signal processing. The literature in these areas may refer to it as the Ricean
or generalized Rayleigh distribution.

Example of the Noncentral Chi-Square Distribution
The following commands generate a plot of the noncentral chi-square pdf.
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X = (0:0.1:10) ';

p1 = ncx2pdf(x,4,2);

p = chi2pdf(x,4);
plOt(X1p7l'lsxsp1sl'l)
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Noncentral F Distribution

Definition of the Noncentral F Distribution

Similar to the noncentral j? distribution, the toolbox calculates noncentral
F distribution probabilities as a weighted sum of incomplete beta functions
using Poisson probabilities as the weights.

Fix|vy. vy, 8) =

W(E]J I[HL

W9 . Vo
_+ J—
vo+vy ox|g g

I(x]a,b) is the incomplete beta function with parameters a and b, and Jis
the noncentrality parameter.

_,r—EI

Background of the Noncentral F Distribution

As with the »? distribution, the F distribution is a special case of the
noncentral F' distribution. The F distribution is the result of taking the ratio
of 72 random variables each divided by its degrees of freedom.

If the numerator of the ratio is a noncentral chi-square random variable
divided by its degrees of freedom, the resulting distribution is the noncentral
F distribution.

The main application of the noncentral F' distribution is to calculate the power
of a hypothesis test relative to a particular alternative.

Example and Plot of the Noncentral F Distribution
The following commands generate a plot of the noncentral F pdf.

= (0.01:0.1:10.01) ';

p1 = ncfpdf(x,5,20,10);
p = fpdf(x,5,20);
plOt(X!p7l'lsxsp1sl'l)
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Noncentral f Distribution

Definition of the Noncentral t Distribution

The most general representation of the noncentral ¢ distribution is quite
complicated. Johnson and Kotz [27] give a formula for the probability that a
noncentral ¢ variate falls in the range [, ¢].

J‘ a
= @52] . 211w
FPrii-ti=x=<t|(v,8)) = Z — I[ X 2 §+j, ]

|
J: v+x

j=0

I(x]a,b) is the incomplete beta function with parameters a¢ and b, Jis the
noncentrality parameter, and vis the number of degrees of freedom.

Background of the Noncentral t Distribution
The noncentral ¢ distribution is a generalization of Student’s ¢ distribution.

Student’s ¢ distribution with n — 1 degrees of freedom models the ¢-statistic

X—u

s/\n

where X is the sample mean and s is the sample standard deviation of a
random sample of size n from a normal population with mean p. If the
population mean is actually y,, then the ¢-statistic has a noncentral ¢
distribution with noncentrality parameter

t:

6:luO_.u

o/n

The noncentrality parameter is the normalized difference between y, and p.

The noncentral ¢ distribution gives the probability that a ¢ test will correctly
reject a false null hypothesis of mean py when the population mean is actually
o, that is, it gives the power of the ¢ test. The power increases as the
difference p, — Y increases, and also as the sample size n increases.
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Example and Plot of the Noncentral t Distribution
The following commands generate a plot of the noncentral ¢ pdf.

X = (-5:0.1:5)"';

p1 = nctcdf(x,10,1);

p = tcdf(x,10);
plOt(X1p7l'lsxsp1sl'l)
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Nonparametric Distributions

See the discussion of ksdensity in “Probability Density Estimation” on page
3-10.
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Normal Distribution

Definition of the Normal Distribution
The normal pdf is

—f.r—uf

1 25"
¥y = flx|u, o) = e
ST

Background of the Normal Distribution

The normal distribution is a two-parameter family of curves. The first
parameter, u, is the mean. The second, g, is the standard deviation. The
standard normal distribution (written ®(x)) sets z to 0 and oto 1.

®(x) is functionally related to the error function, erf.
erf(x) = 2Dixf2)-1

The first use of the normal distribution was as a continuous approximation
to the binomial.

The usual justification for using the normal distribution for modeling is the
Central Limit Theorem, which states (roughly) that the sum of independent
samples from any distribution with finite mean and variance converges to the
normal distribution as the sample size goes to infinity.

Parameter Estimation for the Normal Distribution

To use statistical parameters such as mean and standard deviation reliably,
you need to have a good estimator for them. The maximum likelihood
estimates (MLESs) provide one such estimator. However, an MLE might be
biased, which means that its expected value of the parameter might not
equal the parameter being estimated. For example, an MLE is biased for
estimating the variance of a normal distribution. An unbiased estimator
that is commonly used to estimate the parameters of the normal distribution
is the minimum variance unbiased estimator (MVUE). The MVUE has the
minimum variance of all unbiased estimators of a parameter.
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The MVUEs of parameters z and ¢® for the normal distribution are the
sample mean and variance. The sample mean is also the MLE for x. The
following are two common formulas for the variance.

n
1) s = %Zli.u,-__mﬂ
1=

n

2 1 -2

2) = =”_1-21[.1;1-—.1;J
I =

n -
- *g
X = E —
i n

Equation 1 is the maximum likelihood estimator for ¢?, and equation 2 is
the MVUE.

As an example, suppose you want to estimate the mean, u, and the variance,
o, of the heights of all fourth grade children in the United States. The
function normfit returns the MVUE for u, the square root of the MVUE for
0%, and confidence intervals for z and ¢®. Here is a playful example modeling
the heights in inches of a randomly chosen fourth grade class.

height = normrnd(50,2,30,1); % Simulate heights.
[mu,s,muci,sci] = normfit(height)

mu =
50.2025
1.7946
muci =
49,5210
50.8841

sci =
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1.4292
2.4125

Note that s*2 is the MVUE of the variance.
s"2

ans =
3.2206

Example and Plot of the Normal Distribution
The plot shows the bell curve of the standard normal pdf, with z =0 and o= 1.
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Pearson System of Distributions

See “Pearson and Johnson Systems of Distributions” on page 5-169.
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Poisson Distribution

Definition of the Poisson Distribution
The Poisson pdf is

x

|-|I|_ -
yo= flah) = e g )

Background of the Poisson Distribution

The Poisson distribution is appropriate for applications that involve counting
the number of times a random event occurs in a given amount of time,
distance, area, etc. Sample applications that involve Poisson distributions
include the number of Geiger counter clicks per second, the number of people
walking into a store in an hour, and the number of flaws per 1000 feet of
video tape.

The Poisson distribution is a one-parameter discrete distribution that takes
nonnegative integer values. The parameter, A, is both the mean and the
variance of the distribution. Thus, as the size of the numbers in a particular
sample of Poisson random numbers gets larger, so does the variability of the
numbers.

As Poisson showed, the Poisson distribution is the limiting case of a binomial
distribution where N approaches infinity and p goes to zero while Np = A.

The Poisson and exponential distributions are related. If the number of counts
follows the Poisson distribution, then the interval between individual counts
follows the exponential distribution.

Parameter Estimation for the Poisson Distribution

The MLE and the MVUE of the Poisson parameter, A, is the sample mean.
The sum of independent Poisson random variables is also Poisson distributed
with the parameter equal to the sum of the individual parameters. Statistics
Toolbox makes use of this fact to calculate confidence intervals A. As A gets
large the Poisson distribution can be approximated by a normal distribution
with p = A and o? = A. Statistics Toolbox uses this approximation for
calculating confidence intervals for values of A greater than 100.
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Example and Plot of the Poisson Distribution
The plot shows the probability for each nonnegative integer when A = 5.

x = 0:15;
y = poisspdf(x,5);
plot(x,y,'+")
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Rayleigh Distribution

Definition of the Rayleigh Distribution
The Rayleigh pdf is

y=Fflx|b)= b%e[%zl

Background of the Rayleigh Distribution

The Rayleigh distribution is a special case of the Weibull distribution. If
A and B are the parameters of the Weibull distribution, then the Rayleigh
distribution with parameter b is equivalent to the Weibull distribution with

parameters A = J2b and B = 2.

If the component velocities of a particle in the x and y directions are two
independent normal random variables with zero means and equal variances,
then the distance the particle travels per unit time is distributed Rayleigh.

In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent

of the fading.

Parameter Estimation for the Rayleigh Distribution

The raylfit function returns the MLE of the Rayleigh parameter. This
estimate is
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Example and Plot of the Rayleigh Distribution
The following commands generate a plot of the Rayleigh pdf.

e

x = [0:0.01:2];
p = raylpdf(x,0.5);
plot(x,p)
1.5
it
0sr
':l 1
0 0.5 1

1.5
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Rician Distribution

Definition of the Rician Distribution
The Rician distribution has the density function

3 a
x +S'J

IU(EJLQ E_[ o

o g

with noncentrality parameter s > 0 and scale parameter o> 0, for x > 0. I
is the zero-order modified Bessel function of the first kind. If x has a Rician
distribution with parameters s and o, then (x/0)? has a noncentral chi-square
distribution with two degrees of freedom and noncentrality parameter (s/0)2.

Background on the Rician Distribution

In communications theory, Nakagami distributions, Rician distributions,
and Rayleigh distributions are used to model scattered signals that reach
a receiver by multiple paths. Depending on the density of the scatter, the
signal will display different fading characteristics. Rayleigh and Nakagami
distributions are used to model dense scatters, while Rician distributions
model fading with a stronger line-of-sight. Nakagami distributions can be
reduced to Rayleigh distributions, but give more control over the extent

of the fading.

Parameter estimation for the Rician Distribution
See mle, dfittool.
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Student’s t Distribution

Definition of Student’s f Distribution
Student’s ¢ pdf is
v+ 1

1_[‘»-+ 1]
2. 9

ORI

1

y = Flalv) -

)-r-:‘|||—t
=

where I'( - ) is the Gamma function.

Background of Student’s t Distribution

The ¢ distribution is a family of curves depending on a single parameter v (the
degrees of freedom). As v goes to infinity, the ¢ distribution approaches the

standard normal distribution.

W. S. Gossett discovered the distribution through his work at the Guinness
brewery. At the time, Guinness did not allow its staff to publish, so Gossett

used the pseudonym “Student.”

If x is a random sample of size n from a normal distribution with mean y,

then the statistic

X—u

:s/\/ﬁ

t

where X is the sample mean and s is the sample standard deviation, has

Student’s ¢ distribution with n — 1 degrees of freedom.

Example and Plot of Student’s t Distribution

The plot compares the ¢ distribution with v =5 (solid line) to the shorter

tailed, standard normal distribution (dashed line).

X = -5:0.1:5;
y = tpdf(x,5);
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z = normpdf(x,0,1);
plOt(X1y7l'lsxszsl'-l)
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t Location-Scale Distribution

Definition of the t Location-Scale Distribution
The ¢ location-scale distribution has the density function

u+1J

. .-
v+l r—u [ ]
regh [o ()

ofun 1"[5} v

with location parameter u, scale parameter o> 0, and shape parameter v> 0.
If x has a ¢ location-scale distribution, with parameters u, o, and v, then

x—p
(e}

has a Student’s ¢ distribution with v degrees of freedom.

Background of the t Location-Scale Distribution

The ¢ location-scale distribution is useful for modeling data distributions
with heavier tails (more prone to outliers) than the normal distribution. It
approaches the normal distribution as v approaches infinity, and smaller
values of vyield heavier tails.

Parameter estimation for the t Location-Scale Distribution
See mle, dfittool.
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Uniform Distribution (Continuous)

Definition of the Continuous Uniform Distribution
The uniform cdf is

r—a .
__a.I[IT. b]l.'l.-:l

p = Fix|a.b) = p

Background of the Continuous Uniform Distribution

The uniform distribution (also called rectangular) has a constant pdf between
its two parameters ¢ (the minimum) and b (the maximum). The standard
uniform distribution (@ = 0 and b = 1) is a special case of the beta distribution,
obtained by setting both of its parameters to 1.

The uniform distribution is appropriate for representing the distribution of
round-off errors in values tabulated to a particular number of decimal places.

Parameter Estimation for the Continuous Uniform Distribution
The sample minimum and maximum are the MLEs of a and b respectively.

Example and Plot of the Continuous Uniform Distribution

The example illustrates the inversion method for generating normal random
numbers using rand and norminv. Note that the MATLAB function, randn,
does not use inversion since it is not efficient for this case.

u = rand(1000,1);
X = norminv(u,0,1);

hist(x)
300 T T T
200 F 1
100 | H 1
] — |_|’_| " ’_‘J_l
-4 -2 ] 2 4
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Uniform Distribution (Discrete)

Definition of the Discrete Uniform Distribution
The discrete uniform pdf is

i ooal AT 1 (x
y=flxN) = ST, %)

N

Background of the Discrete Uniform Distribution

The discrete uniform distribution is a simple distribution that puts equal
weight on the integers from one to N.

Example and Plot of the Discrete Uniform Distribution

As for all discrete distributions, the cdf is a step function. The plot shows
the discrete uniform cdf for N = 10.

x = 0:10;
y = unidcdf(x,10);
stairs(x,y)

set(gca, 'X1lim',[0 11])

1 T T T T
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a 2 4 & & 10

Pick a random sample of 10 from a list of 553 items:

numbers = unidrnd(553,1,10)
numbers
293 372 5 213 37 231 380 326 515 468
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Weibull Distribution

Definition of the Weibull Distribution
The Weibull pdf is

_(.1' 3
y = flx|a, b) = baPx® " 1e EJImIm]E.vJ

Background of the Weibull Distribution

Waloddi Weibull offered the distribution that bears his name as an
appropriate analytical tool for modeling the breaking strength of materials.
Current usage also includes reliability and lifetime modeling. The Weibull
distribution is more flexible than the exponential for these purposes.

To see why, consider the hazard rate function (instantaneous failure rate). If
f(t) and F(¢) are the pdf and cdf of a distribution, then the hazard rate is

hit) l_L—Fi:EJ

Substituting the pdf and cdf of the exponential distribution for f{¢) and F(¢)
above yields a constant. The example below shows that the hazard rate for
the Weibull distribution can vary.

Parameter Estimation for the Weibull Distribution

Suppose you want to model the tensile strength of a thin filament using
the Weibull distribution. The function wb1fit gives maximum likelihood
estimates and confidence intervals for the Weibull parameters.

strength = wblrnd(0.5,2,100,1); % Simulated strengths.
[p,ci] = wblfit(strength)

p:
0.4715 1.9811

ci
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0.4248 1.7067
0.5233 2.2996

The default 95% confidence interval for each parameter contains the true
value.

Example and Plot of the Weibull Distribution

The exponential distribution has a constant hazard function, which is not
generally the case for the Weibull distribution.

The plot shows the hazard functions for exponential (dashed line) and Weibull
(solid line) distributions having the same mean life. The Weibull hazard rate
here increases with age (a reasonable assumption).

t =0:0.1:4.5;

h1 = exppdf(t,0.6267) ./ (1-expcdf(t,0.6267));
h2 = wblpdf(t,2,2) ./ (1-wblcdf(t,2,2));
plot(t,h1,'-',t,h2,'-")

15 T T T T T
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Wishart Distribution

Definition of the Wishart Distribution

The probability density function of the d-dimensional Wishart distribution is
given by

X((V-d-l)/Z) ' e(-trace(Z’lX)/2)

y=fX,%, V) =

where X and ¥ are d-by-d symmetric positive definite matrices, and vis

a scalar greater than d — 1. While it is possible to define the Wishart for
singular ¥ or for integer v<d — 1, the density cannot be written as above.
Statistics Toolbox only supports random matrix generation for the Wishart,
including the singular cases.

Background of the Wishart Distribution

The Wishart distribution is a generalization of the univariate chi-square
distribution to two or more variables. It is a distribution for symmetric
positive semidefinite matrices, typically covariance matrices, the diagonal
elements of which are each chi-square random variables. In the same way
as the chi-square distribution can be constructed by summing the squares of
independent, identically distributed, zero-mean univariate normal random
variables, the Wishart distribution can be constructed by summing the inner
products of independent, identically distributed, zero-mean multivariate
normal random vectors.

The Wishart distribution is parameterized with a symmetric, positive
semidefinite matrix, >, and a positive scalar degrees of freedom parameter, v.
vis analogous to the degrees of freedom parameter of a univariate chi-square
distribution, and X vis the mean of the distribution.

The Wishart distribution is often used as a model for the distribution of the
sample covariance matrix for multivariate normal random data, after scaling
by the sample size.
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Example of the Wishart Distribution
If x is a bivariate normal random vector with mean zero and covariance matrix

1 5
Z =
5 2
then you can use the Wishart distribution to generate a sample covariance

matrix without explicitly generating x itself. Notice how the sampling
variability is quite large when the degrees of freedom is small.

mu = [0 O];
Sigma = [1 .5; .5 2];
n =10; S1 = wishrnd(Sigma,n)/(n-1)

S1 =
1.7959 0.64107
0.64107 1.5496
n = 1000; S2 = wishrnd(Sigma,n)/(n-1)
82 =

0.9842 0.50158
0.50158 2.1682
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Functions

For each distribution supported by Statistics Toolbox, a selection of

the following types of distribution functions is available for statistical
programming. This section gives a general overview of the use of each type
of function, independent of the particular distribution. For specific functions
available for specific distributions, see “Supported Distributions” on page 5-3.

Probability Density Functions
(p. 5-95)

Cumulative Distribution Functions
(p. 5-98)

Inverse Cumulative Distribution
Functions (p. 5-100)

Distribution Statistics Functions
(p. 5-102)

Distribution Fitting Functions
(p. 5-104)

Negative Log-Likelihood Functions
(p. 5-112)

Random Number Generators
(p. 5-116)

Overview of probability density
functions

Overview of cumulative distribution
functions

Overview of inverse cumulative
distribution functions

Overview of distribution statistics
functions

Overview of distribution fitting
functions

Overview of negative log-likelihood
functions

Overview of random number
generators
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Probability Density Functions

Probability density functions (pdfs) for supported distributions in Statistics
Toolbox all end with pdf, as in binopdf or exppdf. Specific function names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the pdf assigns a probability to each outcome. In
this context, the pdfis often called a probability mass function (pmf).

For example, the discrete binomial pdf
n
fk)= ( . ]pka -p"

assigns probability to the event of £ successes in n trials of a Bernoulli process
(such as coin flipping) with probability p of success at each trial. Each of the
integers £ =0, 1, 2, ..., n is assigned a positive probability, with the sum of
the probabilities equal to 1. The probabilities are computed with the binopdf
function:

p = 0.2; % Probability of success for each trial
n = 10; % Number of trials

k = 0:n; % Outcomes

m = binopdf(k,n,p); % Probability mass vector

bar(k,m) % Visualize the probability distribution
grid on
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For continuous distributions, the pdf assigns a probability density to each
outcome. The probability of any single outcome is zero. The pdf must be
integrated over a set of outcomes to compute the probability that an outcome
falls within that set. The integral over the entire set of outcomes is 1.

For example, the continuous exponential pdf
ft) =he™

is used to model the probability that a process with constant failure rate A will
have a failure within time ¢ . Each time # > 0 is assigned a positive probability
density. Densities are computed with the exppdf function:

lambda = 2; % Failure rate

t = 0:0.01:3; % Outcomes

f exppdf (t,1/lambda); Probability density vector
plot(t,f)% Visualize the probability distribution
grid on
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Probabilities for continuous pdfs can be computed with the quad function. In
the example above, the probability of failure in the time interval [0, 1] is
computed as follows:

f_lambda = @(t)exppdf(t,1/lambda); % Pdf with fixed lambda
P = quad(f_lambda,0,1) % Integrate from O to 1
P

0.8647

Alternatively, the cumulative distribution function (cdf) for the exponential
function, expcdf, can be used:

P
P =

expcdf(1,1/1lambda) % Cumulative probability from 0 to 1

0.8647

5-97



5 Probability Distributions

5-98

Cumulative Distribution Functions

Cumulative distribution functions (cdfs) for supported distributions in
Statistics Toolbox all end with cdf, as in binocdf or expcdf. Specific function
names for specific distributions can be found in “Supported Distributions”

on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of outcomes followed by a list of parameter values
specifying a particular member of the distribution family.

For discrete distributions, the cdf F is related to the pdf f by

Fx)= Y f(y)

y<x

For continuous distributions, the cdf F is related to the pdf f by

F@) = [ f(ydy

—oo

Cdfs are used to compute probabilities of events. In particular, if F is a cdf
and x and y are outcomes, then

e Py <x)=F)
e Ply2x)=1-F(x)
® Plx,<y<x,) =Fx,) - Flx,)

For example, the ¢-statistic

Xx—u

=s/\/;

¢

follows a Student’s ¢ distribution with n — 1 degrees of freedom when computed
from repeated random samples from a normal population with mean u. Here
i is the sample mean, s is the sample standard deviation, and » is the sample
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size. The probability of observing a ¢-statistic greater than or equal to the
value computed from a sample can be found with the tcdf function:

mu = 1; % Population mean

sigma = 2; % Population standard deviation

n = 100; % Sample size

X normrnd(mu,sigma,n,1); % Random sample from population
xbar = mean(x); % Sample mean

s = std(x); % Sample standard deviation
t = (xbar-mu)/(s/sqrt(n)) % t-statistic
t =

0.2489
p = 1-tcdf(t,n-1) % Probability of larger t-statistic

0.4020

This probability is the same as the p-value returned by a ¢-test of the null
hypothesis that the sample comes from a normal population with mean p:

[h,ptest] = ttest(x,mu,0.05, ' 'right"')
h =
0
ptest =
0.4020
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Inverse Cumulative Distribution Functions

Inverse cumulative distribution functions for supported distributions in
Statistics Toolbox all end with inv, as in binoinv or expinv. Specific function
names for specific distributions can be found in “Supported Distributions”

on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of cumulative probabilities between 0 and 1 followed by
a list of parameter values specifying a particular member of the distribution
family.

For continuous distributions, the inverse cdf returns the unique outcome
whose cdf value is the input cumulative probability.

For example, the expinv function can be used to compute inverses of
exponential cumulative probabilities:

X = 0.5:0.2:1.5 % Outcomes
X:

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = expcdf(x,1) % Cumulative probabilities
p:

0.3935 0.5034 0.5934 0.6671 0.7275 0.7769
expinv(p,1) % Return original outcomes
ans =

0.5000 0.7000 0.9000 1.1000 1.3000 1.5000

For discrete distributions, there may be no outcome whose cdf value is the
input cumulative probability. In these cases, the inverse cdf returns the first
outcome whose cdf value equals or exceeds the input cumulative probability.

For example, the binoinv function can be used to compute inverses of
binomial cumulative probabilities:

X 0.5:0.2:1.5 % Outcomes

X:
0.5000 0.7000 0.9000 1.1000 1.3000 1.5000
p = binocdf(x,10,0.2) % Cumulative probabilities

0.1074 0.1074 0.1074 0.3758 0.3758 0.3758
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>> pinoinv(p,10,0.2) % Return binomial outcomes
ans =
o o 0o 1 1 1

The inverse cdf is useful in hypothesis testing, where critical outcomes of a
test statistic are computed from cumulative significance probabilities. For

example, norminv can be used to compute a 95% confidence interval under
the assumption of normal variability:

p = [0.025 0.975]; % Interval containing 95% of [0,1]
X norminv(p,0,1) % Assume standard normal variability
X:

-1.9600 1.9600 % 95% confidence interval

n = 20; % Sample size
y = normrnd(8,1,n,1); % Random sample (assume mean is unknown)
ybar = mean(y);
ci = ybar + (1/sqgrt(n))*x % Confidence interval for mean
ci =
7.6779 8.5544
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Distribution Statistics Functions

Distribution statistics functions for supported distributions in Statistics
Toolbox all end with stat, as in binostat or expstat. Specific function
names for specific distributions can be found in “Supported Distributions’
on page 5-3.

4

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member
of the distribution family. Functions return the mean and variance of the
distribution, as a function of the parameters.

For example, the wblstat function can be used to visualize the mean of the
Weibull distribution as a function of its two distribution parameters:

a = ’

b = ;

[A,B] = meshgrid(a,b);
M = wblstat(A,B);
surfc(A,B,M)

0.5:0.1:3
0.5:0.1:3

I oo,
N = —
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Distribution Fitting Functions

e “Fitting Supported Distributions” on page 5-104

e “Fitting Piecewise Distributions” on page 5-106

Fitting Supported Distributions

Distribution fitting functions for supported distributions in Statistics Toolbox
all end with fit, asin binofit or expfit. Specific function names for specific
distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are arrays of data, presumed to be samples from some member
of the selected distribution family. Functions return maximum likelihood
estimates (MLEs) of distribution parameters, that is, parameters for the
distribution family member with the maximum likelihood of producing the
data as a random sample.

The Statistics Toolbox function mle is a convenient front end to the individual
distribution fitting functions, and more. The function computes MLEs for
distributions beyond those for which Statistics Toolbox provides specific pdf
functions.

For some pdfs, MLEs can be given in closed form and computed directly. For
other pdfs, a search for the maximum likelihood must be employed. The
search can be controlled with an options input argument, created using the
statset function. For efficient searches, it is important to choose a reasonable
distribution model and set appropriate convergence tolerances.

MLESs can be heavily biased, especially for small samples. As sample size
increases, however, MLEs become unbiased minimum variance estimators
with approximate normal distributions. This is used to compute confidence
bounds for the estimates.

For example, consider the following distribution of means from repeated
random samples of an exponential distribution:

mu = 1; % Population parameter
n = 1e3; % Sample size
ns = 1e4; % Number of samples
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samples = exprnd(mu,n,ns); % Population samples
means = mean(samples); % Sample means

The Central Limit Theorem says that the means will be approximately
normally distributed, regardless of the distribution of the data in the samples.
The normfit function can be used to find the normal distribution that best
fits the means:

[muhat,sigmahat,muci,sigmaci] = normfit(means)
muhat =
1.0003
sigmahat =
0.0319
muci =
0.9997
1.0010
sigmaci =
0.0314
0.0323

The function returns MLEs for the mean and standard deviation and their
95% confidence intervals.

To visualize the distribution of sample means together with the fitted normal
distribution, you must scale the fitted pdf, with area = 1, to the area of the
histogram being used to display the means:

numbins = 50;

hist(means,numbins)

hold on

[bincounts,binpositions] = hist(means,numbins);
binwidth = binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);

X = binpositions(1):0.001:binpositions(end);

y normpdf (x,muhat,sigmahat);
plot(x,histarea*y, 'r','LineWidth',2)
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Fitting Piecewise Distributions

The parametric methods discussed in “Fitting Supported Distributions” on
page 5-104 fit data samples with smooth distributions that have a relatively
low-dimensional set of parameters controlling their shape. These methods
work well in many cases, but there is no guarantee that a given sample will
be described accurately by any of the supported distributions in Statistics
Toolbox.

The empirical distributions computed by ecdf and discussed in “Empirical
Cumulative Distribution Function” on page 3-15 assign equal probability

to each observation in a sample, providing an exact match of the sample
distribution. However, the distributions are not smooth, especially in the tails
where data may be sparse.

The paretotails function fits a distribution by piecing together the empirical
distribution in the center of the sample with smooth Pareto distributions
in the tails.
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The output of paretotails is an object with associated methods to evaluate
the cdf, inverse cdf, and other functions of the fitted distribution. The
paretotails class is a subclass of the piecewisedistribution class, and
many of its methods are derived from that class. Never call the constructor
for the piecewisedistribution class directly. Instead, use the subclass

constructor paretotails.

The tables below list methods for the piecewisedistribution and
paretotails classes. For full descriptions of individual methods, type one of
the following, depending on the class:

help piecewisedistribution/methodname

help paretotails/methodname

Methods with supporting reference pages, including examples, are linked
from the tables. An example follows the tables.

The following table lists methods available for all piecewisedistribution

objects.

Piecewise Distribution
Method

Description

boundary

Boundary points of piecewise distribution
segments.

cdf (piecewisedistribution)

Cumulative distribution function for
piecewise distribution.

disp

Display piecewisedistribution object,
without printing object name.

display

Display piecewisedistribution
object, printing object name. This
method is invoked when the name of
a piecewisedistribution object is
entered at the command prompt.

icdf
(piecewisedistribution)

Inverse cumulative distribution function
for piecewise distribution.

nsegments

Number of segments of piecewise
distribution.
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Piecewise Distribution Description

Method

pdf (piecewisedistribution) | Probability density function for piecewise
distribution.

random Random numbers from piecewise

(piecewisedistribution) distribution.

segment Segment of piecewise distribution
containing input values.

The following table lists additional methods for paretotails objects.

Pareto Tails | Description
Method

lowerparams | Parameters of generalized Pareto distribution lower tail.

paretotails | Construct Pareto tails object.

subsref Subscripted reference for paretotails object. This method
is invoked by parenthesis indexing, as demonstrated in
the example below.

upperparams | Parameters of generalized Pareto distribution upper tail.

As an example, consider the following data, with about 20% outliers:

left _tail = -exprnd(1,10,1);
right_tail = exprnd(5,10,1);

center = randn(80,1);

data = [left_tail;center;right_taill];

Neither a normal distribution nor a ¢ distribution fits the tails very well:

probplot(data);

p = mle(data, 'dist','tlo');

h = probplot(gca,@(data,mu,sig,df))
cdf('tlocationscale',data,mu,sig,df),p);
set(h,'color','r','linestyle',"'-")
title('{\bf Probability Plot}')
legend('Data', ‘Normal','t"', 'Location', 'NW")
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On the other hand, the empirical distribution provides a perfect fit, but the
outliers make the tails very discrete:

ecdf (data)
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Random samples generated from this distribution by inversion might include,
for example, values around 4.33 and 9.25, but nothing in-between.

The paretotails function fits a distribution by piecing together the empirical
distribution in the center of the sample with smooth Pareto distributions in
the tails. This provides a single, well-fit model for the entire sample. The
following uses generalized Pareto distributions (GPDs) for the lower and
upper 10% of the data:

pfit = paretotails(data,0.1,0.9)
pfit =
Piecewise distribution with 3 segments
-Inf < x < -1.30726 (0 < p < 0.1)
lower tail, GPD(-1.10167,1.12395)

-1.30726 < x < 1.27213 (0.1 < p < 0.9)
interpolated empirical cdf
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1.27213 < x < Inf (0.9 < p < 1)
upper tail, GPD(1.03844,0.726038)

X = -4:0.01:10;
plot(x,pfit(x))
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Note that the fit object pfit returned by paretotails allows for functional
syntax of the form pfit(x) for evaluating the piecewise cdf. You can access
other information about the fit using the methods listed in the tables above.
Options for paretotails also allow for kernel smoothing of the center of
the cdf.
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Negative Log-Likelihood Functions

Negative log-likelihood functions for supported distributions in Statistics
Toolbox all end with 1ike, as in explike. Specific function names for specific
distributions can be found in “Supported Distributions” on page 5-3.

Each function represents a parametric family of distributions. Input
arguments are lists of parameter values specifying a particular member of
the distribution family followed by an array of data. Functions return the
negative log-likelihood of the parameters, given the data.

Negative log-likelihood functions are used as objective functions in search
algorithms such as the one implemented by the fminsearch function in
MATLAB. Additional search algorithms are implemented by functions in
Optimization Toolbox and Genetic Algorithm and Direct Search Toolbox.

When used to compute maximum likelihood estimates (MLESs), negative
log-likelihood functions allow you to choose a search algorithm and exercise
low-level control over algorithm execution. By contrast, the functions
discussed in “Distribution Fitting Functions” on page 5-104 use preset
algorithms with options limited to those set by the statset function.

Likelihoods are conditional probability densities. A parametric family of
distributions is specified by its pdf f (x,a), where x and a represent the
variables and parameters, respectively. When a is fixed, the pdf is used

to compute the density at x, flx|a). When x is fixed, the pdf is used to
compute the likelihood of the parameters a, fla |x). The joint likelihood of the
parameters over an independent random sample X is

L= ]] falx

xeX

Given X, MLEs maximize L(a) over all possible a.

In numerical algorithms, the log-likelihood function, log(L(a)), is
(equivalently) optimized. The logarithm transforms the product of potentially
small likelihoods into a sum of logs, which is easier to distinguish from 0

in computation. For convenience, the negative log-likelihood functions in
Statistics Toolbox return the negative of this sum, since the optimization
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algorithms to which the values are passed typically search for minima rather
than maxima.

For example, use gamrnd to generate a random sample from a specific gamma
distribution:

a = [1,2];
X = gamrnd(a(1),a(2),1e3,1);

Given X, the gamlike function can be used to visualize the likelihood surface
in the neighborhood of a:

mesh = 50;
delta = 0.5;
al = linspace(a(1)-delta,a(1)+delta,mesh);
a2 linspace(a(2)-delta,a(2)+delta,mesh);
logL = zeros(mesh); % Preallocate memory
for 1 = 1:mesh

for j = 1:mesh

logl(i,j) = gamlike([a1(1),a2(j)],X);

end
end

[A1,A2] = meshgrid(at,a2);
surfc(A1,A2,1og9lL)
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The MATLAB fminsearch function can be used to search for the minimum of
the likelihood surface:

LL = @(u)gamlike([u(1),u(2)],X); % Likelihood given X
MLES = fminsearch(LL,[1,2])
MLES =

1.0231 1.9729

These can be compared to the MLEs returned by the gamfit function, which
uses a combination search and solve algorithm:

ahat = gamfit(X)
ahat =
1.0231 1.9728

The MLEs can be added to the surface plot (rotated to show the minimum):

hold on

plot3(MLES(1),MLES(2),LL(MLES),...
‘ro', 'MarkerSize',5,...
‘MarkerFaceColor','r')
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Random Number Generators

Random number generators (RNGs) for supported distributions in Statistics
Toolbox all end with rnd, as in binornd or exprnd. Specific RNG names for
specific distributions can be found in “Supported Distributions” on page 5-3.

Each RNG represents a parametric family of distributions. Input arguments
are lists of parameter values specifying a particular member of the distribution
family followed by the dimensions of an array. RNGs return random numbers
from the specified distribution in an array of the specified dimensions.

RNGs in Statistics Toolbox depend on the MATLAB base generators rand
and/or randn, using the techniques discussed in “Methods of Random Number
Generation” on page 5-158 to generate random numbers from particular
distributions. Dependencies of specific RNGs are listed in the table below.

MATLAB resets the state of the base RNGs each time it is started. Thus,

by default, dependent RNGs in Statistics Toolbox will generate the same
sequence of values with each MATLAB session. To change this behavior,

the state of the base RNGs must be set explicitly in startup.m or in the
relevant program code. States can be set to fixed values, for reproducibility, or
to time-dependent values, to assure new random sequences. For details on
setting the state and the method used by the base RNGs, see rand and randn.

For example, to simulate flips of a biased coin:

p = 0.55; % Probability of heads

n 100; % Number of flips per trial

N 1e3; % Number of trials
rand('state',sum(100*clock)) % Set base generator

sims = unifrnd(0,1,n,N) < p; % 1 for heads; 0 for tails

The empirical probability of heads for each trial is given by:

phat = sum(sims)/n;

The probability of heads for each trial can also be simulated by:

prand = = binornd(n,p,1,N)/n;

You can compare the two simulations with a histogram:
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hist([phat' prand'])
legend('UNIFRND', 'BINORND')
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Dependencies of the Random Number Generators

The following table lists the dependencies of the RNGs in Statistics Toolbox
on the MATLAB base RNGs rand and/or randn. Set the states and methods of
the RNGs in the right-hand column to assure reproducibility/variability of
the outputs of the RNGs in the left-hand column.

RNG MATLAB Base RNG

betarnd rand, randn

binornd rand

chi2rnd rand, randn

evrnd rand

exprnd rand

frnd rand, randn

gamrnd rand, randn

geornd rand

gevrnd rand

gprnd rand

hygernd rand

iwishrnd rand, randn

johnsrnd randn

lhsdesign rand

lhsnorm rand

lognrnd randn

mhsample rand or randn, depending on
the RNG given for the proposal
distribution

mvnrnd randn

mvtrnd rand, randn

nbinrnd rand, randn

ncfrnd rand, randn
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RNG MATLAB Base RNG

nctrnd rand, randn

ncx2rnd randn

normrnd randn

pearsrnd rand or randn, depending on the
distribution type

poissrnd rand, randn

random rand or randn, depending on the
specified distribution

randsample rand

raylrnd randn

slicesample rand

trnd rand, randn

unidrnd rand

unifrnd rand

wblrnd rand

wishrnd rand, randn
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Distribution GUIs

The following sections describe GUIs in Statistics Toolbox that provide
convenient, interactive access to the distribution functions described in
“Distribution Functions” on page 5-94:

Distribution Function Tool (p. 5-120) Interactive effects of parameter
changes to pdfs, cdfs

Distribution Fitting Tool (p. 5-122) Interactive distribution fitting

Random Number Generation Tool Interactive random number
(p. 5-155) generation from supported
distributions

Distribution Function Tool

To interactively see the influence of parameter changes on the shapes of
the pdfs and cdfs of distributions supported by Statistics Toolbox, use the
Probability Distribution Function Tool.

Run the tool by typing disttool at the command line. You can also run it
from the Demos tab in the Help browser.
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Choose
distribution
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Start by selecting a distribution. Then choose the function type: probability

density function (pdf) or cumulative distribution function (cdf).
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Once the plot displays, you can

e (Calculate a new function value by typing a new x value in the text box on
the x-axis, dragging the vertical reference line, or clicking in the figure
where you want the line to be. The new function value displays in the
text box to the left of the plot.

® For cdf plots, find critical values corresponding to a specific probability by
typing the desired probability in the text box on the y-axis or by dragging
the horizontal reference line.

® Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

Distribution Fitting Tool
The Distribution Fitting Tool is a GUI for fitting univariate distributions to

data. This section describes how to use the Distribution Fitting Tool and
covers the following topics:

e “Main Window of the Distribution Fitting Tool” on page 5-123

o “Example: Fitting a Distribution” on page 5-125

® “Creating and Managing Data Sets” on page 5-131

® “Creating a New Fit” on page 5-135

® “Displaying Results” on page 5-140

® “Managing Fits” on page 5-141

e “Evaluating Fits” on page 5-143

¢ “Excluding Data” on page 5-146

* “Saving and Loading Sessions” on page 5-151

® “Generating an M-File to Fit and Plot Distributions” on page 5-152
e “Using Custom Distributions” on page 5-153

e “Additional Distributions Available in the Distribution Fitting Tool” on
page 5-155
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Main Window of the Distribution Fitting Tool
To open the Distribution Fitting Tool, enter the command

dfittool
The following figure shows the main window of the Distribution Fitting Tool.

Select display Select distribution (probability plot only)

J Distribution Fitting Tool \ _ O] x|

File ‘iew Tools ‘Window Help
& & MEED

Al
Display type:lDensitg.r [F'DFjj Distribution: [Nnrmal © |

I_ Data... | =3 Fit...l m?;_a_ge | Ewaluate...| Exclude...
: [

Task buttons
AN

Import data / f ?
from workspace
049r T
Create a new fit
0.8 T
0.7 7
06} _ -
%‘ Select "Data"[to begin
c 057 distributior] fitting I
[
04+ 7
Manage multiple fits Evaluate distribution Exclude data

at selected points from fit

Plot Buttons. Buttons at the top of the tool allow you to adjust the plot
displayed in the main window:
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IE‘ — Toggle the legend on (default) or off.
[ Toggle grid lines on or off (default).
% — Restore default axes limits.

Display Type. The Display Type field specifies the type of plot displayed
in the main window. Each type corresponds to a probability function, for
example, a probability density function. The following display types are
available:

Density (PDF) — Displays a probability density function (PDF) plot for
the fitted distribution.

Cumulative probability (CDF) — Displays a cumulative probability
plot of the data.

Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.
Probability plot — Displays a probability plot.
Survivor function — Displays a survivor function plot of the data.

Cumulative hazard — Displays a cumulative hazard plot of the data.

Task Buttons. The task buttons enable you to perform the tasks necessary
to fit distributions to data. Each button opens a new window in which you
perform the task. The buttons include

Data — Import and manage data sets. See “Creating and Managing Data
Sets” on page 5-131.

New Fit — Create new fits. See “Creating a New Fit” on page 5-135.
Manage Fits — Manage existing fits. See “Managing Fits” on page 5-141.

Evaluate — Evaluate fits at any points you choose. See “Evaluating
Fits” on page 5-143.

Exclude — Create rules specifying which values to exclude when fitting a
distribution. See “Excluding Data” on page 5-146.

Display Pane. The display pane displays plots of the data sets and fits you
create. Whenever you make changes in one of the task windows, the results
are updated in the display pane.
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Menu Options. The Distribution Fitting Tool menus contain items that
enable you to do the following:
® Save and load sessions. See “Saving and Loading Sessions” on page 5-151.

® Generate an M-file with which you can fit distributions to data and plot the
results independently of the Distribution Fitting Tool. See “Generating an
M-File to Fit and Plot Distributions” on page 5-152.

® Define and import custom distributions. See “Using Custom Distributions”
on page 5-153.

Example: Fitting a Distribution

This section presents an example that illustrates how to use the Distribution

Fitting Tool. The example involves the following steps:

® “Create Random Data for the Example” on page 5-125

¢ “Import Data into the Distribution Fitting Tool” on page 5-125

® “Create a New Fit” on page 5-128

Create Random Data for the Example. To try the example, first generate
some random data to which you will fit a distribution. The following command

generates a vector data, of length 100, whose entries are random numbers
from a normal distribution with mean.36 and standard deviation 1.4.

data = normrnd(.36, 1.4, 100, 1);

Import Data into the Distribution Fitting Tool. To import the vector data
into the Distribution Fitting Tool, click the Data button in main window. This
opens the window shown in the following figure.
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The Data field displays all numeric arrays in the MATLAB workspace. Select
data from the drop-down list, as shown in the following figure.

Drata: tnunej LI

[hone)
Censating:
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This displays a histogram of the data in the Data preview pane.

In the Data set name field, type a name for the data set, such as My data,
and click Create Data Set to create the data set. The main window of the
Distribution Fitting Tool now displays a larger version of the histogram in the
Data preview pane, as shown in the following figure.

) Distribution Fitting Tool [ ]

File Wiew Tools ‘Window Help
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]
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Histogram of the Data

Note Because the example uses random data, you might see a slightly
different histogram if you try this example for yourself.
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Create a New Fit. To fit a distribution to the data, click New Fit in the
main window of the Distribution Fitting Tool. This opens the window shown
in the following figure.

Select data set name —— Specify distribution type
- newrit L laTEY
Fit name: |ﬁt 1
Data: Y Ll
Distribution: Mormal ' -]
Exclusion rule: | (none) Ll
~Mormal

Distribution parameters:
mul (Jocation)
sigma (scale)

ARl |

Results:

Manage Fits | Close | Help |

To fit a normal distribution, the default entry of the Distribution field, to
My data:
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1 Enter a name for the fit, such as My fit, in the Fit name field.

2 Select My data from the drop-down list in the Data field.

3 Click Apply.

The Results pane displays the mean and standard deviation of the normal

distribution that best fits My data, as shown in the following figure.

Result=:

istribution: Normal
Log likelihood: -160.943

Support: -Inf < ¥ < Inf

Parameter Estimate 35td. Err.

11 0.427101 0.12159
Sigma 1.2159 0.0866296
Kl |

S

The main window of the Distribution Fitting Tool displays a plot of the
normal distribution with this mean and standard deviation, as shown in the

following figure.
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Creating and Managing Data Sets
This section describes how create and manage data sets.

To begin, click the Data button in the main window of the Distribution Fitting
Tool to open the Data window shown in the following figure.

=10l x|

[poata
Data previe:
Impart workspace vectors: Gelect data
Drata: [hone) hd Select Calumn ar Row: .. |
Censoring: [hone) - Select Columt ar Raw ... |
Freguency: | (none) - Select Columt ar Raw ... |

Data set name: I

Manage data sets:

Create Data Set |

Flot Eounds

Data zet

g

Set Bin Rules

Rename | Delete |

Close | Help |

Importing Data. The Import workspace vectors pane enables you to
create a data set by importing a vector from the MATLAB workspace. The
following sections describe the fields of the Import workspace vectors pane.

Data

The drop-down list in the Data field contains the names of all matrices and
vectors, other than 1-by-1 matrices (scalars) in the MATLAB workspace.
Select the array containing the data you want to fit. The actual data you
import must be a vector. If you select a matrix in the Data field, the first
column of the matrix is imported by default. To select a different column or
row of the matrix, click Select Column or Row. This displays the matrix
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in the Array Editor, where you can select a row or column by highlighting it
with the mouse.

Alternatively, you can enter any valid MATLAB expression in the Data field.

When you select a vector in the Data field, a histogram of the data is
displayed in the Data preview pane.

Censoring

If some of the points in the data set are censored, enter a Boolean vector, of
the same size as the data vector, specifying the censored entries of the data. A
1 in the censoring vector specifies that the corresponding entry of the data
vector is censored, while a 0 specifies that the entry is not censored. If you
enter a matrix, you can select a column or row by clicking Select Column or
Row. If you do not want to censor any data, leave the Censoring field blank.

Frequency

Enter a vector of positive integers of the same size as the data vector to specify
the frequency of the corresponding entries of the data vector. For example, a
value of 7 in the 15th entry of frequency vector specifies that there are 7 data
points corresponding to the value in the 15th entry of the data vector. If all
entries of the data vector have frequency 1, leave the Frequency field blank.

Data name

Enter a name for the data set you import from the workspace, such as My
data.

As an example, if you create the vector data described in “Example: Fitting a
Distribution” on page 5-125, and select it in the Data field, the upper half of
the Data window appears as in the following figure.
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Impart workspace vectors:

Data: data

Censoring: [hone)

Freguency: | (none)

Data et narme: IMy data

Data preview:

- Select Calumm ar Faw .. |

- Select Calumm ar Faw .. |

- Select Calumm ar Faw .. |

Create Data Set |

After you have entered the information in the preceding fields, click Create
Data Set to create the data set My data.

Managing Data Sets. The Manage data sets pane enables you to view
and manage the data sets you create. When you create a data set, its name
appears in the Data sets list. The following figure shows the Manage data

sets pane after creating the data set My data.

Pt | Bounds |

Data

¥ | [ Mycsta

ey | Set Bin Rules | Rename | Delete |

For each data set in the Data sets list, you can

® Select the Plot check box to display a plot of the data in the main

Distribution Fitting Tool window. When you create a new data set, Plot is
selected by default. Clearing the Plot check box removes the data from the
plot in the main window. You can specify the type of plot displayed in the
Display Type field in the main window.

¢ If Plot is selected, you can also select Bounds to display confidence
interval bounds for the plot in the main window. These bounds are
pointwise confidence bounds around the empirical estimates of these
functions. The bounds are only displayed when you set Display Type in
the main window to one of the following:
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= Cumulative probability (CDF)
= Survivor function
= Cumulative hazard
The Distribution Fitting Tool cannot display confidence bounds on density

(PDF), quantile (inverse CDF), or probability plots. Clearing the Bounds
check box removes the confidence bounds from the plot in the main window.

When you select a data set from the list, the following buttons are enabled:

® View — Displays the data in a table in a new window.

¢ Set Bin Rules — Defines the histogram bins used in a density (PDF) plot.
* Rename — Renames the data set.

* Delete — Deletes the data set.

Setting Bin Rules. To set bin rules for the histogram of a data set, click Set
Bin Rules. This opens the dialog box shown in the following figure.

~) Set Bin Width Rules =10l x|

Data preview:

 Scott rule

7 Murber of birs: I

" Bins centered on integers

7 Bir wictth: I

& putomatic bin placement

" Bin boundary st I

r Apply to all existing data sets

[ save as default

Update Preview | Ok | Cancel |

You can select from the following rules:
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* Freedman-Diaconis rule — Algorithm that chooses bin widths and
locations automatically, based on the sample size and the spread of the
data. This rule, which is the default, is suitable for many kinds of data.

® Scott rule — Algorithm intended for data that are approximately normal.
The algorithm chooses bin widths and locations automatically.

¢ Number of bins — Enter the number of bins. All bins have equal widths.
¢ Bins centered on integers — Specifies bins centered on integers.

¢ Bin width — Enter the width of each bin. If you select this option, you can
make the following choices:

= Automatic bin placement — Places the edges of the bins at integer
multiples of the Bin width.

= Bin boundary at — Enter a scalar to specify the boundaries of the
bins. The boundary of each bin is equal to this scalar plus an integer
multiple of the Bin width.

The Set Bin Width Rules dialog box also provides the following options:

* Apply to all existing data sets — When selected, the rule is applied to
all data sets. Otherwise, the rule is only applied to the data set currently
selected in the Data window.

® Save as default — When selected, the current rule is applied to any
new data sets that you create. You can also set default bin width rules
by selecting Set Default Bin Rules from the Tools menu in the main
window.

Creating a New Fit

This section describes how to create a new fit. To begin, click the New Fit
button at the top of the main window to open a New Fit window. If you created
the data set My data, as described in “Example: Fitting a Distribution” on
page 5-125, My data appears in the Data field, as shown in the following
figure.
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e ol
Fit Marme: fit 1
Data: | My data =
Distribution: | Normal =
Exclusion rule: | (none) =

Marmal

Distribution parameters:
mu (location)
sigma (scale)

Apply |

Results:

Manage Fits | Close | Help |

Fit Name. Enter a name for the fit in the Fit Name field.

Data. The Data field contains a drop-down list of the data sets you have
created. Select the data set to which you want to fit a distribution.

Distribution. Select the type of distribution you want to fit from the
Distribution drop-down list. See “Available Distributions” on page 5-137 for
a list of distributions supported by the Distribution Fitting Tool.

Note Only the distributions that apply to the values of the selected data set
are displayed in the Distribution field. For example, positive distributions
are not displayed when the data include values that are zero or negative.
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You can specify either a parametric or a nonparametric distribution. When
you select a parametric distribution from the drop-down list, a description of
its parameters is displayed in the pane below the Exclusion rule field. The
Distribution Fitting Tool estimates these parameters to fit the distribution to
the data set. When you select Nonparametric fit, options for the fit appear
in the pane, as described in “Options for Nonparametric Fits” on page 5-139.

Exclusion Rule. You can specify a rule to exclude some the data in the
Exclusion rule field. You can create an exclusion rule by clicking Exclude
in the main window of the Distribution Fitting Tool. For more information,
see “Excluding Data” on page 5-146.

Apply the New Fit. Click Apply to fit the distribution. For a parametric
fit, the Results pane displays the values of the estimated parameters. For a
nonparametric fit, the Results pane displays information about the fit.

When you click Apply, the main window of Distribution Fitting Tool displays
a plot of the distribution, along with the corresponding data.

Note When you click Apply, the title of the window changes to Edit Fit. You
can now make changes to the fit you just created and click Apply again to
save them. After closing the Edit Fit window, you can reopen it from the Fit
Manager window at any time to edit the fit.

Available Distributions. This section lists the distributions available in
the Distribution Fitting Tool.

Most, but not all, of the distributions available in the Distribution Fitting Tool
are supported elsewhere in Statistics Toolbox (see “Supported Distributions”
on page 5-3), and have dedicated distribution fitting functions. These
functions are used to compute the majority of the fits in the Distribution
Fitting Tool, and are referenced in the list below.

Other fits are computed using functions internal to the Distribution Fitting
Tool. Distributions that do not have corresponding fitting functions in
Statistics Toolbox are described in “Additional Distributions Available in the
Distribution Fitting Tool” on page 5-155.
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Not all of the distributions listed below are available for all data sets. The
Distribution Fitting Tool determines the extent of the data (nonnegative, unit
interval, etc.) and displays appropriate distributions in the Distribution
drop-down list. Distribution data ranges are given parenthetically in the

list below.

¢ Beta (unit interval values) distribution, fit using the function betafit.

® Binomial (nonnegative values) distribution, fit using the function binopdf.

¢ Birnbaum-Saunders (positive values) distribution.

* Exponential (nonnegative values) distribution, fit using the function
expfit.

¢ Extreme value (all values) distribution, fit using the function evfit.
® Gamma (positive values) distribution, fit using the function gamfit.

® Generalized extreme value (all values) distribution, fit using the function
gevfit.

® Generalized Pareto (all values) distribution, fit using the function gpfit.
® Inverse Gaussian (positive values) distribution.

® Logistic (all values) distribution.

® Loglogistic (positive values) distribution.

® Lognormal (positive values) distribution, fit using the function lognfit.
* Nakagami (positive values) distribution.

® Negative binomial (nonnegative values) distribution, fit using the function
nbinpdf.

® Nonparametric (all values) distribution, fit using the function ksdensity.
See “Options for Nonparametric Fits” on page 5-139 for a description of
available options.

® Normal (all values) distribution, fit using the function normfit.

* Poisson (nonnegative integer values) distribution, fit using the function
poisspdf.

® Rayleigh (positive values) distribution using the function raylfit.

® Rician (positive values) distribution.
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® ¢ location-scale (all values) distribution.
* Weibull (positive values) distribution using the function wb1fit.
Options for Nonparametric Fits. When you select Non-parametric in the

Distribution field, a set of options appears in the pane below Exclusion
rule, as shown in the following figure.

Mon-parametric

Kernel: I Morrmal 7 I

Bandwicth: % auto

" specity I

Dotngin, ' unbounded

 postive

€ specify I ta I

The options for nonparametric distributions are

¢ Kernel — Type of kernel function to use. The options are
= Normal
= Box
= Triangle
= Epanechnikov

* Bandwidth — The bandwidth of the kernel smoothing window. Select
auto for a default value that is optimal for estimating normal densities.
This value is displayed in the Fit results pane after you click Apply.
Select specify and enter a smaller value to reveal features such as multiple
modes or a larger value to make the fit smoother.

* Domain — The allowed x-values for the density. The options are
= unbounded — The density extends over the whole real line.
= positive — The density is restricted to positive values.

= specify — Enter lower and upper bounds for the domain of the density.
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When you select positive or specify, the nonparametric fit has zero
probability outside the specified domain.

Displaying Results

This section explains the different ways to display results in the main window
of the Distribution Fitting Tool. The main window displays plots of
¢ The data sets for which you select Plot in the Data window.
¢ The fits for which you select Plot in the Fit Manager window.
® Confidence bounds for
= Data sets for which you select Bounds in the Data window.
= Fits for which you select Bounds in the Fit Manager.
Display Type. The Display Type field in the main window specifies the type

of plot displayed. Each type corresponds to a probability function, for example,
a probability density function. The following display types are available:

® Density (PDF) — Displays a probability density function (PDF) plot
for the fitted distribution. The main window displays data sets using a
probability histogram, in which the height of each rectangle is the fraction
of data points that lie in the bin divided by the width of the bin. This makes
the sum of the areas of the rectangles equal to 1.

® Cumulative probability (CDF) — Displays a cumulative probability
plot of the data. The main window displays data sets using a cumulative
probability step function. The height of each step is the cumulative sum of
the heights of the rectangles in the probability histogram.

® Quantile (inverse CDF) — Displays a quantile (inverse CDF) plot.

® Probability plot — Displays a probability plot of the data. You can
specify the type of distribution used to construct the probability plot in the
Distribution field, which is only available when you select Probability
plot. The choices for the distribution are

= Exponential
= Extreme value

= Logistic
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= Log-Logistic
= Lognormal

= Normal

= Rayleigh

= Weibull

In addition to these choices, you can create a probability plot against a
parametric fit that you create in the New Fit panel. These fits are added
at the bottom of the Distribution drop-down list when you create them.

® Survivor function — Displays a survivor function plot of the data.

® Cumulative hazard — Displays a cumulative hazard plot of the data.

Note Some of these distributions are not available if the plotted data
includes 0 or negative values.

Confidence Bounds. You can display confidence bounds for data sets and
fits, provided that you set Display Type to Cumulative probability (CDF),
Survivor function, Cumulative hazard, or Quantile for fits only.

® To display bounds for a data set, select Bounds next to the data set in the
Data sets pane of the Data window.

¢ To display bounds for a fit, select Bounds next to the fit in the Fit
Manager window. Confidence bounds are not available for all fit types.

To set the confidence level for the bounds, select Confidence Level from the
View menu in the main window and choose from the options.

Managing Fits

This section describes how to manage fits that you have created. To begin,
click the Manage Fits button in the main window of the Distribution Fitting
Tool. This opens the Fit Manager window as shown in the following figure.
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The Table of fits displays a list of the fits you create.

Plot. Select Plot to display a plot of the fit in the main window of the
Distribution Fitting Tool. When you create a new fit, Plot is selected by
default. Clearing the Plot check box removes the fit from the plot in the
main window.

Bounds. If Plot is selected, you can also select Bounds to display confidence
bounds in the plot. The bounds are displayed when you set Display Type in
the main window to one of the following:

® Cumulative probability (CDF)

® Quantile (inverse CDF)

® Survivor function

® Cumulative hazard

The Distribution Fitting Tool cannot display confidence bounds on density

(PDF) or probability plots. In addition, bounds are not supported for
nonparametric fits and some parametric fits.

Clearing the Bounds check box removes the confidence intervals from the
plot in the main window.
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When you select a fit in the Table of fits, the following buttons are enabled
below the table:

® New Fit — Opens a New Fit window.

® Copy — Creates a copy of the selected fit.

¢ Edit — Opens an Edit Fit window, where you can edit the fit.

Note You can only edit the currently selected fit in the Edit Fit window.
To edit a different fit, select it in the Table of fits and click Edit to open
another Edit Fit window.

* Delete — Deletes the selected fit.

Evaluating Fits

The Evaluate window enables you to evaluate any fit at whatever points you
choose. To open the window, click the Evaluate button in the main window of
the Distribution Fitting Tool. The following figure shows the Evaluate window.
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J Evaluate [ ]

Press "Apply" to views results.

Function: | Density (FF) =
At x = I-3:D.?:4

[~ Compute confidence baunds

Level | 95 | %%

™ Plot function

Export taWorkspace. . | Apply | Close | Help |

The Evaluate window contains the following items:

* Fit pane — Displays the names of existing fits. Select one or more fits
that you want to evaluate. Using your platform specific functionality, you
can select multiple fits.

¢ Function — Select the type of probability function you want to evaluate
for the fit. The available functions are

= Density (PDF) — Computes a probability density function.

= Cumulative probability (CDF) — Computes a cumulative probability
function.

= Quantile (inverse CDF) — Computes a quantile (inverse CDF)
function.

= Survivor function — Computes a survivor function.
= Cumulative hazard — Computes a cumulative hazard function.

= Hazard rate — Computes the hazard rate.
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e At x = — Enter a vector of points at which you want to evaluate the
distribution function. If you change Function to Quantile (inverse
CDF), the field name changes to At p = and you enter a vector of probability
values.

* Compute confidence bounds — Select this box to compute confidence
bounds for the selected fits. The check box is only enabled if you set
Function to one of the following:

= Cumulative probability (CDF)
™ Quantile (inverse CDF)

= Survivor function

= Cumulative hazard

The Distribution Fitting Tool cannot compute confidence bounds for
nonparametric fits and for some parametric fits. In these cases, the tool
returns NaN for the bounds.

* Level — Set the level for the confidence bounds.

¢ Plot function — Select this box to display a plot of the distribution
function, evaluated at the points you enter in the At x = field, in a new
window.

Note The settings for Compute confidence bounds, Level, and Plot
function do not affect the plots that are displayed in the main window of
the Distribution Fitting Tool. The settings only apply to plots you create by
clicking Plot function in the Evaluate window.

Click Apply to apply these settings to the selected fit. The following figure
shows the results of evaluating the cumulative density function for the fit

My fit, created in “Example: Fitting a Distribution” on page 5-125, at the
points in the vector -3:0.5:3.
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The window displays the following values in the columns of the table to the
right of the Fit pane:

e X — The entries of the vector you enter in At x = field
® Y — The corresponding values of the CDF at the entries of X

® LB — The lower bounds for the confidence interval, if you select Compute
confidence bounds

® UB — The upper bounds for the confidence interval, if you select Compute
confidence bounds

To save the data displayed in the Evaluate window, click Export to
Workspace. This saves the values in the table to a matrix in the MATLAB

workspace.

Excluding Data

To exclude values from fit, click the Exclude button in the main window of
the Distribution Fitting Tool. This opens the Exclude window, in which you
can create rules for excluding specified values. You can use these rules to
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exclude data when you create a new fit in the New Fit window. The following
figure shows the Exclude window.

<} Exclude (=] ]
Exclusion rule name:|| Existing exclusion rules:

Exclude section:

Laowver limit: exclude data I = LI I

Upper limit: exclude data |== LI I

rExclude graphically

Select data: I(none) 'l Exclude Graphically. |

Copy. | ey |

Create Excluzion Rule | Rename | Delete |

Close | Help |

The following sections describe how to create an exclusion rule.

Exclusion Rule Name. Enter a name for the exclusion rule in the
Exclusion rule name field.

Exclude Sections. In the Exclude sections pane, you can specify bounds
for the excluded data:

¢ In the Lower limit: exclude Y drop-down list, select <= or < from the
drop-down list and enter a scalar in the field to the right. This excludes
values that are either less than or equal to or less than that scalar,
respectively.

® In the Upper limit: exclude Y drop-down list, select >= or > from the
drop-down list and enter a scalar in the field to the right to exclude
values that are either greater than or equal to or greater than the scalar,
respectively.
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Exclude Graphically. The Exclude Graphically button enables you to
define the exclusion rule by displaying a plot of the values in a data set and
selecting the bounds for the excluded data with the mouse. For example,

if you created the data set My data, described in “Creating and Managing
Data Sets” on page 5-131, select it from the drop-down list next to Exclude
graphically and then click the Exclude graphically button. This displays
the values in My data in a new window as shown in the following figure.

<) Define Boundary for Exclusion Rule 10l =|

Tools  Help
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ol 1 1 1 1 1 1 1
-3 -2 1 0 1 2 3 4

Add Lowsr Limit Add Uppar Limit Close

To set a lower limit for the boundary of the excluded region, click Add Lower
Limit. This displays a vertical line on the left side of the plot window. Move
the line with the mouse to the point you where you want the lower limit, as
shown in the following figure.
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Moving the vertical line changes the value displayed in the Lower limit:
exclude data field in the Exclude window, as shown in the following figure.

Exclude zections

Lovwver litnit: exclude data |q= j |-2.45EEEI

Upiet limit; exclude data |3=~= ;I I

The value displayed corresponds to the x-coordinate of the vertical line.

Similarly, you can set the upper limit for the boundary of the excluded region
by clicking Add Upper Limit and moving the vertical line that appears at
the right side of the plot window. After setting the lower and upper limits,
click Close and return to the Exclude window.
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Create Exclusion Rule. Once you have set the lower and upper limits for the
boundary of the excluded data, click Create Exclusion Rule to create the
new rule. The name of the new rule now appears in the Existing exclusion
rules pane.

When you select an exclusion rule in the Existing exclusion rules pane,
the following buttons are enabled:

®* Copy — Creates a copy of the rule, which you can then modify. To save the
modified rule under a different name, click Create Exclusion Rule.

® View — Opens a new window in which you can see which data points are
excluded by the rule. The following figure shows a typical example.

<) Wiew Exclusion Rule =lol x|
Exclusion Rule: by rule Incles Data | Censa... Freque...l
Diata: My data 1 0.24553 o
2 -1.97152
3 0.53547
4 0.76275
&) -1.24506
5 202725
7 2024583
A SO ta] 030731

] 051821

10 0.60449
11 0.09361
12 1.37611
13 -0.46364
14 341646
Excluded Sections: 15 016905
Exclude ¥ <= -2.4589 16 05193 =
Exclude ¥ == 31072 17 185748

Cloze |

The shaded areas in the plot graphically display which data points are
excluded. The table to the right lists all data points. The shaded rows
indicate excluded points:

¢ Rename — Renames the rule

¢ Delete — Deletes the rule

Once you define an exclusion rule, you can use it when you fit a distribution to
your data. The rule does not exclude points from the display of the data set.
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Saving and Loading Sessions

This section explains how to save your work in the current Distribution
Fitting Tool session and then load it in a subsequent session, so that you can
continue working where you left off.

Saving a Session. To save the current session, select Save Session from
the File menu in the main window. This opens a dialog box that prompts you
to enter a filename, such as my_session.dfit, for the session. Clicking Save
saves the following items created in the current session:

® Data sets

e Fits

¢ Exclusion rules

¢ Plot settings

¢ Bin width rules

Loading a Session. To load a previously saved session, select Load Session
from the File menu in the main window and enter the name of a previously

saved session. Clicking Open restores the information from the saved session
to the current session of the Distribution Fitting Tool.
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Generating an M-File to Fit and Plot Distributions
The Generate M-file option in the File menu enables you to create an M-file
that

¢ Fits the distributions used in the current session to any data vector in the
MATLAB workspace.

¢ Plots the data and the fits.

After you end the current session, you can use the M-file to create plots in a

standard MATLAB figure window, without having to reopen the Distribution
Fitting Tool.

As an example, assuming you created the fit described in “Creating a New
Fit” on page 5-135, do the following steps:

1 Select Generate M-file from the File menu.

2 Save the M-file as normal_fit.min a directory on the MATLAB path.

You can then apply the function normal_fit to any vector of data in the
MATLAB workspace. For example, the following commands

new_data = normrnd(4.1, 12.5, 100, 1);
normal_fit(new_data)
legend('New Data', 'My fit')

fit a normal distribution to a data set and generate a plot of the data and
the fit.
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Note By default, the M-file labels the data in the legend using the same name
as the data set in the Distribution Fitting Tool. You can change the label
using the legend command, as illustrated by the preceding example.

Using Custom Distributions

This section explains how to use custom distributions with the Distribution
Fitting Tool.

Defining Custom Distributions. To define a custom distribution, select
Define Custom Distribution from the File menu. This opens an M-file
template in the MATLAB editor. You then edit this M-file so that it computes
the distribution you want.

The template includes example code that computes the Laplace distribution,
beginning at the lines
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o°

Remove the following return statement to define the
Laplace distributon

o® o°

o°

return

To use this example, simply delete the command return and save the M-file.
If you save the template in a directory on the MATLAB path, under its
default name dfittooldists.m, the Distribution Fitting Tool reads it in
automatically when you start the tool. You can also save the template under a
different name, such as laplace.m, and then import the custom distribution
as described in the following section.

Importing Custom Distributions. To import a custom distribution, select
Import Custom Distributions from the File menu. This opens a dialog box
in which you can select the M-file that defines the distribution. For example,
if you created the file laplace.m, as described in the preceding section, you
can enter laplace.m and select Open in the dialog box. The Distribution
field of the New Fit window now contains the option Laplace.
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Additional Distributions Available in the Distribution Fitting Tool

The following distributions are available in the Distribution Fitting Tool, but
do not have dedicated distribution functions as described in “Distribution
Functions” on page 5-94. The distributions can be used with the functions
pdf, cdf, icdf, and mle in a limited capacity. See the reference pages for these
functions for details on the limitations.

“Birnbaum-Saunders Distribution” on page 5-18

¢ “Inverse Gaussian Distribution” on page 5-47

* “Loglogistic Distribution” on page 5-51

e “Logistic Distribution” on page 5-50

¢ “Nakagami Distribution” on page 5-64

¢ “Rician Distribution” on page 5-84

® “t Location-Scale Distribution” on page 5-87

For a complete list of the distributions available for use with the Distribution
Fitting Tool, see “Supported Distributions” on page 5-3. Distributions listing

dfittool in the fit column of the tables in that section can be used with
the Distribution Fitting Tool.

Random Number Generation Tool

The Random Number Generation Tool is a graphical user interface that
generates random samples from specified probability distributions and
displays the samples as histograms. Use the tool to explore the effects of
changing parameters and sample size on the distributions.

Run the tool by typing randtool at the command line. You can also run it
from the Demos tab in the Help browser.
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Start by selecting a distribution, then enter the desired sample size.
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You can also
® Use the controls at the bottom of the window to set parameter values for
the distribution and to change their upper and lower bounds.

® Draw another sample from the same distribution, with the same size and
parameters.

¢ Export the current sample to your workspace. A dialog box enables you
to provide a name for the sample.
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Random number generators for supported distributions are discussed in
“Random Number Generators” on page 5-116.

A GUI for generating random numbers from supported distributions is
discussed in “Random Number Generation Tool” on page 5-155.

This section discusses additional topics in random number generation.

Methods of Random Number Programming methods for random

Generation (p. 5-158) number generators

Additional Random Number Additional random number

Generators (p. 5-167) generators available in Statistics
Toolbox

Copulas (p. 5-174) Simulating dependent random

variables using copulas

Methods of Random Number Generation

A working definition of randomness was given in 1951 by Berkeley Professor
D. H. Lehmer, an early pioneer in computing:

A random sequence is a vague notion... in which each term is unpredictable
to the uninitiated and whose digits pass a certain number of tests traditional
with statisticians...

Mathematical definitions of randomness use notions of information content,
noncomputability, and stochasticity, among other things. The various
definitions, however, do not always agree on which sequences are random
and which are not.

Practical methods for generating random numbers from specific distributions
usually start with uniform random numbers. Once you have a uniform

random number generator, like the MATLAB rand function, you can produce
random numbers from other distributions using the methods described below.
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Direct Methods

Direct methods make direct use of the definition of the distribution.

For example, consider binomial random numbers. You can think of a binomial
random number as the number of heads in N tosses of a coin with probability
p of a heads on any toss. If you generate N uniform random numbers on the
interval (0,1) and count the number less than p, then the count is a binomial
random number with parameters N and p.

The following function is a simple implementation of a binomial RNG using
this approach:

function X = directbinornd(N,p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u = rand(N,1);

X(1i) = sum(u < p);
end

For example,

X = directbinornd(100,0.3,1e4,1);
hist(X,101)
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The Statistics Toolbox function binornd uses a modified direct method, based
on the definition of a binomial random variable as the sum of Bernoulli
random variables.

The method above is easily converted to a random number generator for the
Poisson distribution with parameter A. Recall that the Poisson distribution
is the limiting case of the binomial distribution as IV approaches infinity,

p approaches zero, and Np is held fixed at L. To generate Poisson random
numbers, you could create a version of the above generator that inputs A
rather than N and p, and then internally sets IV to some large number and
p to A/N.

The Statistics Toolbox function poissrnd actually uses two direct methods: a
waiting time method for small values of A, and a method due to Ahrens and
Dieter for larger values of A.
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Inversion Methods

Inversion methods are based on the observation that continuous cumulative
distribution functions (cdfs) range uniformly over the interval (0,1). If u is a
uniform random number on (0,1), then a random number X from a continuous
distribution with specified cdf F' can be obtained using X = F-1(U).

For example, the following code generates random numbers from a specific
exponential distribution using the inverse cdf and the MATLAB uniform
random number generator rand:

mu = 1;
X = expinv(rand(1e4,1),mu);

The distribution of the generated random numbers can be compared to the
pdf of the specified exponential distribution. The pdf, with area = 1, must be
scaled to the area of the histogram used to display the distribution:

numbins = 50;

hist (X,numbins)

hold on

[bincounts,binpositions] = hist(X,numbins);
binwidth binpositions(2) - binpositions(1);
histarea = binwidth*sum(bincounts);

X binpositions(1):0.001:binpositions(end);
y = exppdf(x,mu);

plot(x,histarea*y, 'r','LineWidth',2)
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Inversion methods can be adapted to discrete distributions. Suppose you want
a random number X from a discrete distribution with a probability mass
vector P(X =x;) = p,, where x, <x; <x, < ... . You could generate a uniform
random number u on (0,1) and then set X = x; if F(x, ;) <u <F(x)).

For example, the following function implements an inversion method for a
discrete distribution with probability mass vector p:

function X = discreteinvrnd(p,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n

u rand;

I find(u < cumsum(p));

X(1i) = min(I);
end

The function can be used to generate random numbers from any discrete
distribution:
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p [0.1 0.2 0.3 0.2 0.1 0.1]; % Probability mass vector
X discreteinvrnd(p,i1e4,1);

[n,x] = hist(X,length(p));

bar(1:1length(p),n)
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Acceptance-Rejection Methods

The functional form of some distributions makes it difficult or time-consuming
to generate random numbers using direct or inversion methods.
Acceptance-rejection methods can provide a good solution in these cases.

Acceptance-rejection methods also begin with uniform random numbers, but
they require the availability of an additional random number generator. If
the goal is to generate a random number from a continuous distribution with
pdf f, acceptance-rejection methods first generate a random number from a
continuous distribution with pdf g satisfying f (x) < ¢g (x) for some ¢ and all x.
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A continuous acceptance-rejection RNG proceeds as follows:

1 Choose a density g.

2 Find a constant ¢ such that f (x) / g (x) < ¢ for all x.
3 Generate a uniform random number .

4 Generate a random number v from g.

5 Ifc*u <f(v)/ g (v), accept and return v.

6 Otherwise, reject v and go to 3.

For efficiency, you need a cheap method for generating random numbers from
g, and the scalar ¢ should be small. The expected number of iterations to

produce a random number is c.

The following function implements an acceptance-rejection method for
generating random numbers from pdf f, given f, g, the RNG grnd for g, and
the constant c:
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function X = accrejrnd(f,g,grnd,c,m,n)

X = zeros(m,n); % Preallocate memory
for i = 1:m*n
accept = false;

while accept == false
u = rand();
v = grnd();
if c*u <= f(v)/g(v)
X(1i) = v;
accept = true;
end
end

end

For example, the function f (x) = xe™¥2

satisfies the conditions for a pdf on

[0,) (nonnegative and integrates to 1). The exponential pdf with mean 1, f (x)
= e, dominates g for ¢ greater than about 2.2. Thus, you can use rand and

exprnd to generate random numbers from f':

f @(x)x.*exp(-(x."2)/2);

g = @(x)exp(-x);

grnd = @()exprnd(1);

X = accrejrnd(f,g,grnd,2.2,1e4,1);

The pdf fis actually a Rayleigh distribution with shape parameter 1. The
distribution of random numbers generated by the acceptance-rejection method

can be compared to those generated by raylrnd:

Y = raylrnd(1,1e4,1);
hist([X Y])
legend('A-R RNG', 'Rayleigh RNG')
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The Statistics Toolbox function raylrnd uses a transformation method,
expressing a Rayleigh random variable in terms of a chi-square random
variable, which can be computed using randn.

Acceptance-rejection methods can be adapted to discrete distributions. In
this case, the goal is to generate random numbers from a distribution with
probability mass P(X =i) = p,, assuming you have a method for generating
random numbers from a distribution with probability mass P X =i)=q,
The RNG proceeds as follows:

1 Choose a density P,

2 Find a constant ¢ such that p, /g, <c for all i .
3 Generate a uniform random number .

4 Generate a random number v from P,

5 Ifc*u<p,/q,, accept and return v.

6 Otherwise, reject v and go to 3.
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Additional Random Number Generators

In addition to the direct, inverse, and acceptance-rejection methods described
in “Methods of Random Number Generation” on page 5-158, Statistics
Toolbox offers Markov chain Monte-Carlo methods and the Pearson and
Johnson systems of distributions for generating random numbers from any
distribution.

Markov Chain Samplers

In Bayesian data analysis, it is difficult to sample from the posterior
distribution if it is in a nonstandard form. To generate random numbers
for a nonstandard form, Markov chain algorithms draw dependent samples
whose stationary distribution is the posterior distribution. Two algorithms
are provided here—Metropolis-Hastings and slice sampling.

Metropolis-Hastings Algorithm. The Metropolis-Hastings algorithm
draws samples from a distribution that is only known up to a constant.
Random numbers are generated from a distribution with a probability density
function that is equal to or proportional to a proposal function.

The following steps are used to generate random numbers:
1 Assume a initial value x(z).
2 Draw a sample, y(¢), from a proposal distribution g(y | x(2)).

3 Accept y(¢) as the next sample x(¢+1) with probability r(x(¢),y(¢)), and keep
x(¢) as the next sample x(¢+1) with probability 1-r(x(¢),y(¢)), where

W alx ] y)
,Y)= s ,1
r(x,y) mm{f(x) 2| 0 }

4 Increment ¢t — ¢+1, and repeat steps 2 and 3 until the desired number of
samples are obtained.

You can generate random numbers using the Metropolis-Hastings method
with the mhsample function. To produce quality samples efficiently with
Metropolis-Hastings algorithm, it is crucial to select a good proposal
distribution. Ifit is difficult to find an efficient proposal distribution, you
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can use the slice sampling algorithm without explicitly specifying a proposal
distribution.

Slice Sampling Algorithm. In instances where it is difficult to find

an efficient Metropolis-Hastings proposal distribution, there are a few
algorithms, such as the slice sampling algorithm, that do not require an
explicit specification for the proposal distribution. The slice sampling
algorithm draws samples from the region under the density function using a
sequence of vertical and horizontal steps. First, it selects a height at random
between 0 and the density function f (x). Then, it selects a new x value at
random by sampling from the horizontal “slice” of the density above the
selected height. A similar slice sampling algorithm is used for a multivariate
distribution.

If a function f (x) proportional to the density function is given, the following
steps are used to generate random numbers:

1 Assume a initial value x(¢) within the domain of f (x).

2 Draw a real value y uniformly from (0.f (x(¢))), thereby defining a horizontal
“slice” as S = {x: y < f (x)}.

3 Find an interval I = (L,R) around x(¢) that contains all, or much of the
“slice” S.

4 Draw the new point x(¢+1) within this interval.

5 Increment ¢ — t+1 and repeat steps 2 through 4 until the desired number of
samples are obtained.

Slice sampling can generate random numbers from a distribution with an
arbitrary form of the density function, provided that an efficient numerical
procedure is available to find the interval I = (L,R), which is the “slice” of
the density.

You can generate random numbers using the slice sampling method with
the slicesample function.
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Pearson and Johnson Systems of Distributions

In many simulation applications, you need to generate random inputs that are
similar to existing data. One simple way to do that is to resample from the
original data, using the randsample function. You might also fit a parametric
distribution from one of the families described in the “Distribution Reference”
on page 5-9, and then generate random values from that distribution.
However, choosing a suitable family can sometimes be difficult. The Pearson
and Johnson systems can help by making such a choice unnecessary. Each

is a flexible parametric family of distributions that includes a wide range of
distribution shapes, and it is often possible to find a distribution within one of
these two systems that provides a good match to your data.

As an example, load the carbig dataset, which includes a variable MPG
containing measurements of the gas mileage for each car.

load carbig

MPG = MPG(~isnan(MPG));
hist (MPG,15);

G0 T T T T T T T T
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The Pearson System of Distributions. The statistician Karl Pearson
devised a system, or family, of distributions that includes a unique distribution
corresponding to every valid combination of mean, standard deviation,
skewness, and kurtosis. If you compute sample values for each of these
moments from data, it is easy to find the distribution in the Pearson system
that matches these four moments and to generate a random sample.

The Pearson system embeds seven basic types of distribution together in

a single parametric framework. It includes common distributions such

as the normal and t distributions, simple transformations of standard
distributions such as a shifted and scaled beta distribution and the inverse
gamma distribution, and one distribution—the Type IV—that is not a simple
transformation of any standard distribution.

For a given set of moments, there are distributions that are not in the system
that also have those same first four moments, and the distribution in the
Pearson system may not be a good match to your data, particularly if the
data are multimodal. But the system does cover a wide range of distribution
shapes, including both symmetric and skewed distributions.

To generate a sample from the Pearson distribution that closely matches
the MPG data, simply compute the four sample moments and treat those as
distribution parameters.

moments = {mean(MPG),std(MPG),skewness(MPG),kurtosis(MPG)};
[r,type] = pearsrnd(moments{:},10000,1);

The optional second output from pearsrnd indicates which type of distribution
within the Pearson system matches the combination of moments.

type
type =
1

In this case, pearsrnd has determined that the data are best described with a
Type I Pearson distribution, which is a shifted, scaled beta distribution.

Verify that the sample resembles the original data by overlaying the empirical
cumulative distribution functions.



Random Number Generation

ecdf (MPG) ;
[Fi,xi] = ecdf(r);
hold on, stairs(xi,Fi,'r'); hold off
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The Johnson System of Distributions. Statistician Norman Johnson
devised a different system of distributions that also includes a unique
distribution for every valid combination of mean, standard deviation,
skewness, and kurtosis. However, since it is more natural to describe
distributions in the Johnson system using quantiles, working with this system
is different than working with the Pearson system.

The Johnson system is based on three possible transformations of a normal
random variable, plus the identity transformation. The three nontrivial cases

are known as SL, SU, and SB, corresponding to exponential, logistic, and
hyperbolic sine transformations. All three can be written as

X=y+&Fé%Q)
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where Z is a standard normal random variable, T is the transformation, and
Y, 0, &, and A are scale and location parameters. The fourth case, SN, is the
identity transformation.

To generate a sample from the Johnson distribution that matches the MPG
data, first define the four quantiles to which the four evenly spaced standard
normal quantiles of -1.5, -0.5, 0.5, and 1.5 should be transformed. That is, you
compute the sample quantiles of the data for the cumulative probabilities of
0.067, 0.309, 0.691, and 0.933.

probs = normcdf([-1.5 -0.5 0.5 1.5])

probs =

0.066807 0.30854 0.69146 0.93319
quantiles = quantile(MPG,probs)
quantiles =

13.0000 18.0000 27.2000 36.0000

Then treat those quantiles as distribution parameters.

[r1,type] = johnsrnd(quantiles,10000,1);

The optional second output from johnsrnd indicates which type of distribution
within the Johnson system matches the quantiles.

type
type =
SB

You can verify that the sample resembles the original data by overlaying the
empirical cumulative distribution functions.

ecdf (MPG) ;
[Fi,xi] = ecdf(ril);
hold on, stairs(xi,Fi,'r'); hold off
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In some applications, it may be important to match the quantiles better in
some regions of the data than in others. To do that, specify four evenly spaced
standard normal quantiles at which you want to match the data, instead of
the default -1.5, -0.5, 0.5, and 1.5. For example, you might care more about
matching the data in the right tail than in the left, and so you would specify
standard normal quantiles that emphasizes the right tail.

gqnorm = [-.5 .25 1 1.75]

probs normcdf (qnorm) ;

gemp = quantile(MPG,probs);

r2 = johnsrnd([gnorm; gemp],10000,1);

gnorm =
-0.5 0.25 1 1.75

However, while the new sample matches the original data better in the right
tail, it matches much worse in the left tail.

[Fj,xj] = ecdf(r2);
hold on, stairs(xj,Fj,'g'); hold off
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Copulas

Statistics Toolbox provides functions to create sequences of random data
according to many common univariate distributions. The toolbox also includes
functions to generate random data from several multivariate distributions,
such as mvnrnd for the multivariate normal and mvtrnd for the multivariate
t. However, these standard multivariate distributions do not allow for cases
with complicated relationships among the variables or where the individual
variables are from different distributions.

Copulas are functions that describe dependencies among variables, and
provide a way to create distributions to model correlated multivariate data.
Using a copula, a data analyst can construct a multivariate distribution by
specifying marginal univariate distributions, and then choose a particular
copula to provide a correlation structure between variables. Bivariate
distributions, as well as distributions in higher dimensions, are possible.
This section discusses how to use copulas to generate dependent multivariate
random data in MATLAB, using Statistics Toolbox.
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Dependence Between Simulation Inputs

One of the design decisions for a Monte-Carlo simulation is a choice of
probability distributions for the random inputs. Selecting a distribution

for each individual variable is often straightforward, but deciding what
dependencies should exist between the inputs may not be. Ideally, input data
to a simulation should reflect what is known about dependence among the
real quantities being modeled. However, there may be little or no information
on which to base any dependence in the simulation. In such cases, it is useful
to experiment with different possibilities in order to determine the model’s
sensitivity.

It can be difficult to actually generate random inputs with dependence

when they have distributions that are not from a standard multivariate
distribution. Further, some of the standard multivariate distributions can
model only very limited types of dependence. It is always possible to make the
inputs independent, and while that is a simple choice, it is not always sensible
and can lead to the wrong conclusions.

For example, a Monte-Carlo simulation of financial risk might have two
random inputs that represent different sources of insurance losses. These
inputs might be modeled as lognormal random variables. A reasonable
question to ask is how dependence between these two inputs affects the
results of the simulation. Indeed, it might be known from real data that
the same random conditions affect both sources and ignoring that in the
simulation could lead to the wrong conclusions.

The lognrnd function is used to simulate independent lognormal random
variables. In the example below, the mvnrnd function is used to generate n
pairs of independent normal random variables, and then exponentiate them.
Notice that the covariance matrix used here is diagonal, i.e., independence
between the columns of Z.

n = 1000;
sigma = .5;
SigmaInd = sigma.”2 .* [1 0; 0 1]

SigmalInd =

0 0.25
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ZInd = mvnrnd([O0 0], SigmalInd, n);

XInd = exp(ZInd);

plot(XInd(:,1),XInd(:,2),"'."'); axis equal; axis([0 5 0 5]);
xlabel('X1'); ylabel('X2'");

5
45} . . 1
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Dependent bivariate lognormal random variables are also easy to generate,
using a covariance matrix with nonzero off-diagonal terms.

rho = .7;
SigmaDep = sigma.”2 .* [1 rho; rho 1]

SigmaDep =
0.25 0.175
0.175 0.25
ZDep = mvnrnd([O0 0], SigmaDep, n);

XDep exp(ZDep);

A second scatter plot demonstrates the difference between these two bivariate
distributions.
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plot(XDep(:,1),XDep(:,2),"'.");
axis equal; axis([0 5 0 5]);
xlabel('X1'); ylabel('X2");

It is clear that there is a tendency in the second data set for large values of X1
to be associated with large values of X2, and similarly for small values. This
dependence is determined by the correlation parameter, p, of the underlying
bivariate normal. The conclusions drawn from the simulation could well
depend on whether or not X1 and X2 were generated with dependence. The
bivariate lognormal distribution is a simple solution in this case, and of
course easily generalizes to higher dimensions in cases where the marginal
distributions are different lognormals. Other multivariate distributions also
exist. For example, the multivariate t and the Dirichlet distributions are used
to simulate dependent t and beta random variables, respectively. But the
list of simple multivariate distributions is not long, and they only apply in
cases where the marginals are all in the same family (or even the exact same
distributions). This can be a serious limitation in many situations.
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A More General Method for Constructing Dependent Bivariate
Distributions

Although the construction discussed in the previous section creates a bivariate
lognormal that is simple, it serves to illustrate a method which is more
generally applicable. First, generate pairs of values from a bivariate normal
distribution. There is statistical dependence between these two variables, and
each has a normal marginal distribution. Next, apply a transformation (the
exponential function) separately to each variable, changing the marginal
distributions into lognormals. The transformed variables still have a
statistical dependence.

If a suitable transformation could be found, this method could be generalized
to create dependent bivariate random vectors with other marginal
distributions. In fact, a general method of constructing such a transformation
does exist, although it is not as simple as exponentiation alone.

By definition, applying the normal cumulative distribution function (cdf),
denoted here by &, to a standard normal random variable results in

a random variable that is uniform on the interval [0, 1]. To see this,

if Z has a standard normal distribution, then the edf of U = ® (Z) is
Pr{U < u} = Pr{®(Z) < u} = Pr{Z < ®'(u)} = u,

and that is the cdf of a Unif(0,1) random variable. Histograms of some
simulated normal and transformed values demonstrate that fact.

n 1000;

z normrnd(0,1,n,1);

hist(z,-3.75:.5:3.75); x1lim([-4 4]1);
title('1000 Simulated N(O0,1) Random Values');
xlabel('Z"'); ylabel('Frequency');
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u = normcdf(z);

hist(u,.05:.1:.95);

title('1000 Simulated N(0,1) Values Transformed to Unif(0,1)"');
xlabel('U"'); ylabel('Frequency');
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Borrowing from the theory of univariate random number generation, applying
the inverse cdf of any distribution, F, to a Unif(0,1) random variable results
in a random variable whose distribution is exactly F. This is known as the
Inversion Method. The proof is essentially the opposite of the above proof
for the forward case. Another histogram illustrates the transformation to a

gamma distribution.

X = gaminv(u,2,1);
hist(x,.25:.5:9.75);
title('1000 Simulated N(O,1) Values Transformed to Gamma(2,1)"');

xlabel('X"'); ylabel('Frequency');
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This two-step transformation can be applied to each variable of a standard
bivariate normal, creating dependent random variables with arbitrary
marginal distributions. Because the transformation works on each component
separately, the two resulting random variables need not even have the same
marginal distributions. The transformation is defined as

b
Z = [Z1 Z2] ~ N([0 0], )
p 1

U = [®(Z1) ©(Z2)]
X = [G1(U1) G2(U2)]

where G1 and G2 are inverse cdfs of two possibly different distributions. For
example, you can generate random vectors from a bivariate distribution with
t;, and Gamma(2,1) marginals.

n = 1000; rho = .7; Z = mvnrnd([0 O],
[1 rho; rho 1], n); U normcdf (Z) ;
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];
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This plot has histograms alongside a scatter plot to show both the marginal
distributions, and the dependence.
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Rank Correlation Coefficients
Dependence between X1 and X2 in this construction is determined by the
correlation parameter, p, of the underlying bivariate normal. However, it is

not true that the linear correlation of X1 and X2 is p. For example, in the
original lognormal case, there is a closed form for that correlation:

pe’ _
cor(X1,x2) = & -1

e® -1

which is strictly less than p, unless p is exactly one. In more general cases
such as the Gamma/t construction above, the linear correlation between X1
and X2 is difficult or impossible to express in terms of p, but simulations can
be used to show that the same effect happens.

That is because the linear correlation coefficient expresses the linear
dependence between random variables, and when nonlinear transformations
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are applied to those random variables, linear correlation is not preserved.
Instead, a rank correlation coefficient, such as Kendall’s T or Spearman’s p,
is more appropriate.

Roughly speaking, these rank correlations measure the degree to which
large or small values of one random variable associate with large or small
values of another. However, unlike the linear correlation coefficient, they
measure the association only in terms of ranks. As a consequence, the rank
correlation is preserved under any monotonic transformation. In particular,
the transformation method just described preserves the rank correlation.
Therefore, knowing the rank correlation of the bivariate normal Z exactly
determines the rank correlation of the final transformed random variables,
X. While the linear correlation coefficient, p, is still needed to parameterize
the underlying bivariate normal, Kendall’s T or Spearman’s p are more useful
in describing the dependence between random variables, because they are
invariant to the choice of marginal distribution.

It turns out that for the bivariate normal, there is a simple one-to-one mapping
between Kendall’s T or Spearman’s p, and the linear correlation coefficient p:

T = garcsin(p) or p= sin(rE)
T 2

P = 9arcsin(g) or p= 2sin(pSE)
T 2 6

rho = -1:.01:1;
tau 2.*asin(rho)./pi;
rho_s = 6.*asin(rho./2)./pi;
subplot(1,1,1);
plot(rho,tau,'-"',rho,rho_s,"'-"',[-1 1],[-1 1],"'k:");
axis([-1 1 -1 1]);
xlabel('rho');
ylabel('Rank correlation coefficient');
legend('Kendall''s \tau',
‘Spearman''s \rho_s',
‘location', 'northwest');
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Thus, it is easy to create the desired rank correlation between X1 and X2,
regardless of their marginal distributions, by choosing the correct p parameter
value for the linear correlation between Z1 and 72.

Notice that for the multivariate normal distribution, Spearman’s rank
correlation is almost identical to the linear correlation. However, this is not
true once you transform to the final random variables.

Copulas

The first step of the construction described in the previous section defines
what is known as a copula, specifically, a bivariate Gaussian copula. A copula
is a multivariate probability distribution, where each random variable has
a uniform marginal distribution on the unit interval [0,1]. These variables
may be completely independent, deterministically related (e.g., U2 = U1),

or anything in between. Because of the possibility for dependence among
variables, you can use a copula to construct a new multivariate distribution
for dependent variables. By transforming each of the variables in the copula
separately using the inversion method, possibly using different cdfs, the
resulting distribution can have arbitrary marginal distributions. Such
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multivariate distributions are often useful in simulations, when you know
that the different random inputs are not independent of each other.

Statistics Toolbox provides functions to compute the probability density
function (pdf) and the cumulative distribution function (cdf) for Gaussian
copulas, functions to compute rank correlations from linear correlations
and vice versa, and a function to generate random vectors. For example,
use the copularnd function to create scatter plots of random values from a
bivariate Gaussian copula for various levels of p, to illustrate the range of
different dependence structures. The family of bivariate Gaussian copulas
is parameterized by the linear correlation matrix:

e

U1 and U2 approach linear dependence as p approaches +1, and approach
complete independence as p approaches zero.

n = 500;

U copularnd('Gaussian',[1 .8; .8 1], n);
subplot(2,2,1); plot(U(:,1),U(:,2),"'.");
title('\rho = 0.8"'); xlabel('U1'); ylabel('U2');
U = copularnd('Gaussian', [1 .1; .1 1], n);
subplot(2,2,2); plot(U(:,1),U(:,2),"'.");
title('\rho = 0.1"); xlabel('U1'); ylabel('U2');
U = copularnd('Gaussian', [1 -.1; -.1 1], n);
subplot(2,2,3); plot(U(:,1),U(:,2),"'.");

SN -

title('\rho = -0.1"); xlabel('U1"); ylabel('U2');
U = copularnd('Gaussian', [1 -.8; -.8 1], n);
subplot(2,2,4); plot(U(:,1),U(: 2), )

title('\rho = -0.8"); xlabel('U1"); ylabel('U2');
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The dependence between U1 and U2 is completely separate from the marginal
distributions of X1=G(U1) and X2 = G(U2). X1 and X2 can be given any
marginal distributions, and still have the same rank correlation. This is one
of the main appeals of copulas—they allow this separate specification of
dependence and marginal distribution. You can also compute the pdf and the
cdf for a copula. For example, these plots show the pdf and cdf for p = .8.

ul = linspace(1e-3,1-1e-3,50);

u2 = linspace(1e-3,1-1e-3,50);

subplot(1,1,1);

[U1,U2] = meshgrid(ul,u2);

Rho = [1 .8; .8 1];

f = copulapdf('t',[U1(:) U2(:)],Rho0,5);

f = reshape(f,size(U1));
surf(ul,u2,log(f), 'FaceColor', 'interp', 'EdgeColor', 'none');
view([-15,20]);

xlabel('U1'); ylabel('U2'); zlabel('Probability Density');
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Probability Density

04 0.6
U1

U2 0 0.2

ul = linspace(1e-3,1-1e-3,50);

u2 linspace(1e-3,1-1e-3,50);

[U1,U2] = meshgrid(ul,u2);

F = copulacdf('t',[U1(:) U2(:)],Rho0,5);
F = reshape(F,size(U1));

surf(utl,u2,F, 'FaceColor', 'interp', 'EdgeColor', 'none');

view([-15,20]);

xlabel('U1'); ylabel('U2'); zlabel('Cumulative Probability');
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t Copulas

A different family of copulas can be constructed by starting from a bivariate ¢
distribution, and transforming using the corresponding ¢ cdf. The bivariate ¢
distribution is parameterized with P, the linear correlation matrix, and v, the
degrees of freedom. Thus, for example, you can speak of a ¢, or a ¢, copula,
based on the multivariate ¢ with one and five degrees of freedom, respectively.

Just as for Gaussian copulas, Statistics Toolbox provides functions for ¢
copulas to compute the pdf, cdf, and rank correlations; and to generate
random vectors. For example, use the copularnd function to create scatter
plots of random values from a bivariate ¢, copula for various levels of p, to
illustrate the range of different dependence structures.

n = 500;

nu = 1;

U = copularnd('t', [1 .8; .8 1], nu, n);
subplot(2,2,1); plot(U(:,1),U(:,2),"'.");
title('\rho = 0.8'); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 .1; .1 1], nu, n);
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L2

subplot(2,2,2); plot(U(:,1),U(:,2),"'.");
title('\rho = 0.1'); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 -.1; -.1 1], nu, n);
subplot(2,2,3); plot(U(:,1),U(:,2),"'.");
title('\rho = -0.1"); xlabel('U1'); ylabel('U2');
U = copularnd('t', [1 -.8; -.8 1], nu, n);
subplot(2,2,4); plot(U(:,1),U(:,2),"'.");
title('\rho = -0.8"'); xlabel('U1'); ylabel('U2');
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A t copula has uniform marginal distributions for U1 and U2, just as a

Gaussian copula does. The rank correlation t or p, between components in a ¢
copula is also the same function of p as for a Gaussian. However, as these plots
demonstrate, a ¢, copula differs quite a bit from a Gaussian copula, even when
their components have the same rank correlation. The difference is in their
dependence structure. Not surprisingly, as the degrees of freedom parameter
vis made larger, a ¢, copula approaches the corresponding Gaussian copula.

As with a Gaussian copula, any marginal distributions can be imposed over
a t copula. For example, using a ¢ copula with 1 degree of freedom, you can
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again generate random vectors from a bivariate distribution with Gamma(2,1)
and ¢, marginals:

n = 1000;
rho = .7;
nu = 1;

U = copularnd('t', [1 rho; rho 1], nu, n);
X = [gaminv(U(:,1),2,1) tinv(U(:,2),5)];

1000 Simulated Dependent t and Gamma Yalues

10

10 15
¥1 -~ Gammai2 1)

Compared to the bivariate Gamma/¢ distribution constructed earlier, which
was based on a Gaussian copula, the distribution constructed here, based on a
t, copula, has the same marginal distributions and the same rank correlation
between variables but a very different dependence structure. This illustrates
the fact that multivariate distributions are not uniquely defined by their
marginal distributions, or by their correlations. The choice of a particular
copula in an application may be based on actual observed data, or different

copulas may be used as a way of determining the sensitivity of simulation
results to the input distribution.




Random Number Generation

Copulas in Higher Dimensions

The Gaussian and ¢ copulas are known as elliptical copulas. It is easy to
generalize elliptical copulas to a higher number of dimensions. For example,
simulate data from a trivariate distribution with Gamma(2,1), Beta(2,2), and
t, marginals using a Gaussian copula as follows:

n = 1000;

Rho = [1 .4 .2; .41 -.8; .2 -.8 1];

u copularnd('Gaussian', Rho, n);

X = [gaminv(U(:,1),2,1) betainv(U(:,2),2,2) tinv(U(:,3),5)];
subplot(1,1,1);

plot3(X(:,1),X(:,2),X(:,3),".");

grid on; view([-55, 15]);

xlabel('X1'); ylabel('X2'); zlabel('X3');

L3

Notice that the relationship between the linear correlation parameter p and,
for example, Kendall’s 1, holds for each entry in the correlation matrix P
used here. You can verify that the sample rank correlations of the data are
approximately equal to the theoretical values.

tauTheoretical = 2.*asin(Rho)./pi
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tauTheoretical =
1 0.26198 0.12819
0.26198 1 -0.59033
0.12819 -0.59033 1

tauSample = corr(X, 'type','Kendall')

tauSample =
1 0.27254 0.12701
0.27254 1 -0.58182
0.12701 -0.58182 1

Archimedean Copulas

Statistics Toolbox also supports three bivariate Archimedean copula families:
the Clayton, the Frank, and the Gumbel. These are one-parameter families
that are defined directly in terms of their cdfs, rather than being defined
constructively using a standard multivariate distribution.

To compare these three Archimedean copulas to the Gaussian and ¢ bivariate
copulas, first use the copulastat function to find the rank correlation for a
Gaussian or t copula with linear correlation parameter of 0.8, then use the
copulaparam function to find the Clayton copula parameter that corresponds
to that rank correlation.

tau = copulastat('Gaussian', .8 ,'type', 'kendall')
tau =

0.59033
alpha = copulaparam('Clayton', tau, 'type', 'kendall')
alpha =

2.882

Finally, plot a random sample from the Clayton copula. Repeat the same
procedure for the Frank and Gumbel copulas.

n = 500;
u copularnd('Clayton', alpha, n);
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112

subplot(2,2,1); plot(U(:,1),U(:,2),"'.");

title(sprintf('Clayton Copula, \\alpha =
xlabel('U1'); ylabel('U2');

alpha = copulaparam('Frank', tau, 'type', 'kendall');

U = copularnd('Frank', alpha, n);

subplot(2,2,2); plot(U(:,1),U(:,2),"'.");

title(sprintf('Frank Copula, \\alpha = %.2f',alpha));
xlabel('U1'); ylabel('U2');

alpha = copulaparam('Gumbel', tau, 'type', 'kendall');

U = copularnd('Gumbel', alpha, n);

subplot(2,2,3); plot(U(:,1),U(:,2),"'.");

title(sprintf('Gumbel Copula, \\alpha = %.2f',alpha));
xlabel('U1'); ylabel('U2');

%.2f',alpha));
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Copulas and Nonparametric Marginal Distributions

To simulate dependent multivariate data using a copula, you must specify
each of the following:

1 The copula family (and any shape parameters)
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2 The rank correlations among variables
3 Marginal distributions for each variable

Suppose you have return data for two stocks, and would like to run a Monte
Carlo simulation with inputs that follow the same distributions as the data.

load stockreturns

nobs = size(stocks,1);

subplot(2,1,1); hist(stocks(:,1),10); x1lim([-3.5 3.5]);
xlabel('X1"'); ylabel('Frequency');

subplot(2,1,2); hist(stocks(:,2),10); x1lim([-3.5 3.5]);
xlabel('X2"'); ylabel('Frequency');

Freguency
]
()

—_
=

Frequency

-3 -2 -1 0 1 2 3
w2

You could fit a parametric model separately to each dataset, and use those
estimates as the marginal distributions. However, a parametric model may
not be sufficiently flexible. Instead, you can use an nonparametric model
to transform to the marginal distributions. All that is needed is a way to
compute the inverse cdf for the nonparametric model.
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The simplest nonparametric model is the empirical cdf, as computed by the
ecdf function. For a discrete marginal distribution, this is appropriate.
However, for a continuous distribution, it is a good idea to use a model that is
smoother than the step function computed by ecdf. One way to do that is to
estimate the empirical cdf, and interpolate between the midpoints of the steps
with a piecewise linear function. Another way is to use kernel smoothing.
For example, compare the empirical cdf to a kernel smoothed cdf estimate

for the first variable.

[Fi,xi] = ecdf(stocks(:,1));

subplot(1,1,1);

stairs(xi,Fi,'b');

hold on

Fi_sm = ksdensity(stocks(:,1),xi, " 'function’,'cdf', 'width',.15);
plot(xi,Fi_sm,'r-");

hold off

xlabel('X1'); ylabel('Cumulative Probability');

0&r

0.7

06+

05+

0.4r

Cumulative Probahility

03r

01 ¢

For the simulation, you might want to experiment with different copulas and
correlations. Here, you'll use a bivariate ¢ copula with a fairly small degrees of
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freedom parameter. For the correlation parameter, you can compute the rank
correlation of the data, and then find the corresponding linear correlation
parameter for the ¢ copula.

nu = 5;
tau = corr(stocks(:,1),stocks(:,2), 'type', 'kendall')

tau
0.51798

rho = copulaparam('t', tau, nu, 'type','kendall’)

rho =
0.72679

Next, generate random values from the ¢ copula, and transform using the
nonparametric inverse cdfs. The ksdensity function allows you to make a
kernel estimate of distribution, and evaluate the inverse cdf at the copula
points all in one step.

n = 1000;

U = copularnd('t',[1 rho; rho 1],nu,n);

X1 = ksdensity(stocks(:,1),U(:,1),...
‘function', 'icdf', 'width',.15);

X2 = ksdensity(stocks(:,2),U(:,2),...
‘function', 'icdf', 'width',.15);

Alternatively, when you have a large amount of data or need to simulate more
than one set of values, it may be more efficient to compute the inverse cdf
over a grid of values in the interval (0,1), and use interpolation to evaluate it
at the copula points.

p = linspace(.00001, .99999, 1000);

G1 = ksdensity(stocks(:,1) ,p ,'function', 'icdf', 'width',.15);
X1 = interpi(p, G1, U(:,1), 'spline');

G2 = ksdensity(stocks(:,2) ,p ,'function', 'icdf', 'width',.15);
X2 interp1(p, G2, U(:,2), 'spline');
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Notice that the marginal histograms of the simulated data are a smoothed
version of the histograms for the original data. The amount of smoothing is
controlled by the bandwidth input to ksdensity.
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Introduction

Hypothesis testing is a common method of drawing inferences about a
population based on statistical evidence from a sample.

As an example, suppose someone says that at a certain time in the state of
Massachusetts the average price of a gallon of regular unleaded gas was
$1.15. How could you determine the truth of the statement? You could try to
find prices at every gas station in the state at the time. That approach would
be definitive, but it could be time-consuming, costly, or even impossible.

A simpler approach would be to find prices at a small number of randomly
selected gas stations around the state, and then compute the sample average.

Sample averages differ from one another due to chance variability in the
selection process. Suppose your sample average comes out to be $1.18. Is the
$0.03 difference an artifact of random sampling or significant evidence that
the average price of a gallon of gas was in fact greater than $1.15? Hypothesis
testing is a statistical method for making such decisions.
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Hypothesis Test Terminology

All hypothesis tests share the same basic terminology and structure.

A null hypothesis is an assertion about a population that you would like
to test. It is “null” in the sense that it often represents a status quo belief,
such as the absence of a characteristic or the lack of an effect. It may be
formalized by asserting that a population parameter, or a combination of
population parameters, has a certain value. In the example given in the
“Introduction” on page 6-2, the null hypothesis would be that the average
price of gas across the state was $1.15. This is written H: x = 1.15.

An alternative hypothesis is a contrasting assertion about the population
that can be tested against the null hypothesis. In the example given in the
“Introduction” on page 6-2, possible alternative hypotheses are:

H,: u #1.15 — State average was different from $1.15 (two-tailed test)
H,: u >1.15 — State average was greater than $1.15 (right-tail test)
H,: u< 1.15 — State average was less than $1.15 (left-tail test)

To conduct a hypothesis test, a random sample from the population is
collected and a relevant test statistic is computed to summarize the sample.
This statistic varies with the type of test, but its distribution under the null
hypothesis must be known (or assumed).

The p-value of a test is the probability, under the null hypothesis, of
obtaining a value of the test statistic as extreme or more extreme than the
value computed from the sample.

The significance level of a test is a threshold of probability «agreed to before
the test is conducted. A typical value of «is 0.05. If the p-value of a test is
less than ¢, the test rejects the null hypothesis. If the p-value is greater
than ¢, there is insufficient evidence to reject the null hypothesis. Note
that lack of evidence for rejecting the null hypothesis is not evidence for
accepting the null hypothesis. Also note that substantive “significance” of
an alternative cannot be inferred from the statistical significance of a test.

The significance level « can be interpreted as the probability of rejecting
the null hypothesis when it is actually true—a type I error. The distribution
of the test statistic under the null hypothesis determines the probability

o of a type I error. Even if the null hypothesis is not rejected, it may still
be false—a type II error. The distribution of the test statistic under the
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alternative hypothesis determines the probability 5 of a type II error. Type
IT errors are often due to small sample sizes. The power of a test, 1 — f, is
the probability of correctly rejecting a false null hypothesis.

Results of hypothesis tests are often communicated with a confidence
interval. A confidence interval is an estimated range of values with a
specified probability of containing the true population value of a parameter.
Upper and lower bounds for confidence intervals are computed from the
sample estimate of the parameter and the known (or assumed) sampling
distribution of the estimator. A typical assumption is that estimates will be
normally distributed with repeated sampling (as dictated by the Central
Limit Theorem). Wider confidence intervals correspond to poor estimates
(smaller samples); narrow intervals correspond to better estimates

(larger samples). If the null hypothesis asserts the value of a population
parameter, the test rejects the null hypothesis when the hypothesized value
lies outside the computed confidence interval for the parameter.
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Hypothesis Test Assumptions

Different hypothesis tests make different assumptions about the distribution
of the random variable being sampled in the data. These assumptions must
be considered when choosing a test and when interpreting the results.

For example, the z-test (ztest) and the ¢-test (ttest) both assume that
the data are independently sampled from a normal distribution. Statistics
Toolbox offers a number of functions for testing this assumption, such as
chi2gof, jbtest, lillietest, and normplot.

Both the z-test and the ¢-test are relatively robust with respect to departures
from this assumption, so long as the sample size n is large enough. Both
tests compute a sample mean X, which, by the Central Limit Theorem, has
an approximately normal sampling distribution with mean equal to the
population mean p, regardless of the population distribution being sampled.

The difference between the z-test and the ¢-test is in the assumption of the
standard deviation o of the underlying normal distribution. A z-test assumes
that ois known; a ¢-test does not. As a result, a #-test must compute an
estimate s of the standard deviation from the sample.

Test statistics for the z-test and the ¢-test are, respectively,

o= X H
o/\n
p= 2K

:s/\/ﬁ

Under the null hypothesis that the population is distributed with mean p, the
z-statistic has a standard normal distribution, N(0,1). Under the same null
hypothesis, the ¢-statistic has Student’s ¢ distribution with n — 1 degrees of
freedom. For small sample sizes, Student’s ¢ distribution is flatter and wider
than N(0,1), compensating for the decreased confidence in the estimate s.

As sample size increases, however, Student’s ¢ distribution approaches the
standard normal distribution, and the two tests become essentially equivalent.
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Knowing the distribution of the test statistic under the null hypothesis allows
for accurate calculation of p-values. Interpreting p-values in the context of the
test assumptions allows for critical analysis of test results.

Assumptions underlying each of the hypothesis tests in Statistics Toolbox are
given in the reference page for the implementing function.
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Example: Hypothesis Testing

This example uses the gas price data in the file gas.mat. The file contains two
random samples of prices for a gallon of gas around the state of Massachusetts
in 1993. The first sample, price1, contains 20 random observations around
the state on a single day in January. The second sample, price2, contains 20
random observations around the state one month later.

load gas
prices = [pricel price2];

As a first step, you might want to test the assumption that the samples come
from normal distributions.

A normal probability plot gives a quick idea.

normplot(prices)

Marmal Probability Plot
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Both scatters approximately follow straight lines through the first and third
quartiles of the samples, indicating approximate normal distributions.

The February sample (the right-hand line) shows a slight departure from
normality in the lower tail. A shift in the mean from January to February is
evident.



6 Hypothesis Tests

6-8

A hypothesis test can be used to quantify the test of normality. Since each
sample is relatively small, a Lilliefors test is recommended.

lillietest(price1l)

ans =
0
lillietest(price2)
ans =
0

The default significance level of 1illietest is 5%. The logical 0 returned by
each test indicates a failure to reject the null hypothesis that the samples are
normally distributed. This failure may reflect normality in the population or
it may reflect a lack of strong evidence against the null hypothesis due to
the small sample size.

Now compute the sample means:

sample_means = mean(prices)
sample_means =
115.1500 118.5000

You might want to test the null hypothesis that the mean price across the
state on the day of the January sample was $1.15. If you know that the
standard deviation in prices across the state has historically, and consistently,
been $0.04, then a z-test is appropriate.

[h,pvalue,ci] = ztest(price1/100,1.15,0.04)

h =
0
pvalue =
0.8668
ci =

1.1340 1.1690

The logical output h = 0 indicates a failure to reject the null hypothesis

at the default significance level of 5%. This is a consequence of the high
probability under the null hypothesis, indicated by the p-value, of observing
a value as extreme or more extreme of the z-statistic computed from the
sample. The 95% confidence interval on the mean [1.1340 1.1690] includes
the hypothesized population mean of $1.15.
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Does the later sample offer stronger evidence for rejecting a null hypothesis
of a state-wide average price of $1.15 in February? The shift shown in the
probability plot and the difference in the computed sample means suggest
this. The shift might indicate a significant fluctuation in the market, raising
questions about the validity of using the historical standard deviation. If a
known standard deviation cannot be assumed, a ¢-test is more appropriate.

[h,pvalue,ci] = ttest(price2/100,1.15)
h =
1
pvalue =
4.9517e-04
ci =
1.1675 1.2025

The logical output h = 1 indicates a rejection of the null hypothesis at the
default significance level of 5%. In this case, the 95% confidence interval on
the mean does not include the hypothesized population mean of $1.15.

You might want to investigate the shift in prices a little more closely.
The function ttest2 tests if two independent samples come from normal
distributions with equal but unknown standard deviations and the same
mean, against the alternative that the means are unequal.

[h,sig,ci] = ttest2(pricel,price2)
h =
1
sig =
0.0083
ci =
-5.7845 -0.9155

The null hypothesis is rejected at the default 5% significance level, and
the confidence interval on the difference of means does not include the
hypothesized value of 0.

A notched box plot is another way to visualize the shift.
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boxplot(prices,1)

set(gca, 'XtickLabel',str2mat('January', 'February'))
xlabel('Month")

ylabel('Prices ($0.01)"')
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The plot displays the distribution of the samples around their medians. The
heights of the notches in each box are computed so that the side-by-side boxes
have nonoverlapping notches when their medians are different at a default 5%
significance level. The computation is based on an assumption of normality
in the data, but the comparison is reasonably robust for other distributions.
The side-by-side plots provide a kind of visual hypothesis test, comparing
medians rather than means. The plot above appears to barely reject the null
hypothesis of equal medians.

The nonparametric Wilcoxon rank sum test, implemented by the function
ranksum, can be used to quantify the test of equal medians. It tests if two
independent samples come from identical continuous (not necessarily normal)
distributions with equal medians, against the alternative that they do not
have equal medians.

[p,h] = ranksum(pricel, price2)
p =
0.0092
h =
1
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The test rejects the null hypothesis of equal medians at the default 5%
significance level.
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Available Hypothesis Tests

Note In addition to the functions listed below, Statistics Toolbox also includes
functions for analysis of variance (ANOVA), which perform hypothesis tests in
the context of linear modeling. These functions are discussed in the Chapter
7, “Linear Models” section of the documentation.

Function

Description

ansaribradley

Ansari-Bradley test. Tests if two independent samples
come from the same distribution, against the alternative
that they come from distributions that have the same
median and shape but different variances.

chi2gof

Chi-square goodness-of-fit test. Tests if a sample comes
from a specified distribution, against the alternative
that it does not come from that distribution.

dwtest

Durbin-Watson test. Tests if the residuals from a linear
regression are independent, against the alternative that
there is autocorrelation among them.

jbtest

Jarque-Bera test. Tests if a sample comes from a
normal distribution with unknown mean and variance,
against the alternative that it does not come from a
normal distribution.

kstest

One-sample Kolmogorov-Smirnov test. Tests if a sample
comes from a continuous distribution with specified
parameters, against the alternative that it does not
come from that distribution.

kstest2

Two-sample Kolmogorov-Smirnov test. Tests if two
samples come from the same continuous distribution,
against the alternative that they do not come from the
same distribution.

lillietest

Lilliefors test. Tests if a sample comes from a
distribution in the normal family, against the
alternative that it does not come from a normal
distribution.
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Function

Description

ranksum

Wilcoxon rank sum test. Tests if two independent
samples come from identical continuous distributions
with equal medians, against the alternative that they
do not have equal medians.

runstest

Runs test. Tests if a sequence of values comes in
random order, against the alternative that the ordering
is not random.

signrank

One-sample or paired-sample Wilcoxon signed rank test.
Tests if a sample comes from a continuous distribution
symmetric about a specified median, against the
alternative that it does not have that median.

signtest

One-sample or paired-sample sign test. Tests if a
sample comes from an arbitrary continuous distribution
with a specified median, against the alternative that it
does not have that median.

ttest

One-sample or paired-sample ¢-test. Tests if a sample
comes from a normal distribution with unknown
variance and a specified mean, against the alternative
that it does not have that mean.

ttest2

Two-sample ¢-test. Tests if two independent samples
come from normal distributions with unknown but
equal (or, optionally, unequal) variances and the same
mean, against the alternative that the means are
unequal.

vartest

One-sample chi-square variance test. Tests if a sample
comes from a normal distribution with specified
variance, against the alternative that it comes from a
normal distribution with a different variance.

vartest2

Two-sample F-test for equal variances. Tests if two
independent samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.
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Function

Description

vartestn

Bartlett multiple-sample test for equal variances. Tests
if multiple samples come from normal distributions
with the same variance, against the alternative that
they come from normal distributions with different
variances.

ztest

One-sample z-test. Tests if a sample comes from a
normal distribution with known variance and specified
mean, against the alternative that it does not have that
mean.
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Introduction to linear modeling

Linear models for regression
analysis

Linear models for analysis of
variance
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Introduction

Linear models represent the relationship between a continuous response
variable and one or more predictor variables (either continuous or categorical)
in the form y = X + ¢, where

® yis an n-by-1 vector of observations of the response variable.

® X is the n-by-p design matrix determined by the predictors.

® [is a p-by-1 vector of unknown parameters to be estimated.

® cis an n-by-1 vector of independent, identically distributed random

disturbances.

The general form of the linear model is used to solve a variety of “Linear
Regression” on page 7-3 and “Analysis of Variance” on page 7-32 problems.

For examples of simple linear models using MATLAB functions, see MATLAB
Data Analysis.
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Linear Regression

e “Multiple Linear Regression” on page 7-3

® “Quadratic Response Surface Models” on page 7-12
* “Stepwise Regression” on page 7-16

® “Generalized Linear Models” on page 7-20

* “Robust and Nonparametric Methods” on page 7-25

Multiple Linear Regression
The purpose of multiple linear regression is to establish a quantitative

relationship between a group of predictor variables (the columns of X) and a

response, y. This relationship is useful for

¢ Understanding which predictors have the greatest effect.

* Knowing the direction of the effect (i.e., increasing x increases/decreases y).

® Using the model to predict future values of the response when only the
predictors are currently known.

The following sections explain multiple linear regression in greater detail:

e “Mathematical Foundations of Multiple Linear Regression” on page 7-3
¢ “Example: Multiple Linear Regression” on page 7-6

¢ “Polynomial Curve Fitting Demo” on page 7-7

Mathematical Foundations of Multiple Linear Regression
The linear model takes its common form

y=Xp+e
where:

® yis an n-by-1 vector of observations.

¢ X is an n-by-p matrix of regressors.
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* B is a p-by-1 vector of parameters.

® ¢is an n-by-1 vector of random disturbances.

The solution to the problem is a vector, b, which estimates the unknown vector
of parameters, 3. The least squares solution is

. -1
b=P= (XX X'y

This equation is useful for developing later statistical formulas, but has poor
numeric properties. regress uses QR decomposition of X followed by the
backslash operator to compute 6. The QR decomposition is not necessary for
computing b, but the matrix R is useful for computing confidence intervals.

You can plug b back into the model formula to get the predicted y values at
the data points.

5 = Xb = Hy
-1
H-xxTxyx?T

Note Statisticians use a hat (circumflex) over a letter to denote an estimate
of a parameter or a prediction from a model. The projection matrix H is called
the hat matrix, because it puts the “hat” on y.

The residuals are the difference between the observed and predicted y values.
r=y-y=I-Hy

The residuals are useful for detecting failures in the model assumptions,
since they correspond to the errors, €, in the model equation. By assumption,
these errors each have independent normal distributions with mean zero and
a constant variance.

The residuals, however, are correlated and have variances that depend on the
locations of the data points. It is a common practice to scale (“Studentize”)
the residuals so they all have the same variance.
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In the equation below, the scaled residual, ¢, has a Student’s t distribution
with (n-p-1) degrees of freedom

r;
t =
c"s“-] 1—:’1:-
where
2 a
TR ' G
U nop-1 (n—p-1)(1-h)
and:

* ¢t is the scaled residual for the ith data point.
® r, is the raw residual for the ith data point.

® 7 is the sample size.

® p is the number of parameters in the model.
® h,is the ith diagonal element of H.

The left-hand side of the second equation is the estimate of the variance of the
errors excluding the ith data point from the calculation.

A hypothesis test for outliers involves comparing ¢, with the critical values of
the t distribution. If ¢, is large, this casts doubt on the assumption that this
residual has the same variance as the others.

A confidence interval for the mean of each error is

[1 a ch"in-] 1 -h;
5

Confidence intervals that do not include zero are equivalent to rejecting the
hypothesis (at a significance probability of o) that the residual mean is zero.
Such confidence intervals are good evidence that the observation is an outlier
for the given model.

.= rl-:l:t
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Example: Multiple Linear Regression

The example comes from Chatterjee and Hadi in a paper on regression
diagnostics. The data set (originally from Moore) has five predictor variables
and one response.

load moore
X = [ones(size(moore,1),1) moore(:,1:5)1;

Matrix X has a column of ones, and then one column of values for each of
the five predictor variables. The column of ones is necessary for estimating
the y-intercept of the linear model.

y = moore(:,6);
[b,bint,r,rint,stats] = regress(y,X);

The y-intercept is b (1), which corresponds to the column index of the column
of ones.

stats
stats =
0.8107 11.9886 0.0001 0.0685

The elements of the vector stats are the regression R? statistic, the F statistic
(for the hypothesis test that all the regression coefficients are zero), the
p-value associated with this F statistic, and an estimate of the error variance.

R?is 0.8107 indicating the model accounts for over 80% of the variability in
the observations. The F statistic of about 12 and its p-value of 0.0001 indicate
that it is highly unlikely that all of the regression coefficients are zero. The
error variance of 0.0685 indicates that there a small random variability
between the variable and the regression function.

rcoplot(r,rint)
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The plot shows the residuals plotted in case order (by row). The 95%
confidence intervals about these residuals are plotted as error bars. The first
observation is an outlier since its error bar does not cross the zero reference
line.

In problems with just a single predictor, it is simpler to use the polytool
function. This function can form an X matrix with predictor values, their
squares, their cubes, and so on.

Polynomial Curve Fitting Demo

The polytool demo is an interactive graphic environment for polynomial
curve fitting and prediction. You can use polytool to do curve fitting and
prediction for any set of x-y data, but, for the sake of demonstration, Statistics
Toolbox provides a data set (polydata.mat) to illustrate some basic concepts.

With the polytool demo you can

¢ Plot the data, the fitted polynomial, and global confidence bounds on a
new predicted value.

® Change the degree of the polynomial fit.

¢ Evaluate the polynomial at a specific x-value, or drag the vertical reference
line to evaluate the polynomial at varying x-values.

® Display the predicted y-value and its uncertainty at the current x-value.

¢ Control the confidence bounds and choose between least squares or robust
fitting.

e Export fit results to the workspace.
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Note From the command line, you can call polytool and specify the data
set, the order of the polynomial, and the confidence intervals, as well as
labels to replace X Values and Y Values. See the polytool function

reference page for details.

The following sections explore the use of polytool:

¢ “Fitting a Polynomial” on page 7-8

¢ “Confidence Bounds” on page 7-11

Fitting a Polynomial.

1 Load the data. Before you start the demonstration, you must first load a
data set. This example uses polydata.mat. For this data set, the variables
x and y are observations made with error from a cubic polynomial. The
variables x1 and y1 are data points from the “true” function without error.

load polydata

Your variables appear in the Workspace browser.

<) Workspace

File Edit Miew ‘Web ‘Window Help

iﬁ' E | m | ﬁ Stad(:IElase vl

=101

HNane Size Extez|Classz

HHv 1x101 808 | double array
=1 1x101 505 |double array
@x 1x43 344| double array
@Y 1x4d3 344| double array

2 Try a linear fit. Run polytool and provide it with the data to which
the polynomial is fit. Because this code does not specify the degree of the
polynomial, polytool does a linear fit to the data.

polytool(x,y)
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The linear fit is not very good. The bulk of the data with x-values between
0 and 2 has a steeper slope than the fitted line. The two points to the right
are dragging down the estimate of the slope.

Try a cubic fit. In the Degree text box at the top, type 3 for a cubic
model. Then, drag the vertical reference line to the x-value of 2 (or type 2
in the X Values text box).
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.} Figure No. 1: Prediction Plot of Cubic Model o ] 54
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This graph shows a much better fit to the data. The confidence bounds are
closer together indicating that there is less uncertainty in prediction. The
data at both ends of the plot track the fitted curve.

4 Finally, overfit the data. If the cubic polynomial is a good fit, it is
tempting to try a higher order polynomial to see if even more precise
predictions are possible. Since the true function is cubic, this amounts
to overfitting the data. Use the data entry box for degree and type 5 for
a quintic model.

7-10
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As measured by the confidence bounds, the fit is precise near the data
points. But, in the region between the data groups, the uncertainty of
prediction rises dramatically.

This bulge in the confidence bounds happens because the data really does
not contain enough information to estimate the higher order polynomial
terms precisely, so even interpolation using polynomials can be risky in
some cases.

Confidence Bounds. By default, the confidence bounds are nonsimultaneous
bounds for a new observation. What does this mean? Let p(x)be the true but
unknown function you want to estimate. The graph contains the following
three curves:

e %), the fitted function

o lix ) the lower confidence bounds

e i(X) the upper confidence bounds

7-11
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7-12

Suppose you plan to take a new observation at the value x, , ;. Call it
¥n4+1'%, 41} This new observation has its own error £, , 1, so it satisfies
the equation

-}'n+1|:'tn 1! = Pi";n+1J+En+1

What are the likely values for this new observation? The confidence bounds
provide the answer. The interval [ { a1l 18 @ 95% confidence bound
for Fng li'tn +1'1'

n+1° U

These 